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Abstract—This paper presents an FPGA implementation of a 
high performance rank filter for video and image processing. 
The architecture exploits the features of current FPGAs and 
offers tradeoff between complexity and clock speed. By 
maximizing the operating frequency the complexity of the filter 
structure can be considerably reduced compared to previous 
2D architectures.  

I. INTRODUCTION 
Rank order filtering is a non-linear filtering technique, 

which selects an element from an ordered list of TAP 
number of samples. In the two-dimensional (2D) case 
filtering takes place on the contents of a rectangular window 
(or more generally, an arbitrary shape), which slides across 
the image. Every time the window is moved by one pixel 
column, a set of obsolete elements are discarded and a set of 
new elements are inserted. The samples within the window 
are sorted and the element with the specified rank replaces 
the output element of the window. Most typical ranks are 
median, minimum and maximum, but the selection can be 
easily tailored to the needs of any application. Compared to 
other filters, such as FIR, Laplacian or blur filters, rank 
filters can effectively remove impulse like noises while 
preserving the edges of the original image. This can be very 
useful for various applications, for instance removing certain 
types of transmission noises, or pre-processing for edge 
detection. This paper presents a hardware architecture that is 
tailored for high performance color video processing but can 
be used in various applications as an IP block by taking 
advantage of the design time parameterization. The paper 
concentrates on the timing-driven architecture selection 
which exploits the high operating frequency of recent 
FPGAs, thus reduces hardware resource requirements. 
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Figure 1.  2D image filtering 

II. PREVIOUS WORK 
The successful adaptation of rank filters in different 

applications catalyzed research activities for new algorithms 
and implementations. 

Bit serial approaches [1], [2] provide the lowest 
complexity, but do not lend themselves well for high sample 
rate implementations, as filtering performance is 
proportional with the precision of the input data. However, 
the processing rate typically does not depend on the number 
of samples which change between processing cycles. 

Insert-delete or sorting network based architectures [3] 
explicitly orders the incoming samples. In every cycle, the 
least recent sample is discarded and the most recent input is 
inserted into the magnitude sorting structure at the 
appropriate location. While these solutions require relatively 
few comparators, the feedback nature of the algorithm 
hinders pipelining. 

Another set of applications store the samples in the order 
of arrival and select the appropriate output sample by 
calculating the location of the output sample dynamically. 
These architectures are easier to pipeline and still require few 
comparators. 

III. PROPOSED ARCHITECTURE 
When filtering images or video, the filter window slides 

horizontally on the input image, just as Fig. 1 shows. In case 
of a simple rectangular window, to generate a valid output, 
WV (vertical size of the filter window) new input samples 
should be processed. Therefore, for non bit serial 
implementations, an important classification criterion is the 
level of input parallelization. 

Word-serial architectures can process one input sample 
per clock cycle. This is the typical structure for filtering 1D 
inputs, but it is also applicable for 2D filtering. In this case 
the filter should operate at WV times of the input pixel 
frequency and generates a valid input sample every WVth 
clock cycle. 



The other extremity is the full-parallel approach – these 
filters can generate valid output every clock cycle, 
irrespectively of the number of input samples required to 
achieve this. Consequently, such filters process WV new 
samples in a single clock cycle. Hence the required operating 
frequency equals to the input pixel frequency, while at the 
same time hardware resource requirements are greatly 
increased. Previous papers typically considered fully parallel 
architectures as 2D filters, however, as this paper proves, 
using recent FPGA technologies this solution is sub-optimal 
due to the inefficient resource utilization. 

Multi-word architectures are hybrid solutions: in one 
cycle they can handle more than one input samples, but less 
then the fully parallel implementation (from now on, let NI 
denote the number of new input samples in a single cycle). 
This solution allows finding a good balance between 
operating frequency and hardware complexity. Using a given 
filter window and input pixel frequency, the required 
operating frequency can be computed: 

max

WV
FO FS

NI
=  (1) 

When processing color images using the full per-pixel 
information (e.g. full RGB or YCbCr values) is not a 
convenient solution. Filtering these components 
independently not only increases computational 
requirements, but may introduce blur effects, as it may 
generate new color values which were non-existent on the 
input image. A better solution is to use a magnitude-like 
value, e.g. luminosity. If the input format does not contain 
such a component, it can be generated within the filter.   

A. Global Filter Architecture 
The proposed architecture consists of five main 

components (illustrated on Fig. 2): the Line Buffer, the 
optional Filter Value Generator (FVG), the Delay Line, the 
Filter Core and the Control Unit (CNTRL). The Line Buffer 
stores WV-1 lines of the original input frame in internal 
memory. The Filter Value Generator is only required if the 
input format does not contain magnitude-like component, for 
YCbCr or YUV input representations this module can be 
omitted as the Y component lends itself well for magnitude 
ordering. For RGB input, luminance, a typical magnitude 
value can be calculated. 

