
Scalable Rasterizer Unit
Péter Szántó

Budapest University of Technology and Economics
Dept. Of Measurement and Information Systems

Magyar tudósok krt. 2., H-1117, Hungary
szanto@mit.bme.hu

Béla Fehér
Budapest University of Technology and Economics

Dept. Of Measurement and Information Systems
Magyar tudósok krt. 2., H-1117, Hungary

feher@mit.bme.hu

ABSTRACT

Modeling the light-surface interaction in real time 3D
applications becomes more and more complex, as users
require more lifelike images. Segmented screen rendering
offers a viable solution to minimize the unnecessary work
done in traditional rendering architectures. However,
increasing the efficiency of the rendering pipeline also
increases the required hardware resources for the 3D
rendering unit. This paper presents a modular, scalable
rasterizer architecture, which makes it appropriate in a wide
range of applications.

Keywords
3D graphics architecture, FPGA, system on chip

1. INTRODUCTION

In real-time graphics rendering two approaches are
prevalent. Immediate Mode Rendering (IMR) renders the
scene triangle by triangle; rasterization and shading of a
triangle immediately starts after it has been transformed
into screen space. Contrary to this, Deferred Rendering
(DR) waits for all triangles to be transformed before
beginning the per-pixel operations. The latter method has
two main advantages.

First, it guarantees maximum efficiency when computing
the output color values (the shading part of the rendering
process, which clearly becomes the most time consuming),
as only the truly visible values are shaded – unlike IMRs,
where pixels not visible on the final image may be also
processed. This is possible by first doing the visibility test,
and deferring the rasterization process, so it only starts
when the whole frame is analyzed and the visible objects
are determined for every screen pixel.

Second, it allows using on-chip memory for the Depth-,
Stencil- and Frame Buffer, thus reducing external
bandwidth requirements, lowering cost and power
consumption. It must be noted, that theoretically IMRs can
also use on-chip buffers, but these buffers have to be the
same size as the final, rendered image – which currently
cannot be manufactured. The ability to segment the screen
into small rectangles and then render these rectangles as

“independent, small screens” allows small, implementable
buffers to be used.

The DR rendering process is just a little different from the
IMR one:
for every triangle in the given frame{

transform the triangle into screen space
find overlapped segments

}
for every segment on the screen{

for every pixel in the segment{
do visibility test

}
for every pixel in the segment{

compute output color values
}

}
The first part of the article reviews different segmenting
strategies and presents hardware architecture for
segmenting. The second part presents a modular
Depth/Stencil Unit.

2. SEGMENTATION

Basically, there are three possibilities when deciding about
the segmentation strategy [1].

The simplest solution is to process all triangles in all
segments, therefore completely skipping the segmentation
part (SGI had architectures which work this way). This
method has clear disadvantages, as the effective
depth/stencil fill rate is especially decreased due to the
unnecessary work done during the visibility test. On the
other side, the hardware architecture is simplified, and there
is no need to store a triangle list for the segments.

Bounding box method uses the bounding box of the
triangles to define the overlapped segments. Even this
simple method can increase efficiency considerably –
especially with small triangles –, however there are cases
when a lot of unnecessary segments are marked as
overlapped. Figure 1 shows such a case. There are known
architectures doing software segmenting this way, for
example Intel Extreme Graphics [2] or Microsoft Talisman
[3]. Hardware solutions are rarer, the PixelFlow [4] is
surely employing bounding box method and benchmark
results indicate that the only commercial deferred renderer
(PowerVR Kyro [5]) also prefers this way.

The most efficient method is exact segmenting, when only
segments having at least one pixel overlapped with the
triangle are marked. The disadvantage is the required
hardware resources to implement the functionality.

Figure 1. Overlapped segments using bounding box and exact

segmenting
The following section shows the details of a hardware
bounding box segmenting unit, and compares it with an
exact segmenting solution, detailed in [6].

2.1 Bounding Box Segmenting Unit

Just as the Exact Segmenting Unit (ESU), the bounding box
version (BBSU) consist of three main parts: the first part
(Input Pipeline) computes the necessary input values for
the main processing unit (Segment Generator), while the
third part (Address Generator) handles communication with
the external memory. To – possibly – increase efficiency,
the unit supports programmable segment size, which can be
set as an application specific parameter, or can be even
adjusted adaptively, based on the statistics of a previous
frame(s). Although selecting an overall appropriate
segment size was already discussed in [7], the effects of
variable segment size require further research to be
correctly analyzed as there is no known academic or
commercial architecture supporting this feature.

