
Exact Bucket Sorting for Segmented Screen Rendering
Péter Szántó

Budapest University of Technology and Economics
Dept. Of Measurement and Information Systems

Magyar tudósok krt. 2., H-1117, Hungary
szanto@mit.bme.hu

Béla Fehér
Budapest University of Technology and Economics

Dept. Of Measurement and Information Systems
Magyar tudósok krt. 2., H-1117, Hungary

feher@mit.bme.hu

ABSTRACT

Segmented Screen Rendering (or Bucket Rendering)
technique can considerably improve performance and/or
lower external memory bandwidth requirements by
segmenting the screen into small rectangles, and rendering
these rectangles independently. Since the size of the buffers
for a segment is significantly reduced compared to the full-
screen buffers, it is possible to use on-chip buffers, while at
the same time segments can be processed in parallel. The
drawbacks of this technique are the necessity of the bucket
sorting algorithm which computes the overlapped segments
for every triangle (the basic element of 3D rendering), and
the redundant work caused by triangles overlapping more
than one segment.

This paper presents hardware architecture for exact bucket
sorting, which – in contrast with bounding box bucket
sorting – computes the segments overlapped by a given
triangle exactly, reducing the redundant work in the
following parts of the rendering pipeline.

Keywords
3D graphics architecture, FPGA, system on chip

1. INTRODUCTION

Traditional hardware architectures render the scene triangle
by triangle, which requires random accesses to the working
buffers; hence large, screen-sized buffers are employed. By
segmenting the screen into small rectangles and render
these rectangles independently, the size of the working
buffers can be reduced so they can be fitted into on-chip
memory. Segmented Screen Rendering also allows high
level of parallelism by rendering multiple segments by
multiple rasterization units. The efficiency of the shading
part of the pipeline can also be increased considerably with
deferred shading; deferred shading first compute the visible
triangle for the screen pixels, and then only these visible
pixels are shaded, making this process much more effective
than traditional renderers where pixels not visible on the
final image may be also shaded.

As any other techniques, this method also suffers from
some drawbacks. First, the computation of the overlapped

segments requires additional hardware unit and an
additional external buffer is required to store a list for
every segment containing the triangles overlapping those
segment. Second, relatively large triangles overlap more
than one segment, so later in the pipeline the attributes of
these triangles are read more than once from external
memory which clearly increases bandwidth usage.

Segmented Screen Rendering technique is used in many
software and hardware systems, such as Pixar’s
RenderMan software, SGI Reality, Microsoft Talisman
([3]), PowerVR ([5]), Intel Extreme Graphics, PixelPlanes
and PixelFlow ([4]) and ATI R300 architectures. However,
the bucket sorting algorithm in these architectures is quite
different. The simplest solution, employed by SGI does not
do any bucket sorting, but processes all triangles in all
segments. This method is quite ineffective, since a lot of
unnecessary work is done when dealing with triangles not
having pixels in the processed segment. The Talisman
architecture, earlier PowerVR designs and Intel Extreme
Graphics do bucket sorting in software, using the CPU. As
long as the transformation part of the rendering pipeline is
done on the CPU, this is a viable solution, but nowadays
transformation is done in the graphics unit, so software
bucket sorting requires too much bi-directional bus
transfers to be effective (and moreover, CPUs in typical
embedded systems may not have enough processing power
to do this extra task fast enough). PixelPlanes and
PixelFlow uses bounding box bucket sorting; this means
that the triangle is processed in all segments inside its
bounding box. For small triangles this is effective, but as
triangles gets larger (or more exactly, “narrower”), or the
segment gets smaller efficiency decreases. For example,
Figure 1 shows a triangle where the bounding box method
marks 360 segments as overlapped, while exact bucket
sorting marks only 72 segments.

Figure 1. Bucket Sorting

Selecting the correct segment size is a key point in both
bounding box- and exact bucket sorting architectures ([1]).
However, the optimal size is both resolution and
application dependent. Moreover, in our rendering
architecture, larger segment size decreases the efficiency of
the Hidden Surface Removal (HSR) unit ([7]), as with
larger segment size, the ratio of covered/non-covered
pixels within the segment decreases. While earlier papers
discussed several algorithms ([2]), hardware
implementations are typically limited to the bounding box
method.

