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ABSTRACT 
 
Modeling the light-surface interaction in real time 3D 
applications becomes more and more complex, as users 
require more lifelike images. Segmented screen rendering 
offers a viable solution to minimize the unnecessary work 
done in traditional rendering architectures. However, 
increasing the efficiency of the rendering pipeline also 
increases the required hardware resources for the 3D 
rendering unit. This paper presents a modular, scalable 
rasterizer architecture, which makes it appropriate in a wide 
range of applications. 
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1. INTRODUCTION 

In real-time graphics rendering two approaches are 
prevalent. Immediate Mode Rendering (IMR) renders the 
scene triangle by triangle; rasterization and shading of a 
triangle immediately starts after it has been transformed 
into screen space. Contrary to this, Deferred Rendering 
(DR) waits for all triangles to be transformed before 
beginning the per-pixel operations. The latter method has 
two main advantages. 

First, it guarantees maximum efficiency when computing 
the output color values (the shading part of the rendering 
process, which clearly becomes the most time consuming), 
as only the truly visible values are shaded – unlike IMRs, 
where pixels not visible on the final image may be also 
processed. This is possible by first doing the visibility test, 
and deferring the rasterization process, so it only starts 
when the whole frame is analyzed and the visible objects 
are determined for every screen pixel. 

Second, it allows using on-chip memory for the Depth-, 
Stencil- and Frame Buffer, thus reducing external 
bandwidth requirements, lowering cost and power 
consumption. It must be noted, that theoretically IMRs can 
also use on-chip buffers, but these buffers have to be the 
same size as the final, rendered image – which currently 
cannot be manufactured. The ability to segment the screen 
into small rectangles and then render these rectangles as 

“independent, small screens” allows small, implementable 
buffers to be used. 

The DR rendering process is just a little different from the 
IMR one: 
for every triangle in the given frame{ 

transform the triangle into screen space 
find overlapped segments 

} 
for every segment on the screen{ 

for every pixel in the segment{ 
do visibility test 

} 
for every pixel in the segment{ 

compute output color values 
} 

} 
The first part of the article reviews different segmenting 
strategies and presents hardware architecture for 
segmenting. The second part presents a modular 
Depth/Stencil Unit. 

2. SEGMENTATION 

Basically, there are three possibilities when deciding about 
the segmentation strategy [1]. 

The simplest solution is to process all triangles in all 
segments, therefore completely skipping the segmentation 
part (SGI had architectures which work this way). This 
method has clear disadvantages, as the effective 
depth/stencil fill rate is especially decreased due to the 
unnecessary work done during the visibility test. On the 
other side, the hardware architecture is simplified, and there 
is no need to store a triangle list for the segments. 

Bounding box method uses the bounding box of the 
triangles to define the overlapped segments. Even this 
simple method can increase efficiency considerably – 
especially with small triangles –, however there are cases 
when a lot of unnecessary segments are marked as 
overlapped. Figure 1 shows such a case. There are known 
architectures doing software segmenting this way, for 
example Intel Extreme Graphics [2] or Microsoft Talisman 
[3]. Hardware solutions are rarer, the PixelFlow [4] is 
surely employing bounding box method and benchmark 
results indicate that the only commercial deferred renderer 
(PowerVR Kyro [5]) also prefers this way. 



The most efficient method is exact segmenting, when only 
segments having at least one pixel overlapped with the 
triangle are marked. The disadvantage is the required 
hardware resources to implement the functionality. 

 
Figure 1. Overlapped segments using bounding box and exact 

segmenting 
The following section shows the details of a hardware 
bounding box segmenting unit, and compares it with an 
exact segmenting solution, detailed in [6]. 

