

 1

 International
Carpathian Control

Conference ICCC’ 2006
Rožnov pod Radhoštěm,

CZECH REPUBLIC
May 29-31, 2006

Implementing 2D Median Filter in FPGAs

Péter SZÁNTÓ1 , Gábor SZEDŐ2, Béla FEHÉR1

1 Department of Measurement and Information Systems,
Budapest University of Technology and Economics,

Budapest, Hungary, {szanto, feher}@mit.bme.hu
2 Xilinx Inc. 2100. Logic Dr, San Jose, CA 95124, USA, gabor.szedo@xilinx.com

Abstract: This paper presents an FPGA implementation of a two-dimensional median filter
architecture for image and video processing applications. The architecture exploits sorting based on
partial rather than complete per-pixel information. This allows performance enhancement, which is a
key point in image filtering, as the sampling frequency is typically quite high.

Key words: FPGA, image processing, filtering, median.

1 Introduction

Unlike FIR or IIR filters, the median filter is
a non-linear algorithm with interesting
properties: it can effectively remove impulse
like noises, while preserving the edges of the
input signal.

Figure 1. 2D Median filtering

There are two basic types of median filters:

non-recursive and recursive. The former works
by sorting the input samples in the filter
window, and outputting the median of the sorted
values. In 2D case a WH*WV window is moved
across the input image (or frame), where WH
denotes the horizontal and WV denotes the
vertical size of the window in pixels. The center
sample of the window is replaced by the median

of the samples within the window (Figure 1).
The current window is marked with white box,
the next window is marked with black window,
new samples are dark grey. The recursive
method uses input samples, as well as previous
output samples for filtering, thus allowing faster
response to the changing properties of the input.
This paper mainly focuses on non-recursive
filters, but the presented architecture is also
applicable for recursive filtering.

2 Previous work

There are lots of different architectures for
implementing median filters both in software
and in hardware. Software implementations vary
from simple full-sorting to more special
algorithms, which take advantage of special
requirements,s such as the fact that only a
fraction of the data changes from time to time.

Hardware implementations can be classified
by different properties. Bit-serial approaches
([1]) do not explicitly sort the input data, instead
select the appropriate sample as the output by
inspecting the bits of the input samples in
successive clock cycles. Thus, performance is
proportional with the input data width (but not
necessarily with the filter window size); for high

 2

resolution these architectures may limit the
sample or pixel rate. Word-parallel architectures
can either store the samples in the order of
arrival [2] or in sorted order. Sorted order
architectures can be implemented as sorting
networks ([3]) or systolic arrays. The
architecture presented in this paper belongs to
the second group – while sorting networks can
be easily pipelined, they require a large number
of comparators. On the contrary, the presented
method requires minimal number of
comparators.

3 Filtering in 2D

Figure 1. illustrates that moving the filter
window with one pixel column requires WV new
samples to be entered, and WV old samples to be
discarded from the filter kernel. 2D filters can
be partitioned into two groups based on the
method they handle these new samples.

Architectures originating from 1D filters can
handle one new input sample in one clock cycle.
Therefore, they require WV clock cycles to
generate one valid output, so for real-time
processing the filter operating frequency should
be the pixel clock multiplied with WV.

Another set of architectures process WV
number of samples in a single clock cycle.
Although operating frequencies of these filters
are much lower (equal to the pixel frequency),
hardware resource requirements are larger.

Mixed mode architectures can process two
or more input samples in one clock cycle, thus
reducing operating frequency requirements at
reasonable complexity.

4 Proposed Architecture

The proposed architecture is part of a video
processing system, which receives standard, de-
interlaced PAL or NTSC signal. The input
resolution is 720x576 pixels, at 25
frames/second. Thus, the raw pixel clock equals
to 10.368 MHz. Architectural decisions were
based on these criteria and capabilities of
modern FPGAs. The maximal required filter
window size is 11x11 pixels, the architecture is
a systolic array which can process one input
sample in every clock cycle.

