
Accelerating SOLiD short read assembly with GPU

Péter Szántó, Béla Fehér
Dept. of Measurement and Information Systems

Budapest University of Technology and Economics
Budapest, Hungary

{szanto, feher}@mit.bme.hu

András Széll
FPGArt Ltd.

Budakeszi, Hungary
szell@fpgart.hu

Abstract—High-throughput genome sequencers recently
became available to the masses what greatly increases the
number of laboratories using these machines. Unlike the
traditional Sanger sequencing, these sequencers uses much
shorter reads and generate a large amount of data. Processing
the sequencer output with pure software methods often leads
to unacceptable run-times; therefore some kind of hardware
acceleration is extremely beneficial.

I. INTRODUCTION
The genome contains all hereditary information of a

living being, which includes genes and non-coding
sequences. From computational point of view, the genome is
nothing more than a list of so-called base pairs (bp), namely
A (adenine), C (cytosine), G (guanine) and T (thiamine). The
number of base-pairs in the genome is peculiar to a given
organism – e.g. the genome of a simpler virus contains
thousands of base-pairs, while the human genome has more
than 3 billion pairs. Genome sequencers generate a large
number of genome fractions as their output. Sanger
sequencing technology produced ~1000bp – in contrast, the
recently developed high-throughput sequencers generate
much shorter genome fractions (called reads) in the range of
30-40bp which are called short-reads. Such sequencers are
manufactured by Illumina, Applied Biosystems and Helicos.
As the reads are very short, sequencing is done by
“mapping” the reads to a reference genome – this type of
assembly is often referred as comparative assembly or
resequencing.

Most sequencers produce the reads in letter-space with
the exception of Applied Biosystems’ Solid technology,
which generates so called color-space reads.

II. COLOR SPACE SHORT READS
During the sequencing process, Solid technology do not

identify the individual bases, but instead it uses 2-base-
encoding to encode two-base combinations. During the
sequencing four fluorescent dyes are used to encode the
sixteen possible two-base combinations. That is, the
difference between two consecutive bases is encoded into
single color information, as Figure 1. shows.

Figure 1. Solid two base color encoding

To be able to precisely decode color-space reads into letter-
space, the leading base has to be defined (the first color
defines the difference in contrast with this leading base). As
all available samples use T as a leading base, we also choose
this for our application.

Reference genomes are available in letter-space, so they
contain A, C, G and T characters. Mapping Solid’s color-
space reads to the letter-space reference genome can be done
in color-space or in letter-space. As Figure 2. shows, if the
color-space data is converted into letter-space, a single color-
space sequencing error invalidates all letters after the
position of the error. If mapping is done in color-space, a
single sequencing error remains only a single error.

Figure 2. Single sequencing error

Therefore, our application does the read mapping in color
space. To be able to do this, the reference genome is
converted into color space before the mapping process.

III. PROPOSED MAPPING ALGORITHM
Basically, mapping is a simple process: all the reference

genome positions should be found where the sequenced read

fits with little differences. When mapping genome sequences
it is not adequate to compute perfect matches only for two
reasons. First, the sequencer output may contain errors.
Second, one goal of the genome sequencing is to compare
individuals’ genomes to find small differences which can
help identify the genetic reasons of hereditary diseases.
Therefore, some differing bases should be allowed during the
mapping – for the 25bp Solid reads 3-4 differences are
adequate. It should be noted that the reads may contain
several types of errors, the most complex ones (like
insertions or deletions) are not supported by our software in
the current phase.

The basic mapping process is the following. Reads
should be slid through the whole reference genome and those
reference positions should be saved where the difference is
smaller than a predefined threshold (mismatch – number of
differences allowed). As the length of reference human
genome is ~3 billion bp, this means that a single read should
be compared with ~3 billion reference fractions which are as
long as the read itself. The number of reads generated by the
sequencer (with ten times coverage) is ~120 million.
Therefore, the number of required comparisons with a brute-
force method is 120 million multiplied with 3 billion – this
leads to unacceptable run times. To reduce the number of
operations required the proposed method employs hashing.
Although current Solid reads are 25 bp long, our solution is
prepared for longer read length.

