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Abstract—High-throughput genome sequencers recently 
became available to the masses what greatly increases the 
number of laboratories using these machines. Unlike the 
traditional Sanger sequencing, these sequencers uses much 
shorter reads and generate a large amount of data. Processing 
the sequencer output with pure software methods often leads 
to unacceptable run-times; therefore some kind of hardware 
acceleration is extremely beneficial. 

I. INTRODUCTION 
The genome contains all hereditary information of a 

living being, which includes genes and non-coding 
sequences. From computational point of view, the genome is 
nothing more than a list of so-called base pairs (bp), namely 
A (adenine), C (cytosine), G (guanine) and T (thiamine). The 
number of base-pairs in the genome is peculiar to a given 
organism – e.g. the genome of a simpler virus contains 
thousands of base-pairs, while the human genome has more 
than 3 billion pairs. Genome sequencers generate a large 
number of genome fractions as their output. Sanger 
sequencing technology produced ~1000bp – in contrast, the 
recently developed high-throughput sequencers generate 
much shorter genome fractions (called reads) in the range of 
30-40bp which are called short-reads. Such sequencers are 
manufactured by Illumina, Applied Biosystems and Helicos. 
As the reads are very short, sequencing is done by 
“mapping” the reads to a reference genome – this type of 
assembly is often referred as comparative assembly or 
resequencing. 

Most sequencers produce the reads in letter-space with 
the exception of Applied Biosystems’ Solid technology, 
which generates so called color-space reads. 

II. COLOR SPACE SHORT READS 
During the sequencing process, Solid technology do not 

identify the individual bases, but instead it uses 2-base-
encoding to encode two-base combinations. During the 
sequencing four fluorescent dyes are used to encode the 
sixteen possible two-base combinations. That is, the 
difference between two consecutive bases is encoded into 
single color information, as Figure 1. shows. 

 

Figure 1.  Solid two base color encoding 

To be able to precisely decode color-space reads into letter-
space, the leading base has to be defined (the first color 
defines the difference in contrast with this leading base). As 
all available samples use T as a leading base, we also choose 
this for our application. 

Reference genomes are available in letter-space, so they 
contain A, C, G and T characters. Mapping Solid’s color-
space reads to the letter-space reference genome can be done 
in color-space or in letter-space. As Figure 2. shows, if the 
color-space data is converted into letter-space, a single color-
space sequencing error invalidates all letters after the 
position of the error. If mapping is done in color-space, a 
single sequencing error remains only a single error. 

 

Figure 2.  Single sequencing error 

Therefore, our application does the read mapping in color 
space. To be able to do this, the reference genome is 
converted into color space before the mapping process. 

III. PROPOSED MAPPING ALGORITHM 
Basically, mapping is a simple process: all the reference 

genome positions should be found where the sequenced read 



fits with little differences. When mapping genome sequences 
it is not adequate to compute perfect matches only for two 
reasons. First, the sequencer output may contain errors. 
Second, one goal of the genome sequencing is to compare 
individuals’ genomes to find small differences which can 
help identify the genetic reasons of hereditary diseases. 
Therefore, some differing bases should be allowed during the 
mapping – for the 25bp Solid reads 3-4 differences are 
adequate. It should be noted that the reads may contain 
several types of errors, the most complex ones (like 
insertions or deletions) are not supported by our software in 
the current phase. 

The basic mapping process is the following. Reads 
should be slid through the whole reference genome and those 
reference positions should be saved where the difference is 
smaller than a predefined threshold (mismatch – number of 
differences allowed). As the length of reference human 
genome is ~3 billion bp, this means that a single read should 
be compared with ~3 billion reference fractions which are as 
long as the read itself. The number of reads generated by the 
sequencer (with ten times coverage) is ~120 million. 
Therefore, the number of required comparisons with a brute-
force method is 120 million multiplied with 3 billion – this 
leads to unacceptable run times. To reduce the number of 
operations required the proposed method employs hashing. 
Although current Solid reads are 25 bp long, our solution is 
prepared for longer read length. 