2.1 Bounding Box Segmenting Unit 

Just as the Exact Segmenting Unit (ESU), the bounding box 
version (BBSU) consist of three main parts: the first part 
(Input Pipeline) computes the necessary input values for 
the main processing unit (Segment Generator), while the 
third part (Address Generator) handles communication with 
the external memory. To – possibly – increase efficiency, 
the unit supports programmable segment size, which can be 
set as an application specific parameter, or can be even 
adjusted adaptively, based on the statistics of a previous 
frame(s). Although selecting an overall appropriate 
segment size was already discussed in [7], the effects of 
variable segment size require further research to be 
correctly analyzed as there is no known academic or 
commercial architecture supporting this feature. 

2.1.1 Input Pipeline 

The first unit receives screen space vertex data (x, y 
coordinates) from the transformation part and, as a first 
step, generates primitives – triangles – from them. For 
primitive generation, triangle strips and triangle lists are 
supported without additional requirements, while for 
triangle fans the shared vertex should be sent to the 
Segmenting Unit multiple times (thus, generating a triangle 
strip from the fan). The architecture of the Input Pipeline is 
shown on Figure 2. 

For load balancing with the transformation part, vertex data 
is immediately written into a small, 64 word deep FIFO. 
The FIFO is followed by two 3-tap sorters, which can take 
a new input every clock cycle. After reading the 
appropriate number of vertices from the FIFO (eg. one for 
triangle strip, three for triangle list), the sorters output the 
minimal and maximal x and y coordinates of the current 
triangle (which define the bounding box with high 
precision). These values are then multiplied with the 
reciprocal of the horizontal and vertical resolution of the 

segment, generating the corner segments of the bounding 
box. To limit resource usage, only two multipliers are used, 
therefore in worst case it takes two clock cycles to generate 
the four new values. 
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Figure 2. Input Pipeline 

2.1.2 Segment Generator 

The Segment Generator itself is very simple: it consists of 
two adders: one for incrementing the segment x coordinate, 
and one for incrementing the segment y coordinate. In the 
current implementation, the Segment Generator generates 
new (SX, SY) segment coordinate pairs every clock cycle, 
but with multiple adders it can be easily parallelized further 
(however, there is not too much sense in using more adders 
than the average maximum{bounding box height, width}). 

2.1.3 Address Generator 

The Address Generator builds a chained list for every 
segment. The list itself consists of 32-word blocks, from 
which 31 words are pointers to triangles, while the 32nd 
word is a pointer to the next 32 word block. The hardware 
implementation is the same for the BBSU and for the ESU, 
which was presented in details in [6].  

2.1.4 Bounding Box vs. Exact Segmenting 

Table 1. shows the main advantage of the BBSU, namely 
resource requirement. 

 FF LUT MUL BRAM 
ESU 1100 1200 4 - Input 

Pipeline BBSU 310 540 2 - 
ESU 900 2800 - - Segment 

Generator BBSU 40 50 - - 
Address Gen. 270 380 1 4  

ESU 2270 4380 5 4 ALL 
BBSU 620 970 3 4 

BBSU/ESU, % 27.3 22.1 60 100 
 

All in all, the BBSU requires about quarter as many FPGA 
resources as the ESU. Efficiency is more complex to 
answer, as it largely depends on the frame to be rendered, 
not to mention that it is not enough to analyze the 
Segmenting Unit alone, but together with the Hidden 
Surface Removal Unit. 



If average triangle size is comparable to the segment size 
(eg. one triangle overlaps only 3-4 segments) the BBSU 
can be just as effective as the ESU. As triangle size 
increases, ESU becomes at least twice as effective. If the 
scene contains a lot of triangles with high aspect ratio (just 
as the one on Figure 1), the efficiency advantage of the 
ESU version increases further. To fully answer this 
question, real-world applications should be analyzed, as 
widely accepted fill rate tests (such as 3DMark [8]) use full 
screen quads – in this case the ESU is twice as effective as 
the BBSU. 

