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frequency, the complexity of the filter structure can be considerably reduced compared to previous 2D architectures.
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1. INTRODUCTION

Rank-order filtering is a nonlinear filtering technique, which
selects an element from an ordered list of TAP number of
samples. In the two-dimensional (2D) case, filtering takes
place on the contents of a rectangular window (or more gen-
erally, an arbitrary shape), which slides across the image. Ev-
ery time the window is moved by one pixel column, a set
of obsolete elements is discarded and a set of new elements
is inserted. The samples within the window are sorted and
the element with the specified rank replaces the output el-
ement of the window. Most typical ranks are median, min-
imum, and maximum, but the selection can be easily tai-
lored to the needs of any application. Compared to other
filters, such as FIR, Laplacian, or blur filters, rank filters
can effectively remove impulses like noises while preserv-
ing the edges of the original image. This can be very use-
ful for various applications, for instance, removing certain
types of transmission noises or preprocessing for edge de-
tection. This paper presents a hardware architecture that is
tailored for high-performance color video processing, but it
can be used in various applications such as IP block by taking
advantage of design time parameterization. The paper con-
centrates on the timing-driven architecture selection which
exploits the high operating frequency of recent FPGA and
ASIC technologies, thus reducing hardware resource require-
ments.

2. PREVIOUS WORK

The successful adaptation of rank filters in different appli-
cations catalyzed research activities for new algorithms and
implementations.

Bit-serial approaches [1, 2] provide the lowest complex-
ity, but they do not lend themselves well to high sample rate
implementations as filtering performance is proportional to
the precision of the input data. However, the processing rate
typically does not depend on the number of samples which
changes between processing cycles.

Insert/delete or sorting network-based architectures [3,
4] explicitly order incoming samples. In every cycle, the least
recent sample is discarded and the most recent input is in-
serted into the magnitude sorting structure at the appro-
priate location. While these solutions require relatively few
comparators, the feedback nature of the algorithm hinders
pipelining.

Another set of applications stores the samples in the or-
der of arrival and selects the appropriate output sample by
calculating the location of the output sample dynamically.
These architectures are easier to pipeline and they still require
few comparators.

3. PROPOSED ARCHITECTURE

On filtering images or videos, the filter window is sliding hor-
izontally across the input image, as illustrated in Figure 1. In
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Figure 2: Global filter architecture.

case of a simple rectangular window, to generate a valid out-
put, WV (vertical size of the filter window) new input sam-
ples should be processed. Word-serial architectures can pro-
cess one input sample per clock cycle. When comparing dif-
ferent solutions, an important classification criterion is the
level of input parallelization. In the 2D filtering case, the fil-
ter should operate at WV times of the input pixel frequency
and generate a valid input sample every WVth clock cycle.

Fully parallel filters can generate a valid output sample
every clock cycle, irrespective of the number of input sam-
ples required to achieve this process. Consequently, such fil-
ters process WV new samples in a single clock cycle, and the
required operating frequency is equal to the input pixel fre-
quency. At the same time, hardware resource requirements
are greatly increased. Previous papers typically considered
fully parallel architectures such as 2D filters; however, as this
paper proves, using recent FPGA technologies, this solution
is suboptimal due to the inefficient resource utilization.

Multiword architectures are hybrid solutions; in one cy-
cle, they can handle more than one input sample, but less
than the fully parallel implementation. This solution allows
finding an optimal balance between operating frequency and
hardware complexity. Using given filter window and input
pixel frequency, with NI defining the number of new input
samples in a single cycle, the required operating frequency
can be computed as

FOmax = FS
WV

NI
. (1)

On processing color images, using the full per-pixel in-
formation (e.g., full RGB or YCbCr values) is not an efficient
solution. Filtering these components independently not only
increases computational requirements but may also intro-
duce blur effects, as it may generate new color values which
did not exist on the input image. A better solution is to use
a magnitude-like value, such as luminosity. If the input for-
mat does not contain such a component, it can be generated
within the filter.

3.1. Global filter architecture

The proposed architecture consists of five main components
(as illustrated in Figure 2): the line buffer (LB), the optional
filter value generator (FVG), the delay line (DL), the filter
core (FC), and the control unit (CNTRL).

The LB stores WV-1 lines of the original input frame in
the internal memory. The FVG is only required if the input
format does not contain a magnitude-like component. For
YCbCr or YUV input representations, this module can be
omitted as the Y component lends itself well to magnitude
ordering. For RGB input (luminance), a typical magnitude
value can be calculated. The DL is an addressable FIFO which
stores the full per-pixel information of the pixels residing in-
side the FC. The FC itself uses the values computed by the
FVG and generates the appropriate address for the DL. CN-
TRL generates properly delayed synchronization signals and
output valid signals. As the rest of the architecture is inde-
pendent of the FC solution, further discussion will focus on
the FC and its extensions.

