
High Performance Timing-Driven Rank Filter

Péter Szántó, Béla Fehér
Dept. of Measurement and Information Systems

Budapest University of Technology and Economics
Budapest, Hungary

{szanto, feher}@mit.bme.hu

Gábor Szedő
Xilinx Inc.

2100. Logic Dr, San Jose, CA 95124, USA
San Jose, California, USA
gabor.szedo@xilinx.com

Abstract—This paper presents an FPGA implementation of a
high performance rank filter for video and image processing.
The architecture exploits the features of current FPGAs and
offers tradeoff between complexity and clock speed. By
maximizing the operating frequency the complexity of the filter
structure can be considerably reduced compared to previous
2D architectures.

I. INTRODUCTION
Rank order filtering is a non-linear filtering technique,

which selects an element from an ordered list of TAP
number of samples. In the two-dimensional (2D) case
filtering takes place on the contents of a rectangular window
(or more generally, an arbitrary shape), which slides across
the image. Every time the window is moved by one pixel
column, a set of obsolete elements are discarded and a set of
new elements are inserted. The samples within the window
are sorted and the element with the specified rank replaces
the output element of the window. Most typical ranks are
median, minimum and maximum, but the selection can be
easily tailored to the needs of any application. Compared to
other filters, such as FIR, Laplacian or blur filters, rank
filters can effectively remove impulse like noises while
preserving the edges of the original image. This can be very
useful for various applications, for instance removing certain
types of transmission noises, or pre-processing for edge
detection. This paper presents a hardware architecture that is
tailored for high performance color video processing but can
be used in various applications as an IP block by taking
advantage of the design time parameterization. The paper
concentrates on the timing-driven architecture selection
which exploits the high operating frequency of recent
FPGAs, thus reduces hardware resource requirements.

WV new
samples

Figure 1. 2D image filtering

II. PREVIOUS WORK
The successful adaptation of rank filters in different

applications catalyzed research activities for new algorithms
and implementations.

Bit serial approaches [1], [2] provide the lowest
complexity, but do not lend themselves well for high sample
rate implementations, as filtering performance is
proportional with the precision of the input data. However,
the processing rate typically does not depend on the number
of samples which change between processing cycles.

Insert-delete or sorting network based architectures [3]
explicitly orders the incoming samples. In every cycle, the
least recent sample is discarded and the most recent input is
inserted into the magnitude sorting structure at the
appropriate location. While these solutions require relatively
few comparators, the feedback nature of the algorithm
hinders pipelining.

Another set of applications store the samples in the order
of arrival and select the appropriate output sample by
calculating the location of the output sample dynamically.
These architectures are easier to pipeline and still require few
comparators.

III. PROPOSED ARCHITECTURE
When filtering images or video, the filter window slides

horizontally on the input image, just as Fig. 1 shows. In case
of a simple rectangular window, to generate a valid output,
WV (vertical size of the filter window) new input samples
should be processed. Therefore, for non bit serial
implementations, an important classification criterion is the
level of input parallelization.

Word-serial architectures can process one input sample
per clock cycle. This is the typical structure for filtering 1D
inputs, but it is also applicable for 2D filtering. In this case
the filter should operate at WV times of the input pixel
frequency and generates a valid input sample every WVth
clock cycle.

The other extremity is the full-parallel approach – these
filters can generate valid output every clock cycle,
irrespectively of the number of input samples required to
achieve this. Consequently, such filters process WV new
samples in a single clock cycle. Hence the required operating
frequency equals to the input pixel frequency, while at the
same time hardware resource requirements are greatly
increased. Previous papers typically considered fully parallel
architectures as 2D filters, however, as this paper proves,
using recent FPGA technologies this solution is sub-optimal
due to the inefficient resource utilization.