2.1.1 Input Pipeline

The first unit receives screen space vertex data (x, y
coordinates) from the transformation part and, as a first
step, generates primitives – triangles – from them. For
primitive generation, triangle strips and triangle lists are
supported without additional requirements, while for
triangle fans the shared vertex should be sent to the
Segmenting Unit multiple times (thus, generating a triangle
strip from the fan). The architecture of the Input Pipeline is
shown on Figure 2.

For load balancing with the transformation part, vertex data
is immediately written into a small, 64 word deep FIFO.
The FIFO is followed by two 3-tap sorters, which can take
a new input every clock cycle. After reading the
appropriate number of vertices from the FIFO (eg. one for
triangle strip, three for triangle list), the sorters output the
minimal and maximal x and y coordinates of the current
triangle (which define the bounding box with high
precision). These values are then multiplied with the
reciprocal of the horizontal and vertical resolution of the

segment, generating the corner segments of the bounding
box. To limit resource usage, only two multipliers are used,
therefore in worst case it takes two clock cycles to generate
the four new values.

VERTEX
FIFO

3TAP
SORTER

3TAP
SORTER

MUL

MUL
Ymin
Ymax

Xmin
Xmax

VER
REC

HOR
REC SX

min

SX
max

SY
min

SY
max

Figure 2. Input Pipeline

2.1.2 Segment Generator

The Segment Generator itself is very simple: it consists of
two adders: one for incrementing the segment x coordinate,
and one for incrementing the segment y coordinate. In the
current implementation, the Segment Generator generates
new (SX, SY) segment coordinate pairs every clock cycle,
but with multiple adders it can be easily parallelized further
(however, there is not too much sense in using more adders
than the average maximum{bounding box height, width}).

2.1.3 Address Generator

The Address Generator builds a chained list for every
segment. The list itself consists of 32-word blocks, from
which 31 words are pointers to triangles, while the 32nd
word is a pointer to the next 32 word block. The hardware
implementation is the same for the BBSU and for the ESU,
which was presented in details in [6].

2.1.4 Bounding Box vs. Exact Segmenting

Table 1. shows the main advantage of the BBSU, namely
resource requirement.

 FF LUT MUL BRAM
ESU 1100 1200 4 - Input

Pipeline BBSU 310 540 2 -
ESU 900 2800 - - Segment

Generator BBSU 40 50 - -
Address Gen. 270 380 1 4

ESU 2270 4380 5 4 ALL
BBSU 620 970 3 4

BBSU/ESU, % 27.3 22.1 60 100

All in all, the BBSU requires about quarter as many FPGA
resources as the ESU. Efficiency is more complex to
answer, as it largely depends on the frame to be rendered,
not to mention that it is not enough to analyze the
Segmenting Unit alone, but together with the Hidden
Surface Removal Unit.

If average triangle size is comparable to the segment size
(eg. one triangle overlaps only 3-4 segments) the BBSU
can be just as effective as the ESU. As triangle size
increases, ESU becomes at least twice as effective. If the
scene contains a lot of triangles with high aspect ratio (just
as the one on Figure 1), the efficiency advantage of the
ESU version increases further. To fully answer this
question, real-world applications should be analyzed, as
widely accepted fill rate tests (such as 3DMark [8]) use full
screen quads – in this case the ESU is twice as effective as
the BBSU.

3. Hidden Surface Removal Unit

The Hidden Surface Removal Unit (HSRU) consists of two
main parts: a Vertex Processing Unit (VPU), which
receives vertex data and computes all the necessary values
for the next part, which does overlapping determination,
depth buffering and stencil buffering. The latter block is
made up from several, similar processing elements (HSR
Cells), as Figure 3 shows. The function of the adders
between the two blocks will be discussed later.

HSR
Cell 0

Vertex
Processing

Unit
Z/St.

Memory 0

Triangle
Memory 0

HSR
Cell 7

Z/St.
Memory 7

Triangle
Memory 7

ADD

ADD

ADD

ADD

Figure 3. HSR Unit

Depending on the specified segment size, and the number
of HSR Cells, each of them works on one or more segment
lines. To correctly identify covered pixels and interpolate
the depth values, the cells require initial values and delta
values, which are generated by the VPU.