2. ALGORITHM OVERVIEW

Overlapping determination is based on a variable generated
from the explicit equations of the triangle sides (Eq. 1.):

x*)yy(y*)xx()y,x(A ii ∆∆ −−−= (1)
This variable is zero on the side, negative in one of the half
planes and positive on the other half plane defined by the
side. The exact sign on the two half planes depends on how
the delta values in Eq. 1 are computed.
In our algorithm vertices are sorted by their Y coordinates
and named accordingly, as Figure 2 shows.

Vertex A

Vertex B

Vertex C

X

Y

+
-+

+

-

-

Side0
Side1

Side2

Figure 2. Covering determination

Triangle side numbers are also based on the vertices. Side0
is defined by Vertex A and B, Side1 is defined by Vertex A
and C and Side2 is defined by Vertex B and C. The figure
also shows the sign of the mentioned variable (A) when
delta values are computed by subtracting values at the
vertex with greater Y coordinate from values at vertex with
lesser Y coordinate; for Side0 this means:

BA

BA

yyy
xxx

−=
−=

∆
∆

 (2)

A point is inside the triangle if

))y,x(A(signXOR))y,x(A((sign
AND)))y,x(A(signXOR))y,x(A(sign(

21

10 (3)

is true, where sign(Ak(x,y)) is the sign bit of the A
coefficient of side k at X,Y screen coordinates (1 when the
variable is negative, 0 otherwise). It can be easily seen that
the coefficient must be incremented by Δy when stepping
one pixel to the positive X direction, and decremented by
Δx when stepping in the Y direction.

2.1 Segmentation algorithm

Processing a new triangle starts in the segment containing
the top triangle vertex: Vertex A. After finishing this
segment row, the algorithm steps down to the next row,
and processes overlapped segments within that row. When
finished, it steps down again. Processing a triangle is
completed, when the row which contains Vertex C is
ended. Processing a new row does not start in the leftmost
or rightmost segment overlapped by the triangle, thus there
may be overlapped segments in both horizontal directions.
Generally, five possible steps may be done in a segment
(coordinate pairs – X, Y – in brackets show an example
segment on Figure 3):

• Step right (positive X direction), eg. (4, 3)
• Step left (negative X direction), eg. (6, 5)
• Jump to the segment which is one segment left

from the starting position (7, 3)
• Step one segment row, using the A values of the

current segment, eg. (8, 4)
• Step one segment row, using the A values of a

previous segment, eg. (4, 5)

Figure 3. Stepping through a triangle

Step left and step right are self-explanatory, the algorithm
steps in the current segment row. This horizontal stepping
process starts with right stepping. After the right step
procedure is finished, the algorithm jumps to the position
which is one segment left from the starting segment, and
starts left stepping. When both horizontal directions are
completed, the algorithm steps down into the next segment
row.
Depending on the last processed segment in the row, two
cases are possible: if the segment below the current one
overlaps with the triangle the algorithm steps into that
segment. If this is not the case, the algorithm uses the data
of a previous segment – the last processed segment which
has the underneath segment overlapped with the triangle –
for the row stepping.

2.1.1 Stepping right or left

This section describes the horizontal stepping actions. Only
right stepping is discussed here, left stepping is essentially

the same, but uses different segment side for the
intersection tests. From now on, SVertex TL/TR/BL/BR
refers to the top-left/top-right/bottom-left/bottom-right
vertex of a segment.
In trivial cases, the necessity of a right step can be
determined by inspecting the two right vertices (SVertex TR
and SVertex BR) of the segment. If any of them is covered
by the triangle, a step is certainly required (Case0).
Unfortunately, this is not enough in all situations. To
handle other cases, intersection values are generated. A
triangle side intersects with a segment side, if the sign of
the appropriate A value is different at the two segment
vertices defining the segment side. Figure 4a. shows an
example situation, when intersection values are necessary
to correctly identify overlapping segments.

Vertex A

Vertex B

Vertex C

Side0 Side1

Side2

Ver tex A

Ver tex B

Ver tex C

Side0

Side1

Side2

Figure 4. a. Side1 and Side2 Intersection; b. Step down

In the segment marked with dark gray a right step should
be performed, because the right side of the segment has
intersections with Side1 and Side2. However, note that
these intersections are also present at the light gray
segment, where right stepping should be stopped, as Vertex
C is reached.
There are similar cases for Side0/Side1/Vertex B and
Side0/Side2/Vertex B triplets.