Multi-word architectures are hybrid solutions: in one
cycle they can handle more than one input samples, but less
then the fully parallel implementation (from now on, let NI
denote the number of new input samples in a single cycle).
This solution allows finding a good balance between
operating frequency and hardware complexity. Using a given
filter window and input pixel frequency, the required
operating frequency can be computed:

max

WV
FO FS

NI
= (1)

When processing color images using the full per-pixel
information (e.g. full RGB or YCbCr values) is not a
convenient solution. Filtering these components
independently not only increases computational
requirements, but may introduce blur effects, as it may
generate new color values which were non-existent on the
input image. A better solution is to use a magnitude-like
value, e.g. luminosity. If the input format does not contain
such a component, it can be generated within the filter.

A. Global Filter Architecture
The proposed architecture consists of five main

components (illustrated on Fig. 2): the Line Buffer, the
optional Filter Value Generator (FVG), the Delay Line, the
Filter Core and the Control Unit (CNTRL). The Line Buffer
stores WV-1 lines of the original input frame in internal
memory. The Filter Value Generator is only required if the
input format does not contain magnitude-like component, for
YCbCr or YUV input representations this module can be
omitted as the Y component lends itself well for magnitude
ordering. For RGB input, luminance, a typical magnitude
value can be calculated.

Figure 2. Global Filter Architecture

The Delay Line is an addressable FIFO which stores the full
per-pixel information of the pixels residing inside the Filter
Core. The Filter Core itself uses the values generated by the
FVG and generates the appropriate address for the Delay
Line. The Control Unit generates properly delayed
synchronization signals and output valid signals.

Henceforward only the Filter Core and its extensions are
discussed in details, as this is the essential part of the filter.

B. Word-serial Filter Core
The operation of the Filter Core is based on observations

introduced in [5]. As a first assumption the filter contains
TAP number of different samples. For each sample, an index
value is generated, which equals to the number of samples
which are smaller than the given sample. This results in TAP
distinct values for the TAP samples, which range from 0
(smallest sample) to TAP-1 (largest sample). The ranked
sample is the one which has the index value equal to the
required rank. The block diagram on Fig. 3 illustrates the
hardware implementation of the algorithm for TAP=5.

NDD[0]D[1]D[2]D[3]

<<<<

FILTER VALUE

INV

CNCR[0]CR[2]CR[2]CR[3]

1CNT
[4]

1CNT
[3]

1CNT
[2]

1CNT
[1]

1CNT
[0]

= = = = =

5-to-1 encoder

Pixel Address

RANK

Figure 3. Filter Core

The D[3:0] data registers store older filter values, while
the new data value is saved into the ND register. In every
cycle, these registers shift their data to the left. Older values
are compared with the new value (result is ‘1’ if the new
value is smaller than the older, ‘0’ otherwise), and the
comparison result is saved into the LSB position of TAP-1,
TAP wide registers (CR[3:0]). The MSB positions of these
CR registers are updated with the value of the previous CR
register, so:

CR[k] = { CR[k-1](TAP-2:0), C[k])} (4)

where (:) denotes bit selection, {} denotes concatenation and
C[k] denotes the kth comparison result. Expressively, the
comparison result of a given value moves to the left together

with the filter value. Therefore, at any given time, CR[k]
stores the comparison results of D[k] with all the other
values within the filter. The TAP wide register for the new
value (CN) is computed differently: it is generated using the
negated result of the comparators – namely, the kth bit is
updated with the (k+1)th comparison result. The 0th bit (self-
comparison) is set to ‘0’. Counting the ‘1’s in the CR[] and
CN registers gives the number of values which are smaller
than the given value. This bit summing operation is done by
the 1CNT modules. The straightforward way is to use an
adder tree with TAP one bit inputs; for the CN register this is
the only solution, as its content can change completely from
clock to clock. The CR[] registers, however, offers some
optimization possibilities. When generating CR[k], only two
bits changes from CR[k-1]: the MSB (comparison result with
the discarded sample) and the LSB (comparison result with
the new value). Therefore, bit summing can be implemented
using an incrementer/decrementer. The result of the bit
summing blocks are compared with the required rank, thus
generating a TAP bit result containing exactly one ‘1’ at the
pixel position of filter window which contains the required
output. An encoder passes this position to the Delay Line as
an address. Table I shows an example with the data registers
(D[], ND), CR[], CN and the output of the 1CNT blocks.