3.1 Vertex Processing Unit

Overlapping determination is based on variables generated
from the explicit equation of the triangles sides:

x*)yy(y*)xx()y,x(S iij ∆−−∆−= (1)
where xi and yi are points on the side, Δx and Δy are the
differences between the two vertex coordinates forming the
side. During interpolation, Sj(x,y) is incremented or
decremented with the delta values as the HSR Cells step
through the pixels assigned to them. Covering is

determined using the sign of the three S variables (S0, S1, S2
represents the three variables for the three sides):

))y,x(S(signXOR))y,x(S((sign
AND)))y,x(S(signXOR))y,x(S(sign(

21

10 (2)

All in all, for the three sides the following calculations are
required:

)xx(*)yy(
)yy(*)xx()y,x(S

)xx(*)yy(
)yy(*)xx()y,x(S

)xx(*)yy(
)yy(*)xx()y,x(S

211strt

211strtstrtstrt2

200strt

200strtstrtstrt1

100strt

100strtstrtstrt0

−−−
−−−=

−−−
−−−=

−−−
−−−=

 (3)

In (Eq. 3) xstrt and ystrt are the coordinates of the starting
pixel for the HSR Cells (without anti aliasing, the top-left
pixel of the processed segment).

Initial depth values and incremental values are generated
using the following equations:

11strt
z

z
1strt

z

z

z

z
strt

z

z
strt

z

z

zstrtzstrtzstrtstrt

z)yy(*)
C
A()xx(*)

C
A(

)
C
D(y*)

C
B(x*)

C
A(

Gy*Fx*E)y,x(z

+−−+−−=

=−+−+−=

=++=

(4)

The coefficients in (Eq. 4) are computed using the depth
values defined at the three vertices and the plane equation
of the triangle.

)z*Cy*Bx*A(D
)xx(*)yy()yy(*)xx(C

)xx(*)zz()zz(*)xx(B
)zz(*)yy()yy(*)zz(A

1z.1z1zz

01210121z

01210121z

01210121z

++−=
−−−−−=

−−−−−=
−−−−−=

 (5)

In the hardware realization clipped screen space x, y
coordinates are 16 bit fixed point values, while vertex
depth (z) values are 24 bit floating point numbers. For the
above computations, the VPU uses these formats, but at the
last step z(xstrt,ystrt), Ez and Fz are converted to 24 bit fixed
point format, preserving only the fractional part of the
generated depth values (the transformation of triangles
from 3D world space to screen space maps depth values to
[0, 1] range).

3.1.1 Hardware Architecture

Because of the architecture of the HSR Cells, the above
computations can be done in 16 clock cycles without
limiting performance. Therefore, the trivial dataflow
implementation is not the best option, as it requires too
many resources, while it is needlessly fast.

A programmable solution not only requires fewer
resources, but it is also more flexible, which – together

with the HSR Cell architecture – allows flexible anti
aliasing implementation (more on this later). Figure 4
shows the architecture of the arithmetic unit.

Figure 4. Vertex Processing Unit

The inputs of the VPU are the vertices’ x, y and z
coordinates and the screen coordinates of the top-left pixel
in the processed segment.

The whole processing unit consists of two, almost
separated portions. The upper part on Figure 4 is able to
compute the required values for covering determination,
while the lower part is responsible for the depth related
computations.

The first units in the overlapping determination part are
small, dual-ported memories to store the three x and y
coordinate pairs of the currently processed triangle. The
two memories fed a 16 bit adder/subtractor which has write
enable signals at the input registers – its function is to
compute the delta coordinate values in Eq. 3. The output is
routed to a multiplier (which also has write enable signals
at the input registers) to compute the partial products in Eq.
3 – to increase flexibility, these values are stored in a small
memory. The final 32 bit adder can calculate the final edge
variables (S0, S1, S2), which – together with the delta values
– are the input values for the covering determination part of
the HSR Cells.