The algorithm has six main steps: 

1. Load the reads and the reference genome. Internally 
– irrespectively of the actual input file format – both 
color-space and letter-space bases are stored on two 
bits. 

2. encode the reference into color-space (generate 
read-long, overlapping fractions) 

3. hash the reads and the reference fractions 

4. generate inputs for the accelerator; start processing; 
process accelerator output 

5. re-run steps 3. and 4 for modified hash (if 
necessary) 

6. merge outputs, write results 

As the number of comparisons is reduced by the hashing, 
selecting optimal hashing function is crucial. 

A. Binning input data 
Hashing groups reads and reference fractions into bins by 
masking several bits and then group the inputs based on the 
masked value of the read/reference. The number of bins 
generated therefore equals to bits_mask2 . During the actual 
comparison only the corresponding read and reference bins 
are processed (that is, read bin 0 is only compared with 
reference bin 0, and so on). Thus, using a single mask, 
differences in the bits used for masking are not allowed. To 
find read-reference mappings which has at most mismatch 

differences in those bits used for masking, another mask has 
to be used. The number of masks in a mask-set depends on 
the number of bits used for masking and the mismatch value. 
A good mask-set therefore contains the fewest possible 
masks which still offers full coverage (that is all possible 
mismatch combinations could be detected with at least one 
mask from the set). The proposed implementation uses mask 
sets from the La Jolla Covering Repository [2]. Figure 3 
shows a mask set which uses 8 bases (16 bits) and allows 
three mismatches (yellow boxes denote the bases used for 
masking). 

 

Figure 3.  Mask set example 

The drawback of such mask-sets is that the same result may 
be generated with different masks and these duplicates 
should be removed afterwards (for example if a read and a 
reference has difference only at base positions {1, 2, 6} this 
result is generated with masks 0, 1 and 2). Table 1. shows the 
number of required masks within a mask set for different 
mask bit sizes and mismatch values (M), assuming 25 base 
reads. 

 M=0 M=1 M=2 M=3 M=4
16 bit 1 2 3 6 11
20 bit 1 2 4 10 21
24 bit 1 2 6 14 30
28 bit 1 2 7 23 66

Table 1. Number of masks in a mask set 
The implemented hashing algorithm generates block-

based linked list as an output. That is, at the beginning every 
bin has a relatively small memory block allocated to it (16 
reads or references). If necessary, a new block is allocated 
and chained to the previous one. According to our 
measurements, this type of bin generation is considerably 
faster than an in-place solution. The drawback of this method 
is memory requirement: for every bin the last allocated block 
may not be fully utilized; with 16bit masks ~8Mbyte of 
memory may be wasted, but with 24bit masks wasted 
memory size may be as high as 2 Gbytes. 

B. Input data for the accelerator 
After hashing, the host software generates inputs for the 

accelerator, namely a command stream and a data stream. 

The data stream contains reads and reference fractions 
from several bins in 128-bit format, which allows 64 base 
inputs to be processed. All data is merged into a continuous 
memory area. 



The command streams store commands which should be 
executed on the data stream. More precisely, a single 
command contains the following information: 

• offset in the data stream of the reads to be compared 

• number of reads to be processed 

• offset in the data streams of the references to be 
compared 

• number of references to be processed 

• maximal allowed mismatch value 

IV. GPU SOFTWARE 
The actual read – reference comparisons are accelerated 

by an NVIDIA GTX260 GPU. The GPU is programmed in 
NVIDIA’s C-based CUDA programming language [3]. 

The host CPU copies both the command stream and the 
data stream into the on-board memory of the GPU. In the 
case of GPU acceleration, the number of reads to be 
processed is 128 at the most for each command. If a read bin 
contains more than 128 elements, multiple commands are 
generated. Unlike reads, the number of references in the 
command is only limited by the available memory. 