3.2. Word-serial filter core

The operation of the FC is based on observations introduced
in [5]. As a first assumption, the filter contains TAP number
of different samples. For each sample, an index value is gen-
erated, which is equal to the number of samples which are
smaller than the given sample.

This results in TAP distinct values for the TAP samples
which range from 0 (the smallest sample) to TAP-1 (the
largest sample). The ranked sample is the one which has the
index value equal to the required rank. The block diagram in
Figure 3 illustrates the hardware implementation of the algo-
rithm for TAP = 5. The D[3:0] data registers store older filter
values, while the new data value is saved into the ND regis-
ter. In every cycle, these registers shift their data to the left.
Older values are compared with the new value (the result is
“1” if the new value is smaller than the older ones, and “0”
otherwise), and the comparison result is saved into the LSB
position of TAP-1, TAP wide registers (CR[3:0]). The MSB
positions of these CR registers are updated with the value of
the previous CR register. So, the full content of the CR[] reg-
isters is

CR[k] = {CR[k − 1](TAP − 2 : 0),C[k]
}

, (2)

where (:) denotes bit selection, {} denotes concatenation,
and C[k] denotes the kth comparison result. The compari-
son result of a given value is shifted to the left together with
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Figure 3: Filter core.

Table 1: Filtering example.

4 3 2 1 0

D[ ], ND 0 25 37 12 12

CR[ ], CN 00000 10011 11011 10000 10010

1CNT[ ] 0 3 4 1 2

the filter value. Therefore, at any given time, CR[k] stores the
comparison results of D[k] with all the other values within
the filter. The TAP wide register for the new value (CN) is
computed differently; it is generated using the negated re-
sult of the comparators; namely, the kth bit is updated with
the (k+1)th comparison result. The 0th bit (self-comparison)
is set to “0.” Counting the “1”s in the CR[] and CN reg-
isters gives a number of values which are smaller than the
given value. These bit summing operations are carried out
by the 1CNT modules. The straightforward way is to use an
adder tree with TAP one-bit inputs. For the CN register, this
is the only solution, as its content can change arbitrarily from
clock to clock. Generation of CR[k] can be optimized taking
into consideration the fact that only two bits change from
CR[k−1]: the MSB (comparison result with the discarded
sample) and the LSB (comparison result with the new value).
Therefore, bit summing can be implemented using an incre-
menter/decrementer. The results of the bit summing blocks
are compared with the required rank, generating a TAP bit
wide vector of results containing exactly one “1” at the po-
sition of the cell which contains the required output. An en-
coder passes this position to the DL as an address. Table 1
shows an example with the data registers (D[], ND), CR[],
CN and the output of the 1CNT blocks.
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Figure 4: Virtual filter kernel.

3.3. Multiword filter core

The architecture presented in the previous section can be eas-
ily extended to process more than one new filter value per
clock cycle. Instead of one, the data registers (D[]) and the
comparator result shift registers (CR[]) should shift by NI
data positions. The yet single CN and CR registers become
register arrays with NI elements. The number of compara-
tors is increased, as all old samples should be compared with
all new samples and new samples should be compared with
each other. The required number of comparators for a TAP
sized filter with NI new samples is

C = (TAP −NI)∗NI +
NI∗(NI − 1)

2
. (3)

If WV is not an integer multiply of NI, the bandwidth of
the filter core input supersedes that of the input stream. So in
some clock cycles, the number of valid new data is going to
be less than NI. The simplest solution to make the filter capa-
ble of processing different number of new samples is to insert
multiplexers into the appropriate data paths, in front of D[],
ND[], CR[], and CN[] registers. Two-to-one multiplexers al-
ways suffice as the number of valid new inputs is either NI or
WV mod NI (see Figure 4). Still, for large apertures, numer-
ous multiplexers may be required.

Another solution is to insert padding samples as neces-
sary such that in every clock cycle NI new samples can be en-
tered, thus creating a virtual filter kernel (VK). Figure 4 illus-
trates such kernel for WV = 3 and NI = 2 case. Valid samples
in the window are marked with light grey; padding samples
are marked with dark grey (the actual value of the padding
samples are irrelevant). Obviously, this method makes the
size of the VK larger than that of the real filter window, hence
requiring more hardware resources as parts of the FC scale
with the size of the VK.

