PERSONAL DATA:

Name: Address: Nationality: Phone: E-mail: WEB:	Péter Szántó Csernyus u. 26/a, Budapest, Hungary, H-1141 Hungarian +36-70-5506007 szanto@mit.bme.hu http://www.mit.bme.hu/~szanto	
LAST POSITIC	DN	
2006 -	Research Assistant, Budapest University of Technology and Economics, Department of Measurement and Information Systems, Budapest, Hungary	
2010 -	Head of Central Laboratory, Budapest University of Technology and Economics	
EDUCATION		
2004 - 2006	Budapest University of Technology and Economics Department of Measurement and Information Systems Ph.D. studies Research project: <i>Hardware Architectures for Image Synthesis and Image Proces</i>	

1996 – 2003 Budapest University of Technology and Economics (**BUTE**) **Faculty of Electrical Engineering** Major in: Embedded systems and electroacoustics Title of Ms.C. thesis: 3D Rendering Architecture in FPGA

SKILLS

HDL Languages	Verilog, VHDL
	Handel-C
Programming Languages	Assembly, Pascal, C, C++
	HTML, PHP, SQL
CAD Tools	Xilinx ISE, EDK, ChipScope, System Generator
	Synplicity Synplify, Premier, Synplify DSP, Amplify
	ISSP
	Mentor ModelSim, Precision Synthesis
	Celoxica DK Design Suite
Software Tools	VisualStudio (MFC, Win32, DirectX)
	Matlab
Technologies	x86, PowerPC, MicroBlaze
	Analog Devices

Processing

PROFESSIONAL EXPERIENCE

Ph.D. research, 2004 –

Hardware Architectures for Image Synthesis and Image Processing

- Image processing architectures targeting FPGAs
- Tile based 3D rendering architecture targeting FPGAs and Structured ASICs
 - Bounding Box Bucket Sorting
 - Exact Bucket Sorting modules
 - Programmable tile size (between frames)
 - Output format allows burst reads in the subsequent modules
 - 1 tile/clock and 0.33 triangle/clock maximum throughput
 - Scalable depth/stencil buffering architecture using on-chip buffers
 - Programmable tile size
 - Based on similar Processing Elements
 - Multi pass sorting of translucent objects
 - 1 pixel/clock/PE peak fill rate for opaque objects
 - 0.5 pixel/clock/PE peak fill rate for translucent objects
 - Multisample anti aliasing using arbitrary number of samples and arbitrary sample positions

Part time projects, internships, contract works:

EVOCHEM7 (Hungary, National Research Project), 2008 – 2010

Virtual Screening

• Acceleration of the chemical similarity analysis using FPGA based accelerators (SGI RC100 and PCIe boards) and GPUs

Genome sequence assembly

• Acceleration parts of the short-read alignment process with FPGA and/or GPU based solutions

LightWare Kft. (Hungary), June 2008 –

DVI video test signal generator

- Single link DVI port output, standard and custom resolution & refresh rate support
- Progressive and interlaced output, still pictures and animation playback
- Genlock (synchronization to external video source) function
- VHDL implementation targeting Virtex-4 FX12

ProPatria Kft. (Hungary), June 2007 – February 2008

Counseling and IP development

- Hardware architecture design for glue logic/management FPGA (PicoBlaze based)
- Analog Devices Link Port interface IP with 240 MB/S/line
- Cypress USB interface IP
- General VHDL implementation, targeted for Spartan-3

Xilinx Inc. (USA), March 2006 – March 2007

2D rank filter IP core (XAPP953)

- High performance, device independent rank filter architecture
- Parametrizable VHDL implementation
 - Filter window size
 - Data resolution (per-pixel & filter value), optional filter value generation
 - Number of new samples/clock cycle (balancing complexity and operating frequency)

2D DVE IP core (cancelled)

- High performance affine transformation core with low resource requirements
- Device independent, parameterizable VHDL implementation
- Pre-scaler
 - Box filter capable of downscaling with integer ratios
 - Interface for Video Frame Buffer Controller, tuned for burst accesses
- Bilinear filter
 - Options to use 1, 2 or 4 multipliers
 - Video Frame Buffer Controller interface

Heim Systems GmbH (Germany), from January 2005

DATaRec 4 Modular Data Recording System DIC6, DIC24 and SGU9 analog modules (6, 24 and 9channels)

- 4 cascaded FIR filter for every channel with up to 1024x decimation
- Updateable coefficients
- AC/DC compensation
- PLB Interface to an on-chip PowerPC processor
- Gigabit interface to other modules (through MGT)
- VHDL implementation targeting Virtex-2 Pro FPGA

OUT6 6-channel playback module

- 4 cascaded FIR filters with up to 1024x interpolation
- Updateable coefficients, PLB interface
- VHDL implementation targeting Virtex-2 Pro FPGA