TABLE I. FILTERING EXAMPLE

 [3] [2] [1] [0] new

D[], ND 0 25 37 12 12

CR[], CN 00000 10011 11011 10000 10010

1CNT[] 0 3 4 1 2

C. Multi-word Filter Core
The architecture presented in the previous section can be

easily extended to be able to process more than one new
filter values per clock cycle. Instead of one data position, the
data registers (D[]) and the comparator result shift registers
(CR[]) should shift by NI. The yet single CN and CR
registers become register arrays with NI elements. The
number of comparators is increased, as all old samples
should be compared with all new samples and new samples
should be compared with each other. The required number of
comparators for a TAP sized filter with NI new samples:

2
)1(**)(−

+−=
NINININITAPC (5)

If WV is not an integer multiply of NI, the bandwidth of
the filter core input supersedes that of the input stream, so in
some clock cycles the number of valid new data is going to
be less than NI. The simplest solution to make the filter
capable of processing different number of new samples is to
insert multiplexers into the appropriate data paths, in front of
D[], ND[], CR[] and CN[] registers. Two-to-one
multiplexers are sufficient, because during the operation of
the filter there are only two different scenarios. Either all NI
inputs are valid, or there are only (WV mod NI) legal values

(see Fig. 4). Thus the size of multiplexers is limited to 2:1,
but still a numerous multiplexers are required.

Figure 4. Virtual filter kernel

Another solution is to insert padding samples as
necessary, so in every clock cycle NI new samples are
entered, thus creating a virtual filter (from now referred as
virtual filter kernel). Fig. 4 illustrates such kernel for the
WV=3, NI=2 case. Valid samples in the window are marked
with light grey; padding samples are marked with dark grey
(the actual value of the padding samples is irrelevant).
Obviously, this method makes the virtual kernel size larger
than the real filter window, hence requires more hardware
resources, as parts of the Filter Core scales with the virtual
kernel size. Fig. 5 presents the contents of the data registers
clock by clock – using the numbers on Fig. 4 – as new inputs
are inserted and the filter window is moved horizontally.
Valid and invalid (padding) samples are marked just as on
the previous figure. Samples on the right are the input
samples. As most of the data registers contain both valid and
invalid samples during operation, comparisons are done
using all required data registers, irrespectively of the validity
of the actual sample. As a result the number of comparators
required scales with the size of the virtual filter kernel.
Padding samples are masked after the comparator result
registers (CR[], CN[]), but before the 1CNT blocks. For
each older sample, masking is done on 2*NI bits: NI bits
mask the comparison results with the NI new samples, and
another NI bits mask the comparison results of the oldest NI
samples.

Figure 5. Masked data register

The output ranking part is the same as in the single-word
case. The number of required equality comparators scales
with the size of the real filter window, as it is sufficient to
select the appropriate output when all samples in a new
column have been inserted into the filter. In these cycles the
locations of the valid samples are well defined.

D. Multi-word filter with multiple outputs
In case real samples are used for padding, the virtual

filter kernel can be viewed as NP+1 real filter windows joint
together, where NP is the number of padding lines added to
the filter window to form the virtual filter kernel. E.g. the
3x4 virtual kernel on Fig. 4 can be viewed as two 3x3 TAP
filter windows joint together. The Filter Core presented in
the previous section already computes all the required
comparison results to generate valid outputs for both filter
windows, however the mask generator, the one-counters and
the output address generator should be replicated. The
advantage is that the relation between the operating
frequency and the number of new inputs processed in a
single cycle becomes even better:

FS
WVNI

NI
WV

NI
WV

FO *
1* +−

= (11)

The drawback is that the Line Buffer should store WV lines
of the input image instead of WV-1, and in case of real-time
video filtering an output buffer is also required.