 

Figure 2.  Global Filter Architecture 

The Delay Line is an addressable FIFO which stores the full 
per-pixel information of the pixels residing inside the Filter 
Core. The Filter Core itself uses the values generated by the 
FVG and generates the appropriate address for the Delay 
Line. The Control Unit generates properly delayed 
synchronization signals and output valid signals. 

Henceforward only the Filter Core and its extensions are 
discussed in details, as this is the essential part of the filter.  

B. Word-serial Filter Core 
The operation of the Filter Core is based on observations 

introduced in [5]. As a first assumption the filter contains 
TAP number of different samples. For each sample, an index 
value is generated, which equals to the number of samples 
which are smaller than the given sample. This results in TAP 
distinct values for the TAP samples, which range from 0 
(smallest sample) to TAP-1 (largest sample). The ranked 
sample is the one which has the index value equal to the 
required rank. The block diagram on Fig. 3 illustrates the 
hardware implementation of the algorithm for TAP=5. 
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Figure 3.  Filter Core 

The D[3:0] data registers store older filter values, while 
the new data value is saved into the ND register. In every 
cycle, these registers shift their data to the left. Older values 
are compared with the new value (result is ‘1’ if the new 
value is smaller than the older, ‘0’ otherwise), and the 
comparison result is saved into the LSB position of TAP-1, 
TAP wide registers (CR[3:0]). The MSB positions of these 
CR registers are updated with the value of the previous CR 
register, so: 

CR[k] = { CR[k-1](TAP-2:0), C[k])} (4) 

where (:) denotes bit selection, {} denotes concatenation and 
C[k] denotes the kth comparison result. Expressively, the 
comparison result of a given value moves to the left together 



with the filter value. Therefore, at any given time, CR[k] 
stores the comparison results of D[k] with all the other 
values within the filter. The TAP wide register for the new 
value (CN) is computed differently: it is generated using the 
negated result of the comparators – namely, the kth bit is 
updated with the (k+1)th comparison result. The 0th bit (self-
comparison) is set to ‘0’. Counting the ‘1’s in the CR[] and 
CN registers gives the number of values which are smaller 
than the given value. This bit summing operation is done by 
the 1CNT modules. The straightforward way is to use an 
adder tree with TAP one bit inputs; for the CN register this is 
the only solution, as its content can change completely from 
clock to clock. The CR[] registers, however, offers some 
optimization possibilities. When generating CR[k], only two 
bits changes from CR[k-1]: the MSB (comparison result with 
the discarded sample) and the LSB (comparison result with 
the new value). Therefore, bit summing can be implemented 
using an incrementer/decrementer. The result of the bit 
summing blocks are compared with the required rank, thus 
generating a TAP bit result containing exactly one ‘1’ at the 
pixel position of filter window which contains the required 
output. An encoder passes this position to the Delay Line as 
an address. Table I shows an example with the data registers 
(D[], ND), CR[], CN and the output of the 1CNT blocks. 

TABLE I.  FILTERING EXAMPLE 

 [3] [2] [1] [0] new 

D[ ], ND 0 25 37 12 12 

CR[ ], CN 00000 10011 11011 10000 10010 

1CNT[ ] 0 3 4 1 2 

C. Multi-word Filter Core 
The architecture presented in the previous section can be 

easily extended to be able to process more than one new 
filter values per clock cycle. Instead of one data position, the 
data registers (D[]) and the comparator result shift registers 
(CR[]) should shift by NI. The yet single CN and CR 
registers become register arrays with NI elements. The 
number of comparators is increased, as all old samples 
should be compared with all new samples and new samples 
should be compared with each other. The required number of 
comparators for a TAP sized filter with NI new samples: 
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If WV is not an integer multiply of NI, the bandwidth of 
the filter core input supersedes that of the input stream, so in 
some clock cycles the number of valid new data is going to 
be less than NI.  The simplest solution to make the filter 
capable of processing different number of new samples is to 
insert multiplexers into the appropriate data paths, in front of 
D[], ND[], CR[] and CN[] registers.  Two-to-one 
multiplexers are sufficient, because during the operation of 
the filter there are only two different scenarios. Either all NI 
inputs are valid, or there are only (WV mod NI) legal values 

(see Fig. 4). Thus the size of multiplexers is limited to 2:1, 
but still a numerous multiplexers are required. 