The reason behind generating 128-read commands is that 
a single command is processed by a single thread-block on 
the GPU. The number of thread blocks in a single run equals 
to the number of commands generated. The GPU software 
does the following steps: 

1 Read the command associated with the given thread 
block. E.g. thread block 0 reads command 0; thread 
block 1 reads command 1; and so on. 

2 Every thread loads its assigned read into a GPU 
register. 

3 If not all input references were processed, every 
thread block reads 128 references into shared 
memory. Therefore, all threads within a thread 
block read a single reference. 

4 All threads within the thread blocks iterate through 
the 128 references and compare the reference with 
its own read. 

5 If all necessary conditions come true, the index of 
the read (which is actually the ID of the thread) and 
the index of the reference are written to the on-
board memory. 

6 Steps 3-6 are repeated as long as necessary. 

One crucial point in getting the most performance out of the 
GPU is memory handling. Although the bandwidth of the 
on-board memory itself is considerably higher than the 
system memory bandwidth of CPUs, it still can easily be a 
limiting factor because of the large number of processing 
cores. NVIDIA GPUs offer on-chip shared memory which is 
shared between threads inside a thread block. One notably 

important feature of this type of memory is broadcasting, 
whereby the same data is read from the memory with a 
single read request and broadcasted to several threads. 

Due to the way commands are generated, reads processed 
within a thread-block belong to the same read bin, therefore 
they have to be compared with the same references. Thus, if 
threads are synchronized before shared memory read (so that 
they read the same shared memory address at the same time) 
the effective read bandwidth multiplies by the broadcasting 
feature. 

Another property of the shared memory is that it contains 
multiple banks which can be accessed simultaneously if 
there is no bank conflict between the threads. Writing the 
reference data into shared memory is done in a way that this 
property can be exploited. 

Performance is decreased if the threads within a so called 
thread warp execute divergent branches, so to avoid this 
situation all threads are always executed, even if the read 
associated with the thread is invalid – this is the case when 
the command of the thread block contains less than 128 
reads. However, threads processing invalid reads are not 
allowed to write to the result memory. 

The number of matching references are unknown before the 
comparison, therefore the GPU employs block-based linked 
list to generate output data. As an input, the GPU receives 
the base address of the first input block for every thread and 
the address of the first free block. If a thread needs a new 
memory block it, it allocates it by reading the address of the 
first free block and updating that address. To ensure that no 
parallel block allocation happens this requires atomic 
operation which is available in devices with computing 
capability 1.1 and higher. At the end of the processing, this 
address shows the number of allocated blocks which 
corresponds with the amount of output data generated. 

V. RESULTS 
For the development, CUDA SDK 3.0beta and Visual 

Studio 8.0 were used on a standard desktop system (Core2 
Duo CPU @3.8 GHz, 8Gbytes of memory).  

In the figure below two results are shown in the GPU 
accelerated case: the full run-time (GPU Full) and the run-
time of GPU related functions, which includes data 
movement to/from the graphics card and GPU kernel 
execution time (GPU Pure). Our solution is compared to the 
results obtained with Applied Biosystems’ mapreads 
software. Tests were ran with two input databases: in the first 
case 10 million reads and references; in the second case 30 
million reads and references. The maximal allowed 
mismatch (M) were set to 1, 2 and 3; in all cases 8 bases 
were used to bin input data. It should be also noted that – 
unlike mapreads – our solution produces all results, there is 
no limit on the number of outputs. 



 

Figure 4.  Run-time results (seconds) 

The preliminary results shown on Figure 4. are promising, 
the accelerated version handles increasing data sizes much 
better than mapreads. The full human genome is several 
times larger than our test databases, so the better scaling of 
the GPU version could be a great advantage. 

The presented solution is more a proof of concept than a 
fully optimized version, there is potential for further 
acceleration. For example, in the current version the thread 
group size is a compile-time constant – with hierarchical 
binning and more adaptive thread management the GPU 
occupancy increased. The performance of the host software 
can be further increased with support for more threads – as 
our development platform has two processor cores, currently 
two threads are used. 
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