3. Hidden Surface Removal Unit 

The Hidden Surface Removal Unit (HSRU) consists of two 
main parts: a Vertex Processing Unit (VPU), which 
receives vertex data and computes all the necessary values 
for the next part, which does overlapping determination, 
depth buffering and stencil buffering. The latter block is 
made up from several, similar processing elements (HSR 
Cells), as Figure 3 shows. The function of the adders 
between the two blocks will be discussed later. 
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Figure 3. HSR Unit 

Depending on the specified segment size, and the number 
of HSR Cells, each of them works on one or more segment 
lines. To correctly identify covered pixels and interpolate 
the depth values, the cells require initial values and delta 
values, which are generated by the VPU. 

3.1 Vertex Processing Unit 

Overlapping determination is based on variables generated 
from the explicit equation of the triangles sides: 

x*)yy(y*)xx()y,x(S iij ∆−−∆−=  (1) 
where xi and yi are points on the side, Δx and Δy are the 
differences between the two vertex coordinates forming the 
side. During interpolation, Sj(x,y) is incremented or 
decremented with the delta values as the HSR Cells step 
through the pixels assigned to them. Covering is 

determined using the sign of the three S variables (S0, S1, S2 
represents the three variables for the three sides): 
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All in all, for the three sides the following calculations are 
required: 
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In (Eq. 3) xstrt and ystrt are the coordinates of the starting 
pixel for the HSR Cells (without anti aliasing, the top-left 
pixel of the processed segment). 

Initial depth values and incremental values are generated 
using the following equations: 
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(4) 

The coefficients in (Eq. 4) are computed using the depth 
values defined at the three vertices and the plane equation 
of the triangle. 
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In the hardware realization clipped screen space x, y 
coordinates are 16 bit fixed point values, while vertex 
depth (z) values are 24 bit floating point numbers. For the 
above computations, the VPU uses these formats, but at the 
last step z(xstrt,ystrt), Ez and Fz are converted to 24 bit fixed 
point format, preserving only the fractional part of the 
generated depth values (the transformation of triangles 
from 3D world space to screen space maps depth values to 
[0, 1] range). 

3.1.1 Hardware Architecture 

Because of the architecture of the HSR Cells, the above 
computations can be done in 16 clock cycles without 
limiting performance. Therefore, the trivial dataflow 
implementation is not the best option, as it requires too 
many resources, while it is needlessly fast. 

A programmable solution not only requires fewer 
resources, but it is also more flexible, which – together 



with the HSR Cell architecture – allows flexible anti 
aliasing implementation (more on this later). Figure 4 
shows the architecture of the arithmetic unit. 

 
Figure 4. Vertex Processing Unit 

The inputs of the VPU are the vertices’ x, y and z 
coordinates and the screen coordinates of the top-left pixel 
in the processed segment. 

The whole processing unit consists of two, almost 
separated portions. The upper part on Figure 4 is able to 
compute the required values for covering determination, 
while the lower part is responsible for the depth related 
computations. 

The first units in the overlapping determination part are 
small, dual-ported memories to store the three x and y 
coordinate pairs of the currently processed triangle. The 
two memories fed a 16 bit adder/subtractor which has write 
enable signals at the input registers – its function is to 
compute the delta coordinate values in Eq. 3. The output is 
routed to a multiplier (which also has write enable signals 
at the input registers) to compute the partial products in Eq. 
3 – to increase flexibility, these values are stored in a small 
memory. The final 32 bit adder can calculate the final edge 
variables (S0, S1, S2), which – together with the delta values 
– are the input values for the covering determination part of 
the HSR Cells. 