The top-level block diagram of the filter
architecture is shown on Figure 2.

LINE
BUFFER

FVG

FILTER
CORE

RGB
INPUT

FILTER
OUTPUT

RGB VALUES

CNTRL

CNTRL
OUTPUT

CNTRL
INPUT

DELAY
LINE

ADDR

Figure 2. General architecture

The filter receives 24 bit RGB values and

control signals (line end, frame end). The Input
Front-end consists of a line buffer which stores
WV-1 number of lines and a Filter Value
Generator, which produces an appropriate value
for the sorting process.

The filter core itself generates the median
output and the appropriately delayed versions of
the control signals. The output of the Filter Core
addresses an RGB delay line (which stores the
RGB values of the filtering window) to generate
the final output.

4.1 Input Front-end

The input front-end feeds the filter with
pixels from WV≤10 lines. Therefore, at most 10
input lines should be retained for further
processing – they are stored in the line buffer.
The required size of this buffer is

720*10*3=21600 (1)

bytes, which can be stored in 11 BlockRAMs
within the FPGA.
 The output of the line buffers feed the Filter
Value Generator. In the current implementation
this unit simply sums the R, G and B
components to form a luminosity-like value

Y= R+G+B. (2)

Other, more complex operations, such as real
RGB to YCbCr color-space conversion, can be
also implemented as long as the conversion
module can be easily pipelined. Y values
retained for sorting can be represented on 10

 3

bits. Note, that Y values can be similar for very
different RGB values. As the sorting module
can not take into account, this may distort the
filtered image.

The original output of the front-end is also
passed to the Filter Core, which provides the
final output.

4.2 Filter Core and Delay Line

 The Filter Core consists of three distinct
parts: the filter cells, the empty generation and
the delay line, as shown on Figure 3.

FILTER
CELL

FILTER
CELL

FILTER
CELL

EMPTY
GEN

DELAY
LINE

(FIFO)

FILTER DATA
INPUT

RGB
INPUT

RGB
INPUT

T
O

O
T
H
E
R

C
E
L
L
S

T
O

O
T
H
E
R

C
E
L
L
S

„AGE”

Figure 3. Filter core

 A straightforward implementation may link
the filter value and the full RGB value together,
which is a trivial way to handle these values.
However, as it will be obvious later, this would
unnecessarily complicate the filter cells.
Therefore, our architecture employs a delay line,
which is an addressable FIFO storing RGB pixel
values. The filter cells themselves do not
generate color output but address this FIFO for
RGB information. The address is the “age” of
the sample on the output of the filter core. In
Xilinx FPGAs, SRL16 primitive (16x1 bit,
addressable shift register) lend themselves well
for implementing delay lines.
 The part responsible for the sorting is
comprised of WH*WV similar cells. Each cell
stores one sample of the filter window together
with the “age” of the given sample. Age values
show the number of clock cycles any given
sample have been staying in the filter.
Obviously, the sample with

age = WH*WV-1 (3)

is the oldest, which it should be discarded.

In every clock cycle, each cell selects the
appropriate function to either:

• Load a new sample
• Load sample from the cell to the right
• Load sample from the cell to the left
• Keep the current sample

In order to make a selection, cells have to know
the results of comparisons between the new
sample and sample values held by the cell itself
and its nearest neighbors, as well as the position
of the oldest sample.
To implement the above functionality, each cell
consists of a comparator, an age counter and an
“empty” register. The comparator compares the
data of the cell with the new sample, the age
counter counts the number of clock cycles,
while the empty register shows if the sample of
the cell is the one to be thrown away. Figure 4.
shows the block diagram of a cell.