 

Figure 4.  Virtual filter kernel 

Another solution is to insert padding samples as 
necessary, so in every clock cycle NI new samples are 
entered, thus creating a virtual filter (from now referred as 
virtual filter kernel). Fig. 4 illustrates such kernel for the 
WV=3, NI=2 case. Valid samples in the window are marked 
with light grey; padding samples are marked with dark grey 
(the actual value of the padding samples is irrelevant). 
Obviously, this method makes the virtual kernel size larger 
than the real filter window, hence requires more hardware 
resources, as parts of the Filter Core scales with the virtual 
kernel size. Fig. 5 presents the contents of the data registers 
clock by clock – using the numbers on Fig. 4 – as new inputs 
are inserted and the filter window is moved horizontally. 
Valid and invalid (padding) samples are marked just as on 
the previous figure. Samples on the right are the input 
samples. As most of the data registers contain both valid and 
invalid samples during operation, comparisons are done 
using all required data registers, irrespectively of the validity 
of the actual sample. As a result the number of comparators 
required scales with the size of the virtual filter kernel. 
Padding samples are masked after the comparator result 
registers (CR[], CN[]), but before the 1CNT blocks. For 
each older sample, masking is done on 2*NI bits: NI bits 
mask the comparison results with the NI new samples, and 
another NI bits mask the comparison results of the oldest NI 
samples.  

 

Figure 5.  Masked data register 

The output ranking part is the same as in the single-word 
case. The number of required equality comparators scales 
with the size of the real filter window, as it is sufficient to 
select the appropriate output when all samples in a new 
column have been inserted into the filter. In these cycles the 
locations of the valid samples are well defined. 



D. Multi-word filter with multiple outputs 
In case real samples are used for padding, the virtual 

filter kernel can be viewed as NP+1 real filter windows joint 
together, where NP is the number of padding lines added to 
the filter window to form the virtual filter kernel. E.g. the 
3x4 virtual kernel on Fig. 4 can be viewed as two 3x3 TAP 
filter windows joint together. The Filter Core presented in 
the previous section already computes all the required 
comparison results to generate valid outputs for both filter 
windows, however the mask generator, the one-counters and 
the output address generator should be replicated. The 
advantage is that the relation between the operating 
frequency and the number of new inputs processed in a 
single cycle becomes even better: 
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The drawback is that the Line Buffer should store WV lines 
of the input image instead of WV-1, and in case of real-time 
video filtering an output buffer is also required. 

IV. IMPLEMENTATION RESULTS 
The following implementation results were obtained using 

24 bit RGB input, while the FVG was set to sum the three 
color components and output the 10-bit result. Table II 
summarizes the obtainable operating frequency of the word-
serial architecture in different Xilinx FPGA families and 
different TAP numbers. 

TABLE II.  WORD-SERIAL OPERATING FRQUENCY 

TAP number 
Family 

9 25 49 

XC5V-3* 480 MHz 480 MHz 480 MHz 

XC4V-10 400 MHz 400 MHz 350 MHz 

XC2V-5 235 MHz 225 MHz 215 MHz 

XC3S-4 200 MHz 185 MHz 185 MHz 

As the most demanding commercial video format 
(HDTV 1920*1080p) has a pixel frequency of 75 MHz, the 
required filter architecture can be easily selected based on 
the above table. For example, a Virtex-4 device can perform 
real-time filtering on HDTV source using a 49 TAP filter by 
employing a multi-word Filter Core configuration with 2 
input samples per clock cycle. Fig. 6 summarizes the 
resource requirements of a 49 TAP rank filter using different 
Filter Core configurations (configuration: WVxWH/NI). 
LUT and FF denote the number of LUTs and flip-flops in 
Virtex-4 and Virtex-5 devices, respectively. As can be seen 
on Fig. 6, there are multi-word configurations (such as 7x7/5, 
7x7/6) which require more resources than the full-parallel 
architecture (7x7/7). The reason for this is that the virtual 

filter kernel becomes way larger than the real filter window 
due to the enormous number of padding samples.  
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Figure 6.  Resource requirements 

Obviously, these configurations should not be used; 
however, as can be calculated from Table 2, these are not 
required even in the slowest FPGAs. 

V. CONCLUSION 
An efficient architecture for high performance two 

dimensional rank filter was presented. Rank order filters, 
especially median filters, are used extensively for removing 
non-Gaussian (salt and pepper) noise from images and video 
feeds. Targeting FPGA implementations for video 
applications, a parametrizable structure was proposed, which 
deliver efficient solutions custom tailored to different pixel 
clock rates, available resources, and operating speeds. 
Compared to previous 2D architectures, the size and 
complexity of the filter structure was considerably reduced 
by optimally balancing the number of new input samples 
entered into the core and the available operating frequency of 
the filter. The proposed solution is independent of input data 
type, as it offers great flexibility to either generate magnitude 
information corresponding to RGB data, or can take 
advantage of preexisting magnitude information if such data 
is already available. The presented architecture can be 
further generalized to use arbitrarily shaped filter kernel and 
to perform weighted filtering. 
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