The depth related part supports mixed formats; in order to 
reduce latency, the subtraction of the screen coordinates are 
done using fixed point arithmetic, but all other calculations 
are performed using the 24 bit floating point format of the 
vertex depth values. Accordingly, the fix point adder which 
generates the coordinate differences is followed by a fixed 
point to floating point converter before connecting to the 
floating point multiplier. The coordinate differences are 
multiplied with the output of the floating point adder (depth 
differences), generating the partial products of Az, Bz and 
Cz. The output of the multiplier is routed to the input 
memories of the adder to be able to compute the Az, Bz, Cz 
results. The Az, Bz results are then multiplied with the 
reciprocal of the Cz value (hence the multiplier can use the 

result of the adder and the reciprocal unit), generating the 
final Ez and Fz values. To generate the initial depth value, 
Ez and Fz are multiplied with the starting x and y 
coordinates, and then these results are added together with 
the z1 vertex depth value. To avoid the operand cancellation 
when adding together these values (that is when two large, 
almost equal values with different sign hide the impact of a 
small third operand, but then cancels each other), the adder 
has three inputs, and it always generates correct results; 
however, the third input is only used when the initial depth 
value is computed, otherwise it is set to zero (the shift 
register at the input allows the appropriate delay to be 
applied to z1 compensate for the latency of the 
computations). 

The whole arithmetic unit can be programmed by 
controlling the read address of the memories; the select 
signals of the multiplexers; the add/subtract control signals 
and the write enable signals of the different units. 
Scheduling analysis shown that the depth computation has 
nearly 48 clock latency (obviously, this depends on the 
program), but it is able to start processing a new triangle 
every 16th clock cycle. Of course, when programmed 
differently, latency and performance may differ, the above 
reported results are valid for an actual program which can 
handle anti aliasing. 

As the different arithmetic units have different latencies 
which are not hidden from the programmer in any way, 
programming the unit is not the easiest task. However, the 
creation of simple compiler (data flow compiler) is 
obviously possible. 

3.2 HSR Cell 

The unit doing the actual hidden surface removal is made 
up from a number of similar cells. Every cell has its own 
buffer (storing depth, stencil and triangle pointer), and 
some segment lines assigned to it; using N cells, every nth 
line is processed by the nth cell (for example, with 8 cells 
and 32*16 resolution segment, the 1st and 9th line is 
processed by the 1st cell, the 2nd and 10th lines are processed 
by the 1st cell, and so on). After processing one of the 
associated lines, the HSR Cells require new input values, as 
they are unable to interpolate in the y direction. 
Irrespectively of the number of overlapped pixels, for every 
triangle every cell processes all of their associated pixels, 
so efficiency decreases if a triangle only overlaps a small 
number of pixels in a segment. However, this makes 
scheduling predictable, and this is why the VPU can have 
16 clock cycles to generate new input data for the cells. 

When the VPU has finished generating the new values for 
the starting pixel, the 1st cell loads these data. At the same 
time the input data is modified for the next cell (stepping 
one line in the y direction), which loads them one clock 
cycle later compared to the 1st cell. This method only 
requires one input at any time, so only one adder per 



variable is needed to interpolate them in the y direction 
(these are the adders on Figure 3). 

A cell itself consists of three distinct units. Covering 
determination identifies if a pixel is inside the processed 
triangle – and allows the write enable signal of the buffers 
to become active. 

3.2.1 Covering Unit 

After loading the initial values of the three Sj variables, a 
HSR Cell decrements this value with Δy (see Eq. 2-3) every 
clock cycle. The decision about overlapping is done using 
Eq. 2. 

3.2.2 Depth Unit 

The Depth Unit reads the depth buffer, compares the read 
value with the interpolated one (using the set comparison 
function) and in case the comparison returns true, allows 
the write back to the depth buffer. The pipelined 
architecture is shown on Figure 5, gray blocks represent 
registers, and white blocks are logic functions. 

 
Figure 5. Depth Unit 

This unit supports all possible comparison functions (Z 
Func – always, never, less, less-or-equal, equal, greater-or-
equal, greater). The Depth Unit has two processing modes: 
opaque and transparent. 

In opaque mode, two pixels are processed per clock cycle, 
the two Z Inc registers stores the same delta value and the 
depth functions are also similar. 