DATA AGE

<

MUX

MUX

INC

CNTRL

EMPTY

=

NEW
SAMPLE

LEFT
SAMPLE

LEFT
AGE

EMPTY
LEFT

CMPR LEFT

RIGHT
SAMPLE

RIGHT
AGE

EMPTY
RIGHT

CMPR RIGHT

AGE
OUT

EMPTY
OUT

SAMPLE
OUT

CMPR
OUT

-1

Figure 4. Cell block diagram

Darker blocks represent registers, while white
blocks are combinatorial logic. DATA stores the
filter data of the given pixel, LEFT_SAMPLE,
RIGHT_SAMPLE and NEW_SAMPLE are the
data of the left, the right adjacent cell and the
new sample, respectively. Age variables are
labeled with the same logic (note: the “-1”
multiplexer input becomes “0” after the
increment block). The CNTRL block generates
all control signals for the multiplexers
(connection not show on Figure 4.). The
decision algorithm for a given cell can be
summarized by the following pseudo code,
where empty denotes if the current cell stores

 4

the oldest sample, empty_right and empty_left
signals the same for the right and left cells.
Variables cmpr_curr, cmpr_left and cmpr_right
hold the result of the comparison with the new
sample for the current, the left and right adjacent
cells, respectively.

if (empty)
 if (cmpr_left AND not cmpr_right)
 load new sample
 else if (not cmpr_left)
 load left sample
 else
 load right sample
else if (empty_right)
 if (not cmpr_curr)
 if (cmpr_left)
 load new data
 else
 load left data
 else
 keep current sample
else if (empty_left)
 if (cmpr_curr)
 if (not cmpr_right)
 load new sample
 else
 load right sample
 else
 keep current sample

Depending on the selected operation, the age
counter may also load values from adjacent
cells. When new sample is loaded, the counter is
reset, when the right or the left sample is loaded,
the corresponding incremented counter value is
loaded, and when the current sample is kept, the
counter is incremented.
 For every cell, the empty_left and
empty_right signals are generated
asynchronously by an OR gate; empty_left is the
result of combining all the empty signals of cells
on the left of the given cell, whereas
empty_right is the same for cells on the right of
the given cell.
 The output of the cell array is simply the age
counter of the median cell. As the input of the
filter cells has additional latency inserted by the
computation of the filter value, the FIFO should
be addressed by the latency compensated age
counter value.

5 Improvements

 As cells themselves have low latency, using
this architecture for recursive filtering is quite
straightforward. Cells use two 2:1 multiplexers;
one at the filter value input and one at the input
of the delay line. The multiplexer at the filter
value input are fed by the input filter value and
the filter value of the median cell, while the one
at the delay line is fed by the input RGB and the
output of the delay line.
 Making the architecture capable of
processing more than one input sample in one
clock cycle is more difficult. Managing multiple
empty cells and new samples makes the decision
logic more complicated, while data multiplexers
become more complex as well. This
considerably reduces operating frequency;
therefore for such applications a different
architecture may be better suited.

6 Conclusion

Implementation results show that the
presented architecture can reach 140 MHz in
Virtex2-4 FPGAs and 250 MHz in Virtex4-12
FPGAs. Even the lower performance is more
than sufficient to filter standard resolution PAL
or NTSC video signals even with very large
filter windows. Higher resolution videos are not
typical in embedded systems, therefore the
presented architecture completely satisfy the
preliminary requirements. The small footprint of
the design enables implementation using low-
cost, small FPGAs.

References

LEE, C. L., JEN, C. 1993. Binary Partition
Algorithms and VLSI Architectures for
Median and Rank Order Filtering, IEEE
Transactions on signal processing, Vol. 41,
No. 9.

CHAKRABARTI, C., 1994. High Sample Rate
Array Architectures for Median Filters,
IEEE Transactions on signal processing,
Vol. 42, No. 3.

CHAKRABARTI, C., WANG, L. 1994. Novel
Sorting Network-Based Architectures for
Rank Order Filters, IEEE Transactions on
VLSI, Vol. 2, No. 4.

