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Abstract: This paper presents an FPGA implementation of a two-dimensional median filter 
architecture for image and video processing applications. The architecture exploits sorting based on 
partial rather than complete per-pixel information. This allows performance enhancement, which is a 
key point in image filtering, as the sampling frequency is typically quite high.  
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1 Introduction 

Unlike FIR or IIR filters, the median filter is 
a non-linear algorithm with interesting 
properties: it can effectively remove impulse 
like noises, while preserving the edges of the 
input signal. 

 

Figure 1. 2D Median filtering 
 
There are two basic types of median filters: 

non-recursive and recursive. The former works 
by sorting the input samples in the filter 
window, and outputting the median of the sorted 
values. In 2D case a WH*WV window  is moved 
across the input image (or frame), where WH 
denotes the horizontal and WV denotes the 
vertical size of the window in pixels. The center 
sample of the window is replaced by the median 

of the samples within the window (Figure 1). 
The current window is marked with white box, 
the next window is marked with black window, 
new samples are dark grey. The recursive 
method uses input samples, as well as previous 
output samples for filtering, thus allowing faster 
response to the changing properties of the input. 
This paper mainly focuses on non-recursive 
filters, but the presented architecture is also 
applicable for recursive filtering. 

2 Previous work 

There are lots of different architectures for 
implementing median filters both in software 
and in hardware. Software implementations vary 
from simple full-sorting to more special 
algorithms, which take advantage of special 
requirements,s such as the fact that only a 
fraction of the data changes from time to time. 

Hardware implementations can be classified 
by different properties. Bit-serial approaches 
([1]) do not explicitly sort the input data, instead 
select the appropriate sample as the output by 
inspecting the bits of the input samples in 
successive clock cycles. Thus, performance is 
proportional with the input data width (but not 
necessarily with the filter window size); for high 
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resolution these architectures may limit the 
sample or pixel rate. Word-parallel architectures 
can either store the samples in the order of 
arrival [2] or in sorted order. Sorted order 
architectures can be implemented as sorting 
networks ([3]) or systolic arrays. The 
architecture presented in this paper belongs to 
the second group – while sorting networks can 
be easily pipelined, they require a large number 
of comparators. On the contrary, the presented 
method requires minimal number of 
comparators. 

3 Filtering in 2D 

Figure 1. illustrates that moving the filter 
window with one pixel column requires WV new 
samples to be entered, and WV old samples to be 
discarded from the filter kernel. 2D filters can 
be partitioned into two groups based on the 
method they handle these new samples. 

Architectures originating from 1D filters can 
handle one new input sample in one clock cycle. 
Therefore, they require WV clock cycles to 
generate one valid output, so for real-time 
processing the filter operating frequency should 
be the pixel clock multiplied with WV. 

Another set of architectures process WV 
number of samples in a single clock cycle. 
Although operating frequencies of these filters 
are much lower (equal to the pixel frequency), 
hardware resource requirements are larger. 

Mixed mode architectures can process two 
or more input samples in one clock cycle, thus 
reducing operating frequency requirements at 
reasonable complexity. 

4 Proposed Architecture 

The proposed architecture is part of a video 
processing system, which receives standard, de-
interlaced PAL or NTSC signal. The input 
resolution is 720x576 pixels, at 25 
frames/second. Thus, the raw pixel clock equals 
to 10.368 MHz. Architectural decisions were 
based on these criteria and capabilities of 
modern FPGAs. The maximal required filter 
window size is 11x11 pixels, the architecture is 
a systolic array which can process one input 
sample in every clock cycle. 

The top-level block diagram of the filter 
architecture is shown on Figure 2. 
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Figure 2. General architecture  
 
The filter receives 24 bit RGB values and 

control signals (line end, frame end). The Input 
Front-end consists of a line buffer which stores 
WV-1 number of lines and a Filter Value 
Generator, which produces an appropriate value 
for the sorting process. 

The filter core itself generates the median 
output and the appropriately delayed versions of 
the control signals. The output of the Filter Core 
addresses an RGB delay line (which stores the 
RGB values of the filtering window) to generate 
the final output. 

4.1 Input Front-end 

The input front-end feeds the filter with 
pixels from WV≤10 lines. Therefore, at most 10 
input lines should be retained for further 
processing – they are stored in the line buffer. 
The required size of this buffer is 

720*10*3=21600 (1) 

bytes, which can be stored in 11 BlockRAMs 
within the FPGA. 
 The output of the line buffers feed the Filter 
Value Generator. In the current implementation 
this unit simply sums the R, G and B 
components to form a luminosity-like value 

Y= R+G+B. (2) 

Other, more complex operations, such as real 
RGB to YCbCr color-space conversion, can be 
also implemented as long as the conversion 
module can be easily pipelined. Y values 
retained for sorting can be represented on 10 
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bits. Note, that Y values can be similar for very 
different RGB values. As the sorting module 
can not take into account, this may distort the 
filtered image. 

The original output of the front-end is also 
passed to the Filter Core, which provides the 
final output. 