Transparent, multi pass mode can be activated after all 
opaque triangles are processed. In this mode, the unit can 

process one pixel per clock cycle. In every pass, the 
transparent triangle which is farthest from the camera, but 
closer than the already processed triangles is determined 
for every pixel. This is done with two comparisons and 
using two depth buffer location: one location stores the 
depth value of the already processed (shaded) triangle, 
while the other is the working buffer. The former is 
compared with the interpolated depth value using less 
comparison function, while the latter is compared using 
larger. After finishing a pass, the two buffer locations 
changes function. 

3.2.3 Stencil Unit 

To keep up with the Depth Unit, the Stencil Unit also 
supports two stencil tests per system clock using 8 bit 
stencil values. As these two units share the same memory, 
the pipeline latency is also the same. Just as the Covering- 
and Depth Unit, it also generates write enable signal for the 
buffer, using the defined stencil reference value, read mask 
value, write mask value, comparison function and stencil 
operation. The comparison function has the same options 
which were listed for the Depth Unit, while the stencil 
operation can be set for “stencil test fails”, “stencil test 
passes and depth test fails” and “stencil test passes and 
depth test passes” cases. Available operations are: keep 
previous value, set to zero, replace with reference value, 
increment (with or without saturation), decrement (with or 
without saturation) and invert. 

4. Arbitrary Anti Aliasing 

The programmable Vertex Processing Unit together with 
the programmable segment size allows implementing anti 
aliasing (AA) with arbitrary number of samples and 
arbitrary sample positions. 

Without AA, the xstrt and ystrt coordinates in Eq. 3 and Eq. 4 
are set to the screen space coordinates of the top-left 
segment pixel, and the segment size is set to the real (pixel) 
resolution of the segment. The VPU processes a triangle 
once, computing the required delta values and the initial 
values for the top-left segment pixel. The HSR Cells use 
these values to determine covering and generate depth 
values at pixel centers. 

Setting for example two-times AA requires only minor 
programming changes. Let define sampling positions as 
shown on Figure 6. The desired effect can be achieved by 
setting the vertical resolution of the segment to twice of the 
real size, and then modifying only the xstrt and ystrt values. 
First, the VPU computes the same delta values as without 
AA, but generates the start values using (top left pixel x + 
pix_size/4) as xstrt and (top left pixel y – pix_size/4) as ystrt. 
As long as the HSR Cells process the first sample positions, 
the VPU modifies xstrt to (top left pixel x – pix_size/4) and 
ystrt to (top left pixel + pix_size/4). 



pixel center sampling positions
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Figure 6. AA sampling pattern 

Using this method, any number of AA samples can be 
generated within a pixel, as long as the precision of the 
coordinate computation allows it, and there is enough 
buffer memory. For example, a 32*16 resolution segment 
allows 64-times AA to be used. Obviously, depth/stencil 
buffering fill rate decreases linearly as the number of 
samples increases. It must be noted that the presented 
architecture only deals with oversampled covering 
determination and depth testing. To generate AA-ed 
images, the other units (especially the shader unit) have to 
support this arbitrary mode. Actually, the type of AA 
(multisampling – only object edges are filtered; 
supersampling – the whole image is filtered) applied is also 
dependent on those units – the output of the HSR allows 
both methods. 

5. Conclusion 

The article presented some hardware units which can be 
used to create an efficient rasterizer unit. In an FPGA 
implementation using XC2V6000-4 FPGA, all units can 
achieve 100 MHz system clock speed (with parts of the 
HSR Cells operating at double frequency), translating into 
100 million segments/sec for the segmenting units, and up 
to 1.6 GPixels/sec depth/stencil fill rate for an 8 cell HSR 
Unit. 

The two segmenting methods have to be analyzed using 
real-world applications to explore the overall performance 
increase exact segmenting offers. Similarly, to identify the 
potential benefits of the programmable segment size, the 
performance of real applications should be measured under 
different conditions. These measurements then may be used 
to create an algorithm to adaptively alter segment size 
between frames, which is simple enough to be implemented 
in hardware. 
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