Figure 5 presents the contents of the data registers clock
by clock, using the example in Figure 4, as new inputs are
inserted and the filter window is moved horizontally. Back-
ground shading of valid and invalid (padding) samples cor-
responds to Figure 4. Samples on the right are the input sam-
ples. As any given register may contain valid or invalid sam-
ples during operation, comparisons are done using all data
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Figure 5: Masked data register.

registers, irrespective of the validity. Therefore, the number
of comparators required scales with the size of the VK.

Padding samples are masked after the comparator result
registers (CR[], CN[]), but before the 1CNT blocks. For each
older sample, masking is done for 2∗NI bits. NI bits mask
the comparison results with the NI new samples, and other
NI bits mask the comparison results of the oldest NI sam-
ples. The output ranking part is the same as in the single-
word case. The number of required equality comparators is
proportional to the size of the real filter window as it is suf-
ficient to select the appropriate output when all samples in a
new column have been inserted into the filter. In these cycles,
the locations of the valid samples are well defined.

3.4. Multiword filter with multiple outputs

In case valid samples are used for padding, the virtual filter
kernel can be viewed as NP + 1 filter windows processed to-
gether, where NP is the number of padding lines added to the
filter window to form the VK. For example, the 3×4 virtual
kernel in Figure 4 can be viewed as two 3×3 partially overlap-
ping filter windows. The FC presented in the previous section
already computes all the required comparison results to gen-
erate valid outputs for both of the 3×3 filter windows. How-
ever, to come up with 2 separate outputs, the mask generator,
the one-counters, and the output address generator should
be replicated. The advantage is that the relation between the
operating frequency and the number of new inputs processed
in a single cycle becomes even better, significantly improving
efficiency:

FO =

⌈
WV

NI

⌉

⌈
WV

NI

⌉

∗NI −WV + 1

∗FS. (4)

The drawback is that the LB should store WV lines of
the input image instead of WV−1. In case of real-time video
filtering, an output buffer may also be required.

3.5. Nonrectangular filter window

The mask-based filtering architecture allows for the easy im-
plementation of nonrectangular (convex and nonconvex) fil-
ter windows. The most significant difference compared to the
multiworld implementation described above is that the valid
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Figure 6: Nonrectangular mask.

or invalid status of a given filter value may change as the fil-
ter window slides across the input image. For example, in
Figure 6, pixel 10 is invalid in the first computation cycle it
is used, but as the window slides one pixel to the right, it be-
comes valid.

Consequently, bit summing becomes more complex as
the number of possible transitions between the masked CR[]
and CN[] registers is increased. Nonrectangular windows
typically increase the number of invalid samples within the
VK. Therefore, using the bit summing block for the valid
samples only may reduce resource requirements. Practically,
in the latter implementation, only the number of ND[] and
D[] registers scales with the virtual filter window; all other
processing units are implemented only for the valid data.

3.6. Weighted rank filtering

Some applications require the use of weighted filter win-
dows, rendering some input samples more significant than
others when determining the output of the filter. The pro-
posed method allows for the application of integer weights.
The comparison result bits (CR[] and CN[] registers’ out-
puts) are replicated as many times as determined by the cor-
responding weight factor. However, the bit summing blocks
become increasingly complex as their inputs become wider
due to bit replication. Also, the TAP bit summing opera-
tion results in TAP different values, which are in the range
of 0· · ·W−1, where W is the summation of all the weights.
As TAP is smaller than W, not all integer values will be pre-
sented at the outputs of the bit summing units. Therefore,
a simple equality comparator is no longer adequate to de-
termine the ranked sample. Instead, the filter has to find the
sample which has the closest bit summing value to the re-
quired rank (which is in the range of 0· · ·W−1).

To facilitate the correct selection, the proposed archi-
tecture (see Figure 7) employs several difference computing
units and a selection tree. The difference computing units
process the required rank and the outputs of the bit sum-
ming units. The two input minimum calculators select the
smaller of their inputs together with a binary flag which
shows whether the left or the right input was selected. At
the root of the tree, the concatenated tag bits determine the
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Figure 7: Filter core for weighted rank filtering.

Table 2: Word-serial operating frquency.

Family
Number of taps (TAP)

9 25 49

XC5V-3 460 MHz 420 MHz 400 MHz

XC4V-10 400 MHz 375 MHz 355 MHz

XC3S-4 245 MHz 195 MHz 175 MHz

location of the sample which has the closest bit summing
value to the required rank. This value can be used to address
the DL.