IV. IMPLEMENTATION RESULTS
The following implementation results were obtained using

24 bit RGB input, while the FVG was set to sum the three
color components and output the 10-bit result. Table II
summarizes the obtainable operating frequency of the word-
serial architecture in different Xilinx FPGA families and
different TAP numbers.

TABLE II. WORD-SERIAL OPERATING FRQUENCY

TAP number
Family

9 25 49

XC5V-3* 480 MHz 480 MHz 480 MHz

XC4V-10 400 MHz 400 MHz 350 MHz

XC2V-5 235 MHz 225 MHz 215 MHz

XC3S-4 200 MHz 185 MHz 185 MHz

As the most demanding commercial video format
(HDTV 1920*1080p) has a pixel frequency of 75 MHz, the
required filter architecture can be easily selected based on
the above table. For example, a Virtex-4 device can perform
real-time filtering on HDTV source using a 49 TAP filter by
employing a multi-word Filter Core configuration with 2
input samples per clock cycle. Fig. 6 summarizes the
resource requirements of a 49 TAP rank filter using different
Filter Core configurations (configuration: WVxWH/NI).
LUT and FF denote the number of LUTs and flip-flops in
Virtex-4 and Virtex-5 devices, respectively. As can be seen
on Fig. 6, there are multi-word configurations (such as 7x7/5,
7x7/6) which require more resources than the full-parallel
architecture (7x7/7). The reason for this is that the virtual

filter kernel becomes way larger than the real filter window
due to the enormous number of padding samples.

0

5

10

15

Configuration

LU
T/

FF
 *

10
00

V4 LUT 1,9 3,4 5,2 5,8 9,4 13 8,1

V4 FF 1,8 2,7 3,6 3,9 6,4 8,5 5,5

V5 LUT 1,4 2,2 3,2 3,8 5,5 7,6 5

V5 FF 1,7 2,5 3,4 3,6 5,2 6,7 5

7x7/1 7x7/2 7x7/3 7x7/4 7x7/5 7x7/6 7x7/7

Figure 6. Resource requirements

Obviously, these configurations should not be used;
however, as can be calculated from Table 2, these are not
required even in the slowest FPGAs.

V. CONCLUSION
An efficient architecture for high performance two

dimensional rank filter was presented. Rank order filters,
especially median filters, are used extensively for removing
non-Gaussian (salt and pepper) noise from images and video
feeds. Targeting FPGA implementations for video
applications, a parametrizable structure was proposed, which
deliver efficient solutions custom tailored to different pixel
clock rates, available resources, and operating speeds.
Compared to previous 2D architectures, the size and
complexity of the filter structure was considerably reduced
by optimally balancing the number of new input samples
entered into the core and the available operating frequency of
the filter. The proposed solution is independent of input data
type, as it offers great flexibility to either generate magnitude
information corresponding to RGB data, or can take
advantage of preexisting magnitude information if such data
is already available. The presented architecture can be
further generalized to use arbitrarily shaped filter kernel and
to perform weighted filtering.

REFERENCES
[1] R. Roncella, R. Saletti, P. Terreni, “70-MHz 2-mm CMOS Bit-Level

Systolic Array Median Filter”, IEEE Journal of Solid State Circuits,
vol 28, 1993.

[2] B. K. Kar and D. K. Pradhan, ``A new algorithm for order statistic
and sorting,'', IEEE Trans. Signal Processing vol 41, August 1993.

[3] C. Chakrabarti and L. Wang, “Novel Sorting Network-Based
Architectures for Rank Order Filters”, IEEE Trans. On VLSI
Systems, vol. 2, December 1994.

[4] F. A. Suhaib, P. Y. K. Cheung, L. Wayne: “Novel FPGA-Based
Implementation of Median and Weighted Median Filters for Image
Processing”, Field-Programmable Logic and Applications (FPL
2005), 2005.

[5] C. Chakrabarti, “High Sample Rate Array Architectures for Median
Filters”, IEEE Trans. on Signal Processing, vol. 42, March 1994.

*: Post-synthesis result. Synthesis was done using Synplicity Premier.