The algorithm has six main steps:

1. Load the reads and the reference genome. Internally
– irrespectively of the actual input file format – both
color-space and letter-space bases are stored on two
bits.

2. encode the reference into color-space (generate
read-long, overlapping fractions)

3. hash the reads and the reference fractions

4. generate inputs for the accelerator; start processing;
process accelerator output

5. re-run steps 3. and 4 for modified hash (if
necessary)

6. merge outputs, write results

As the number of comparisons is reduced by the hashing,
selecting optimal hashing function is crucial.

A. Binning input data
Hashing groups reads and reference fractions into bins by
masking several bits and then group the inputs based on the
masked value of the read/reference. The number of bins
generated therefore equals to bits_mask2 . During the actual
comparison only the corresponding read and reference bins
are processed (that is, read bin 0 is only compared with
reference bin 0, and so on). Thus, using a single mask,
differences in the bits used for masking are not allowed. To
find read-reference mappings which has at most mismatch

differences in those bits used for masking, another mask has
to be used. The number of masks in a mask-set depends on
the number of bits used for masking and the mismatch value.
A good mask-set therefore contains the fewest possible
masks which still offers full coverage (that is all possible
mismatch combinations could be detected with at least one
mask from the set). The proposed implementation uses mask
sets from the La Jolla Covering Repository [2]. Figure 3
shows a mask set which uses 8 bases (16 bits) and allows
three mismatches (yellow boxes denote the bases used for
masking).

Figure 3. Mask set example

The drawback of such mask-sets is that the same result may
be generated with different masks and these duplicates
should be removed afterwards (for example if a read and a
reference has difference only at base positions {1, 2, 6} this
result is generated with masks 0, 1 and 2). Table 1. shows the
number of required masks within a mask set for different
mask bit sizes and mismatch values (M), assuming 25 base
reads.

 M=0 M=1 M=2 M=3 M=4
16 bit 1 2 3 6 11
20 bit 1 2 4 10 21
24 bit 1 2 6 14 30
28 bit 1 2 7 23 66

Table 1. Number of masks in a mask set
The implemented hashing algorithm generates block-

based linked list as an output. That is, at the beginning every
bin has a relatively small memory block allocated to it (16
reads or references). If necessary, a new block is allocated
and chained to the previous one. According to our
measurements, this type of bin generation is considerably
faster than an in-place solution. The drawback of this method
is memory requirement: for every bin the last allocated block
may not be fully utilized; with 16bit masks ~8Mbyte of
memory may be wasted, but with 24bit masks wasted
memory size may be as high as 2 Gbytes.

B. Input data for the accelerator
After hashing, the host software generates inputs for the

accelerator, namely a command stream and a data stream.

The data stream contains reads and reference fractions
from several bins in 128-bit format, which allows 64 base
inputs to be processed. All data is merged into a continuous
memory area.

The command streams store commands which should be
executed on the data stream. More precisely, a single
command contains the following information:

• offset in the data stream of the reads to be compared

• number of reads to be processed

• offset in the data streams of the references to be
compared

• number of references to be processed

• maximal allowed mismatch value

IV. GPU SOFTWARE
The actual read – reference comparisons are accelerated

by an NVIDIA GTX260 GPU. The GPU is programmed in
NVIDIA’s C-based CUDA programming language [3].

The host CPU copies both the command stream and the
data stream into the on-board memory of the GPU. In the
case of GPU acceleration, the number of reads to be
processed is 128 at the most for each command. If a read bin
contains more than 128 elements, multiple commands are
generated. Unlike reads, the number of references in the
command is only limited by the available memory.

The reason behind generating 128-read commands is that
a single command is processed by a single thread-block on
the GPU. The number of thread blocks in a single run equals
to the number of commands generated. The GPU software
does the following steps:

1 Read the command associated with the given thread
block. E.g. thread block 0 reads command 0; thread
block 1 reads command 1; and so on.