4.2 Filter Core and Delay Line 

 The Filter Core consists of three distinct 
parts: the filter cells, the empty generation and 
the delay line, as shown on Figure 3. 
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Figure 3. Filter core 
 
 A straightforward implementation may link 
the filter value and the full RGB value together, 
which is a trivial way to handle these values. 
However, as it will be obvious later, this would 
unnecessarily complicate the filter cells. 
Therefore, our architecture employs a delay line, 
which is an addressable FIFO storing RGB pixel 
values. The filter cells themselves do not 
generate color output but address this FIFO for 
RGB information. The address is the “age” of 
the sample on the output of the filter core. In 
Xilinx FPGAs, SRL16 primitive (16x1 bit, 
addressable shift register) lend themselves well 
for implementing delay lines. 
 The part responsible for the sorting is 
comprised of WH*WV similar cells. Each cell 
stores one sample of the filter window together 
with the “age” of the given sample. Age values 
show the number of clock cycles any given 
sample have been staying in the filter. 
Obviously, the sample with  

age = WH*WV-1 (3) 

is the oldest, which it should be discarded. 

In every clock cycle, each cell selects the 
appropriate function to either: 

• Load a new sample 
• Load sample from the cell to the right 
• Load sample from the cell to the left  
• Keep the current sample 

In order to make a selection, cells have to know 
the results of comparisons between the new 
sample and sample values held by the cell itself 
and its nearest neighbors, as well as the position 
of the oldest sample. 
To implement the above functionality, each cell 
consists of a comparator, an age counter and an 
“empty” register. The comparator compares the 
data of the cell with the new sample, the age 
counter counts the number of clock cycles, 
while the empty register shows if the sample of 
the cell is the one to be thrown away. Figure 4. 
shows the block diagram of a cell. 
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Figure 4. Cell block diagram 
 
Darker blocks represent registers, while white 
blocks are combinatorial logic. DATA stores the 
filter data of the given pixel, LEFT_SAMPLE, 
RIGHT_SAMPLE and NEW_SAMPLE are the 
data of the left, the right adjacent cell and the 
new sample, respectively. Age variables are 
labeled with the same logic (note: the “-1” 
multiplexer input becomes “0” after the 
increment block). The CNTRL block generates 
all control signals for the multiplexers 
(connection not show on Figure 4.). The 
decision algorithm for a given cell can be 
summarized by the following pseudo code, 
where empty denotes if the current cell stores 
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the oldest sample, empty_right and empty_left 
signals the same for the right and left cells. 
Variables cmpr_curr, cmpr_left and cmpr_right 
hold the result of the comparison with the new 
sample for the current, the left and right adjacent 
cells, respectively. 

 
if (empty) 
 if (cmpr_left AND not cmpr_right) 
  load new sample  
 else if (not cmpr_left) 
  load left sample 
 else 
  load right sample 
else if (empty_right) 
 if (not cmpr_curr) 
  if (cmpr_left) 
   load new data 
  else 
   load left data 
 else 
  keep current sample 
else if (empty_left) 
 if (cmpr_curr) 
  if (not cmpr_right) 
   load new sample 
  else 
   load right sample 
 else 
  keep current sample 

 
Depending on the selected operation, the age 
counter may also load values from adjacent 
cells. When new sample is loaded, the counter is 
reset, when the right or the left sample is loaded, 
the corresponding incremented counter value is 
loaded, and when the current sample is kept, the 
counter is incremented. 
 For every cell, the empty_left and 
empty_right signals are generated 
asynchronously by an OR gate; empty_left is the 
result of combining all the empty signals of cells 
on the left of the given cell, whereas 
empty_right is the same for cells on the right of 
the given cell.  
 The output of the cell array is simply the age 
counter of the median cell. As the input of the 
filter cells has additional latency inserted by the 
computation of the filter value, the FIFO should 
be addressed by the latency compensated age 
counter value.  

5 Improvements 

 As cells themselves have low latency, using 
this architecture for recursive filtering is quite 
straightforward. Cells use two 2:1 multiplexers; 
one at the filter value input and one at the input 
of the delay line. The multiplexer at the filter 
value input are fed by the input filter value and 
the filter value of the median cell, while the one 
at the delay line is fed by the input RGB and the 
output of the delay line. 
 Making the architecture capable of 
processing more than one input sample in one 
clock cycle is more difficult. Managing multiple 
empty cells and new samples makes the decision 
logic more complicated, while data multiplexers 
become more complex as well. This 
considerably reduces operating frequency; 
therefore for such applications a different 
architecture may be better suited. 

6 Conclusion 

Implementation results show that the 
presented architecture can reach 140 MHz in 
Virtex2-4 FPGAs and 250 MHz in Virtex4-12 
FPGAs. Even the lower performance is more 
than sufficient to filter standard resolution PAL 
or NTSC video signals even with very large 
filter windows. Higher resolution videos are not 
typical in embedded systems, therefore the 
presented architecture completely satisfy the 
preliminary requirements. The small footprint of 
the design enables implementation using low-
cost, small FPGAs. 
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