4. IMPLEMENTATION RESULTS

The following implementation results were obtained using
24-bit RGB input, with an FVG that sums the three color
components and outputs a 10-bit result. Table 2 summarizes
the operating frequencies obtained for the word-serial archi-
tecture for different Xilinx FPGA families and different TAP
numbers. These values can be used as a reference to help de-
termine the required parallelization level of the FC, depend-
ing on the input pixel frequency and the filter window size.

Table 2 offers different solutions even for one of the most
demanding commercial video format, HDTV1080p, which
has a pixel frequency of 75 MHz. For example, a Virtex-4 de-
vice can perform real-time filtering on HDTV source using
a 49-tap filter by employing a multiword FC configuration
with 2 input samples per clock cycle. Figure 8 summarizes
the resource requirements of a 49-tap rank filter using dif-
ferent FC configurations (configuration WVxWH/NI). LUT
and FF denote the number of lookup tables and flip flops in
Virtex-4 and Virtex-5 devices, respectively. Figure 6 demon-
strates that some multiword configurations (such as 7×7/5,
7×7/6) may require more resources than the full parallel ar-
chitecture (7×7/7). The reason for this is that the VK be-

7× 7/77× 7/67× 7/57× 7/47× 7/37× 7/27× 7/1
2068 2879 3712 4156 5721 7193 5283
1792 3164 4666 5398 7852 10654 7012
1736 2521 3399 3581 6009 7259 5262
1446 2657 3448 4028 6119 8030 4953

Configuration

V4 FF

V4 LUT

V5 FF

V5 LUT

0

2000

4000

6000

8000

10000

12000

LU
T

/F
F

Configuration

Figure 8: Resource requirements.

Table 3: Operating frequency and resource requirements using
Spartan-3 (9 and 25 taps).

Configuration 3×3/1 5×5/1 5×5/2 5×5/3

FFs 567 1234 1832 2044

LUTs 395 937 1420 1913

BRAMs 6 12 12 12

FCLK max 245 195 180 165

Table 4: Operating frequency and resource requirements using
Spartan-3 (49 taps).

Configuration 7×7/1 7×7/2 7×7/3 7×7/4

FFs 2121 3030 3849 4242

LUTs 1862 3302 4866 5627

BRAMs 18 18 18 18

FCLK max 175 160 150 150

comes much larger than the valid filter window due to the
enormous number of padding samples.

These configurations are inferior to the full parallel ar-
chitecture in terms of throughput and silicon real estate.
The presented architecture can take advantage of the 6-input
LUTs of the Virtex-5 FPGA family, resulting in 20–30% re-
duction in the design size.

Tables 3, 4, 5, and 6 summarize the achievable operating
frequencies and resource requirements of several filter con-
figurations using Spartan-3, Virtex-4, and Virtex-5 devices,
respectively. For every filter size and FPGA family, the config-
urations marked with light grey background can be used to
filter HDTV (1920×1080 30 p—75 MHz pixel clock) input.
The lower-performance configurations are still adequate for
lower-resolution video inputs, like SDTV.

Although the longest register-to-register path does not
depend on the filter configuration, as the complexity of the
filter increases, the achievable operating frequency still de-
creases. This is common when using FPGAs and should be
taken into consideration when selecting the filter configura-
tion for given input format and filter size.
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Table 5: Operating frequency and resource requirements using
Virtex-4.

Configuration 3×3/1 5×5/1 7×7/1 7×7/2

FFs 594 1088 2068 2879

LUTs 406 950 1792 3164

BRAMs 6 12 18 18

FCLK max 400 375 355 300

Table 6: Operating frequency and resource requirements using
Virtex-5.

Configuration 3×3/1 5×5/1 7×7/1 7×7/2

FFs 580 1050 1736 2521

LUTs 290 750 1446 2657

BRAMs 3 6 9 9

FCLK max 460 420 400 340

5. CONCLUSION

An efficient architecture for high-performance two-dimen-
sional rank filters was presented. Rank-order filters, espe-
cially median filters, are used extensively for removing non-
Gaussian (salt and pepper) noise from images and video
streams. Targeting FPGA implementations for video appli-
cations, a parameterizable structure was proposed which de-
livers an efficient solution custom tailored to different pixel
clock rates, available resources, and operating speeds. Com-
pared to previous 2D architectures, the size and complexity
of the filter structure were considerably reduced by balancing
the number of new input samples entered into the core and
the available operating frequency of the filter. The proposed
solution is independent of input data type, as it offers great
flexibility to generate magnitude information corresponding
to RGB data, or it can take advantage of preexisting magni-
tude information if such data are already available. The solu-
tion presented can handle nonrectangular filter windows or
weighted samples as well, which widens the domain of possi-
ble applications even further.
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