ANH102 high speed analog record/playback module

- Single channel with 300 MHz sampling frequency
- Concurrent record and playback with up to 512 decimation and interpolation
- VHDL implementation targeting Virtex-5 FPGA

VCP100 4-channel MPEG-2 decoder module

- Employs dedicated MPEG-2 decoder chips
- Controller FPGA
 - Handles packet parsing, temporary data storage and Link Module communication

- Custom 64-bit 16-channel programmable DMA engine for fast automatic data transfer through the PLB bus
- Implemented in Virtex-2 Pro FPGA
- I/O FPGA
 - Vide data received from the Controller FPGA (IRIG Chapter 10 video packets) or the serial transport stream inputs
 - Transport streams are handled in HW, synchronization is done by the PowerPC CPU
 - Implemented in Virtex-4 FX FPGA

Link Module

- Main module: data acquisition and playback modules are connected to it via several Gigabit interfaces
- Accurate synchronization to external timing information (e.g. GPS, IRIG, PPS)
- Generation of timing information in various formats (GPS, IRIG, PPS)
- Clock generation for the acquisition modules
- Recording of measured data and timing information
- VHDL implementation targeting Virtex-2 Pro FPGA

Chemistry Logic Kft. (Hungary), August 2005 – November 2005

Molecule fingerprint analysis

- FPGA accelerated searching of molecule pairs in large databases, using the Tanimoto criteria
- Highly parallel, high speed implementation using Verilog HDL, Virtex-2 FPGA

EuroTech S.p.a., EuroTech Finland Oy (Italy, Finland), November 2004 – December 2006 *Development of PC/104 digital I/O and communication boards*

- FPGA based PC/104 peripheral boards with ISA connection
- Custom jumper-less configuration
- Verilog HDL implementation targeting Spartan-2 FPGA

EAC Gaming Kft. (Hungary), January 2004 – July 2004

Display subsystem for arcade gaming systems

- Architecture definition based on specifications
- Verilog HDL implementation targeting Spartan-2 FPGAs
 - Interface to EZ80 microcontroller
 - SMC, SRAM, SDRAM controller
 - Tile based 2D display system with custom overlay capabilities and hardware animation

Publications

Péter Szántó, András Széll, Béla Fehér: *Accelerating SOLiD short read assembly with GPU* Many-Core and Reconfigurable Supercomputing Conference (MRSC '10) 22-24. March 2010, Rome, Italy

Péter Szántó, Béla Fehér, Attila Bérces: *Accelerating Virtual Screening of Compound Libraries* Many-Core and Reconfigurable Supercomputing Conference (MRSC '09) 25-26. March 2009., Berlin, Germany

Péter Szántó, Gábor Szedő, Béla Fehér: *High Performance Timing-Driven Rank Filter* VLSI Design Journal 2008

Péter Szántó, Gábor Szedő, Béla Fehér: *High Performance Timing-Driven Rank Filter* 13. IEEE International Conference on Electronics, Circuits and Systems 10-13. December 2006., Nice, France

Péter Szántó, Gábor Szedő, Béla Fehér: *Implementing 2D Median Filter in FPGA* VSB-Technical University of Ostrava, Mechanical Series

Péter Szántó, Gábor Szedő, Béla Fehér: *Implementing 2D Median Filter in FPGA* 7. International Carpathian Control Conference (ICCC 2006) 29-31. May 2006., Ostrava, Czech Republic

Péter Szántó, Béla Fehér: *Scalable Rasterizer Unit* Third Hungarian Computer Graphics and Geometry Conference 17-18. November 2005., Budapest, Hungary

Péter Szántó, Béla Fehér: *Exact Bucket Sorting for Segmented Screen Rendering* GSPx 2005 24-27. October 2005., Santa Clara, California, USA

Péter Szántó, Béla Fehér, János Lazányi: *Efficient Multi-Channel FIR Filters in FPGA* International Carpathian Control Conference 2005 24-27. May 2005., Miskolc-Lillafüred, Hungary

Péter Szántó: *Efficient and Scalable 3D Rendering Architecture* DATE 2005 EDAA PhD Forum 7-11. March 2005., München, Germany

Péter Szántó, Béla Fehér: *High Performance Visibility Testing with Screen Segmentation* ESTIMedia 2004 (Workshop on Embedded Systems for Real-Time Multimedia) 6-7. September 2004., Stockholm, Sweden

Péter Szántó, Béla Fehér: *3D Rendering using FPGAs* VLSI-SOC 2003 - International Conference on Very Large Scale Integration 1-3, December 2003., Darmstadt, Germany

Péter Szántó, Béla Fehér: *Implementing a Programmable Pixel Pipeline in FPGAs* Second Hungarian Computer Graphics and Geometry Conference 30. June – 1. July, 2003., Budapest, Hungary