2.1.2 Jump in segment row

When processing a new segment row does not start in the
leftmost segment a jump will be required after the step
right process. The necessity of jump is determined by
inspecting the need of right step and left step at the starting
segment of the row; the A values at the left segment
vertices (SVertex TL and SVertex BL) are saved (AkSTRTL
and AkSTRBL in Table 1).
Jump takes the algorithm to the segment left from the
starting segment (see Figure 3). The A values for SVertex
TR and SVertex BR are the previously saved values, for
SVertex TL and SVertex BL these have to be decremented
by the delta values. If processing the current row is finished
and the row containing Vertex C has not been reached, the
algorithm steps down one row.

2.1.3 Row step

To ensure that row step takes the algorithm into a segment
which is certainly overlapped by the triangle, the step does

not occur in the last processed segment in the given row.
Instead, a good place for the row step is calculated
continuously; a segment is an acceptable step down
position if the segment beneath it contains the triangle –
which means (see Figure 3 and Figure 4b for easier
understanding):

• Any of the segment’s lower vertices are inside the
triangle

• Side0 and Side1 have intersection points on the
bottom side of the segment, and the segment row
containing Vertex B has not been processed yet

• Side1 and Side2 have intersection points on the
bottom side of the segment, and the segment row
containing Vertex B has already been processed, and
Vertex C is not in the currently processed segment
row

If a currently processed segment is marked as an acceptable
place for row step, its X and Y coordinates along with the A
values of its bottom vertices (SVertex BR and SVertex BL)
are stored (AkSTLBL and AkSTLBR in Table 1).
If the current position is a good step down point, the new A
values should be computed from the values of the current
segment; A values of SVertex TL are replaced with values
at SVertex BL, while A values at SVertex TR are replaced
with values at SVertex BR. New values for the bottom
vertices are computed by decrementing the previous values
with the appropriate delta values. If the current segment is
not a good step down position, the values of the last good
step down position should be used for the above
computation.

3. HW OVERVIEW

The presented unit is part of a 3D rendering architecture,
primarily targeted for embedded SO(P)C systems. Figure 5
shows the simplified block diagram of our system, the
segmenting unit marked with gray.

Perifériák

CPU

Memory Controller

Shader
(VLIW FPU)

Transform HSR

3D Unit

On-chip Bus

Direct
Connection

PerifériákPerifériákPeripherals

On-chip
Buffers

Input
Pipeline

Index
Generator

Address
Generator

Figure 5. SO(P)C system with 3D rendering capability

As our development platform is a Xilinx XC2V6000-4
FPGA, the selected microcontroller is a Xilinx Microblaze.

The 3D Unit is connected to the processor through the
standard OPB on-chip bus, while the Shader Unit will have
a direct, fast connection (FSL), to act as a more general co-
processor (the Shader is under development).
The Segmenting Unit uses the X and Y coordinates of the
transformed and clipped vertices to determine the
overlapped segments for every triangle. It consists of three
main parts. The Input Pipeline calculates the required
initial and incremental (Δx, Δy) values for the Segment
Generator, which does the actual overlapped segment
computation. The Address Generator handles
communication with the external memory controller and
generates an appropriate data format to be written to the
memory.
Table 1 summarizes the required A value operations in
different step cases. AkTL, AkTR, AkBL and AkBR represent
the arrays of the three A variables at the different segment
vertices; for example AkTL array contains the three A
variables of the three triangle sides at the top-left segment
vertex (SVertex TL). With the same logic, the dkX and dkY
arrays contain the three Δx and Δy values (see Eq. 1) for the
three triangle sides.