The depth related part supports mixed formats; in order to
reduce latency, the subtraction of the screen coordinates are
done using fixed point arithmetic, but all other calculations
are performed using the 24 bit floating point format of the
vertex depth values. Accordingly, the fix point adder which
generates the coordinate differences is followed by a fixed
point to floating point converter before connecting to the
floating point multiplier. The coordinate differences are
multiplied with the output of the floating point adder (depth
differences), generating the partial products of Az, Bz and
Cz. The output of the multiplier is routed to the input
memories of the adder to be able to compute the Az, Bz, Cz
results. The Az, Bz results are then multiplied with the
reciprocal of the Cz value (hence the multiplier can use the

result of the adder and the reciprocal unit), generating the
final Ez and Fz values. To generate the initial depth value,
Ez and Fz are multiplied with the starting x and y
coordinates, and then these results are added together with
the z1 vertex depth value. To avoid the operand cancellation
when adding together these values (that is when two large,
almost equal values with different sign hide the impact of a
small third operand, but then cancels each other), the adder
has three inputs, and it always generates correct results;
however, the third input is only used when the initial depth
value is computed, otherwise it is set to zero (the shift
register at the input allows the appropriate delay to be
applied to z1 compensate for the latency of the
computations).

The whole arithmetic unit can be programmed by
controlling the read address of the memories; the select
signals of the multiplexers; the add/subtract control signals
and the write enable signals of the different units.
Scheduling analysis shown that the depth computation has
nearly 48 clock latency (obviously, this depends on the
program), but it is able to start processing a new triangle
every 16th clock cycle. Of course, when programmed
differently, latency and performance may differ, the above
reported results are valid for an actual program which can
handle anti aliasing.

As the different arithmetic units have different latencies
which are not hidden from the programmer in any way,
programming the unit is not the easiest task. However, the
creation of simple compiler (data flow compiler) is
obviously possible.

3.2 HSR Cell

The unit doing the actual hidden surface removal is made
up from a number of similar cells. Every cell has its own
buffer (storing depth, stencil and triangle pointer), and
some segment lines assigned to it; using N cells, every nth
line is processed by the nth cell (for example, with 8 cells
and 32*16 resolution segment, the 1st and 9th line is
processed by the 1st cell, the 2nd and 10th lines are processed
by the 1st cell, and so on). After processing one of the
associated lines, the HSR Cells require new input values, as
they are unable to interpolate in the y direction.
Irrespectively of the number of overlapped pixels, for every
triangle every cell processes all of their associated pixels,
so efficiency decreases if a triangle only overlaps a small
number of pixels in a segment. However, this makes
scheduling predictable, and this is why the VPU can have
16 clock cycles to generate new input data for the cells.

When the VPU has finished generating the new values for
the starting pixel, the 1st cell loads these data. At the same
time the input data is modified for the next cell (stepping
one line in the y direction), which loads them one clock
cycle later compared to the 1st cell. This method only
requires one input at any time, so only one adder per

variable is needed to interpolate them in the y direction
(these are the adders on Figure 3).

A cell itself consists of three distinct units. Covering
determination identifies if a pixel is inside the processed
triangle – and allows the write enable signal of the buffers
to become active.

3.2.1 Covering Unit

After loading the initial values of the three Sj variables, a
HSR Cell decrements this value with Δy (see Eq. 2-3) every
clock cycle. The decision about overlapping is done using
Eq. 2.

3.2.2 Depth Unit

The Depth Unit reads the depth buffer, compares the read
value with the interpolated one (using the set comparison
function) and in case the comparison returns true, allows
the write back to the depth buffer. The pipelined
architecture is shown on Figure 5, gray blocks represent
registers, and white blocks are logic functions.

Figure 5. Depth Unit

This unit supports all possible comparison functions (Z
Func – always, never, less, less-or-equal, equal, greater-or-
equal, greater). The Depth Unit has two processing modes:
opaque and transparent.

In opaque mode, two pixels are processed per clock cycle,
the two Z Inc registers stores the same delta value and the
depth functions are also similar.

Transparent, multi pass mode can be activated after all
opaque triangles are processed. In this mode, the unit can

process one pixel per clock cycle. In every pass, the
transparent triangle which is farthest from the camera, but
closer than the already processed triangles is determined
for every pixel. This is done with two comparisons and
using two depth buffer location: one location stores the
depth value of the already processed (shaded) triangle,
while the other is the working buffer. The former is
compared with the interpolated depth value using less
comparison function, while the latter is compared using
larger. After finishing a pass, the two buffer locations
changes function.

3.2.3 Stencil Unit

To keep up with the Depth Unit, the Stencil Unit also
supports two stencil tests per system clock using 8 bit
stencil values. As these two units share the same memory,
the pipeline latency is also the same. Just as the Covering-
and Depth Unit, it also generates write enable signal for the
buffer, using the defined stencil reference value, read mask
value, write mask value, comparison function and stencil
operation. The comparison function has the same options
which were listed for the Depth Unit, while the stencil
operation can be set for “stencil test fails”, “stencil test
passes and depth test fails” and “stencil test passes and
depth test passes” cases. Available operations are: keep
previous value, set to zero, replace with reference value,
increment (with or without saturation), decrement (with or
without saturation) and invert.