2 Every thread loads its assigned read into a GPU
register.

3 If not all input references were processed, every
thread block reads 128 references into shared
memory. Therefore, all threads within a thread
block read a single reference.

4 All threads within the thread blocks iterate through
the 128 references and compare the reference with
its own read.

5 If all necessary conditions come true, the index of
the read (which is actually the ID of the thread) and
the index of the reference are written to the on-
board memory.

6 Steps 3-6 are repeated as long as necessary.

One crucial point in getting the most performance out of the
GPU is memory handling. Although the bandwidth of the
on-board memory itself is considerably higher than the
system memory bandwidth of CPUs, it still can easily be a
limiting factor because of the large number of processing
cores. NVIDIA GPUs offer on-chip shared memory which is
shared between threads inside a thread block. One notably

important feature of this type of memory is broadcasting,
whereby the same data is read from the memory with a
single read request and broadcasted to several threads.

Due to the way commands are generated, reads processed
within a thread-block belong to the same read bin, therefore
they have to be compared with the same references. Thus, if
threads are synchronized before shared memory read (so that
they read the same shared memory address at the same time)
the effective read bandwidth multiplies by the broadcasting
feature.

Another property of the shared memory is that it contains
multiple banks which can be accessed simultaneously if
there is no bank conflict between the threads. Writing the
reference data into shared memory is done in a way that this
property can be exploited.

Performance is decreased if the threads within a so called
thread warp execute divergent branches, so to avoid this
situation all threads are always executed, even if the read
associated with the thread is invalid – this is the case when
the command of the thread block contains less than 128
reads. However, threads processing invalid reads are not
allowed to write to the result memory.

The number of matching references are unknown before the
comparison, therefore the GPU employs block-based linked
list to generate output data. As an input, the GPU receives
the base address of the first input block for every thread and
the address of the first free block. If a thread needs a new
memory block it, it allocates it by reading the address of the
first free block and updating that address. To ensure that no
parallel block allocation happens this requires atomic
operation which is available in devices with computing
capability 1.1 and higher. At the end of the processing, this
address shows the number of allocated blocks which
corresponds with the amount of output data generated.

V. RESULTS
For the development, CUDA SDK 3.0beta and Visual

Studio 8.0 were used on a standard desktop system (Core2
Duo CPU @3.8 GHz, 8Gbytes of memory).

In the figure below two results are shown in the GPU
accelerated case: the full run-time (GPU Full) and the run-
time of GPU related functions, which includes data
movement to/from the graphics card and GPU kernel
execution time (GPU Pure). Our solution is compared to the
results obtained with Applied Biosystems’ mapreads
software. Tests were ran with two input databases: in the first
case 10 million reads and references; in the second case 30
million reads and references. The maximal allowed
mismatch (M) were set to 1, 2 and 3; in all cases 8 bases
were used to bin input data. It should be also noted that –
unlike mapreads – our solution produces all results, there is
no limit on the number of outputs.

Figure 4. Run-time results (seconds)

The preliminary results shown on Figure 4. are promising,
the accelerated version handles increasing data sizes much
better than mapreads. The full human genome is several
times larger than our test databases, so the better scaling of
the GPU version could be a great advantage.

The presented solution is more a proof of concept than a
fully optimized version, there is potential for further
acceleration. For example, in the current version the thread
group size is a compile-time constant – with hierarchical
binning and more adaptive thread management the GPU
occupancy increased. The performance of the host software
can be further increased with support for more threads – as
our development platform has two processor cores, currently
two threads are used.

REFERENCES
[1] Applied Biosystem SOLiD documentation,

solid.appliedbiosystems.com
[2] La Jolla Covering Repository, http://www.ccrwest.org/cover.html
[3] NVIDIA CUDA documentation,

http://www.nvidia.com/object/cuda_home_new.html
[4] Next Generation Genome Sequencing, Dr. Michal Janitz
.