4. Arbitrary Anti Aliasing

The programmable Vertex Processing Unit together with
the programmable segment size allows implementing anti
aliasing (AA) with arbitrary number of samples and
arbitrary sample positions.

Without AA, the xstrt and ystrt coordinates in Eq. 3 and Eq. 4
are set to the screen space coordinates of the top-left
segment pixel, and the segment size is set to the real (pixel)
resolution of the segment. The VPU processes a triangle
once, computing the required delta values and the initial
values for the top-left segment pixel. The HSR Cells use
these values to determine covering and generate depth
values at pixel centers.

Setting for example two-times AA requires only minor
programming changes. Let define sampling positions as
shown on Figure 6. The desired effect can be achieved by
setting the vertical resolution of the segment to twice of the
real size, and then modifying only the xstrt and ystrt values.
First, the VPU computes the same delta values as without
AA, but generates the start values using (top left pixel x +
pix_size/4) as xstrt and (top left pixel y – pix_size/4) as ystrt.
As long as the HSR Cells process the first sample positions,
the VPU modifies xstrt to (top left pixel x – pix_size/4) and
ystrt to (top left pixel + pix_size/4).

pixel center sampling positions

p sizeix_ /4

p sizeix_ /4

p izeix_s /4

p sizeix_ /4p sizeix_
Figure 6. AA sampling pattern

Using this method, any number of AA samples can be
generated within a pixel, as long as the precision of the
coordinate computation allows it, and there is enough
buffer memory. For example, a 32*16 resolution segment
allows 64-times AA to be used. Obviously, depth/stencil
buffering fill rate decreases linearly as the number of
samples increases. It must be noted that the presented
architecture only deals with oversampled covering
determination and depth testing. To generate AA-ed
images, the other units (especially the shader unit) have to
support this arbitrary mode. Actually, the type of AA
(multisampling – only object edges are filtered;
supersampling – the whole image is filtered) applied is also
dependent on those units – the output of the HSR allows
both methods.

5. Conclusion

The article presented some hardware units which can be
used to create an efficient rasterizer unit. In an FPGA
implementation using XC2V6000-4 FPGA, all units can
achieve 100 MHz system clock speed (with parts of the
HSR Cells operating at double frequency), translating into
100 million segments/sec for the segmenting units, and up
to 1.6 GPixels/sec depth/stencil fill rate for an 8 cell HSR
Unit.

The two segmenting methods have to be analyzed using
real-world applications to explore the overall performance
increase exact segmenting offers. Similarly, to identify the
potential benefits of the programmable segment size, the
performance of real applications should be measured under
different conditions. These measurements then may be used
to create an algorithm to adaptively alter segment size
between frames, which is simple enough to be implemented
in hardware.

6. REFERENCES
[1] Michael Cox, Narendra Bhandari, Architectural Implications

of Hardware-Accelerated Bucket Rendering On the PC,
Siggraph/Eurographics Workshop On Graphics Hardware,
1997

[2] Intel Zone Rendering Technology 3 Whitepaper,
http://support.intel.com/design/chipsets/applnots/302625.htm

[3] J. Torborg and J.T. Kajiya, Talisman: Commodity Realtime
3D Graphics for the PC, Proc. ACM Conf. on Computer
Graphics Conference(SIGGRAPH '96), 1996

[4] Eyles, John, Steven Molnar, John Poulton, Trey Greer,
Anselmo Lastra, and Nick England, PixelFlow: The
Realization, Proceedings of the Siggraph/Eurographics
Workshop on Graphics Hardware, 1997

[5] PowerVR Tile Based Rendering Whitepaper,
http://www.pvrdev.com/pub/PC/doc/idx/whitepapers.htm

[6] Péter Szántó, Béla Fehér, Exact Bucket Sorting for
Segmented Screen Rendering, GSPX 2005 Pervasive Signal
Processing, 2005

[7] I. Antochi, B.H.H. Juurlink, S. Vassiliadis, P. Liuha, Scene
Management Models and Overlap Tests for Tile-Based
Rendering, EUROMICRO Symposium on Digital System
Design, 2004

[8] 3DMark05 Whitepaper,
http://www.futuremark.com/companyinfo/?companypdfs