Table 1. Micro operations

 AkTL AkTR AkBR AkBL
Load AkTL_In AkTR_In AkTR_In

– dkX_In
AkTL_In
– dkX_In

Right AkTR AkTR +
dkY

AkBR +
dkY

AkBR

Left AkTL –
dkY

AkTL AkBL AkBL –
dkY

Jump AkSTRTL
– dkY

AkSTRTL AkSTRBL AkSTRBL
– dkY

Row +
GP

AkBL AkBR AkBR –
dkX

AkBL –
dkX

Row AkSTLBL AkSTLBR AkSTLBR
– dkX

AkSTLBL
– dkX

Load is the starting phase, when the Segment Generator
loads the input values generated by the Input Pipeline – the
three A values for SVertex TL and SVertex TR. The values
for the other two segment vertices are computed in the
Segment Generator.
Right, left and jump represent the appropriate horizontal
stepping cases, AkSTRTL and AkSTRBL are the arrays of A
values at SVertex TL and SVertex BL at the starting
segment (left segment vertices).
Row+GP is the case when the actually processed segment
is a good step down point, while Row is the case when it is
not. In the previous case, the A values of the current
segment should be used for the row stepping, while in the
latter case the A values at SVertex BL and SVertex BR of
the last good step down point are used – namely AkSTLBL
and AkSTLBR.

3.1 Input Pipeline

The Input Pipeline reads transformed vertex coordinates,
computes the required input values for the Segmenting
Generator and handles synchronization and load balancing
with previous units via a FIFO. Architecturally, it consists
of two pipelines. The first, short pipeline reads the FIFO
and generates valid triangles with vertices sorted according
to their Y coordinates. The second, longer pipeline
computes the required values for the Segment Generator:
incremental values (Δx, Δy) for the three triangle sides and
the A values of the three sides at SVertex TL and SVertex
TR. The pipeline stages do the following work:

• Sort triangle vertices by their Y coordinates
• For each triangle vertices, compute the segments

which contain the given vertex
• Compute screen coordinates of SVertex TL
• Compute delta values in Eq. 1 from SVertex TL
• Compute products in Eq. 1
• Compute A variable for SVertex TL
• Compute A variable for SVertex TR

To limit resource usage, the Input Pipeline computes all
required values for a new triangle in three clock cycles.
This limits performance of the Segmenting Unit when
triangles are very small compared to the segment size and
only overlap pixels in one or two segments, however with
programmable segment size and real objects this should not
happen too frequently.

3.2 Segment Generator

Figure 6 shows the high level block diagram of the
Segment Generator. Gray boxes represent registers, white
ones are combinatorial logics.
SX and SY contain the processed segment’s X and Y
coordinates. When a new triangle is loaded these registers
are updated with the X and Y coordinates of the segment
containing Vertex A (VA_Segment_X and VA_Segment_Y
on Figure 6). The coordinates of the segments containing
Vertex B and Vertex C are also saved into VB_Seg and
VC_Seg registers. The ADDSUB blocks right to the SX, SY
registers consist of a large number of adders and
subtractors to generate all possible coordinates for the
different steps, while the MUX units select the appropriate
values to write back into SX and SY using the output of the
SEL LOGIC block (which generates the step to be done).
Generating all possible results and multiplexing them
requires more logic resources than multiplexing the inputs
of the adders, but our target clock frequency required this
method. The COMPMUX blocks compare the segments of
Vertex B and Vertex C with all possible segments that are
possible in the next cycle, and selects the appropriate using
the output of the SEL LOGIC. This value is written into a
register and used by SEL LOGIC.

The upper part of the figure is responsible for modifying
the A values according to Table 1. The Ak_REG block is
the array of the 12 A values: for all three triangle sides at
all four segment vertices. The ADDSUB unit
increments/decrements the contents of the A registers with
the delta values (as with SX and SY, all possible results are
generated for the fastest possible clock speed), while the
MUX right to it selects the correct input according to the
step being done (output of SEL_LOGIC). SEL_LOGIC
generates the step to be done, using the “inside the
triangle” signals (generated by IN_TR) of the segment
vertices, the intersection values (generated by INTERS),
and the contents of the VB_InRow, VB_InCol, VC_InRow,
VC_InCol registers. These registers contain a flag which is
set if the current segment row and column contains Vertex
B or Vertex C.

Figure 6 Segment Generator architecture

Figure 7 shows the more detailed schematic of the control
logic (the generation of the step signal). The registers at the
left side contains the array of A values for each segment
vertex. The control logic uses only the MSB of these values
(sign bit). The “INSIDE SVTL ... SVBL” blocks are
XOR/AND networks, which generate “inside the triangle”
signals for the four segment vertices according to Eq. 3.
The blocks beneath (INTERS RIGHT/BOTT/LEFT)
generate the necessary “intersection” signals for the left,
bottom and right sides of the segment according to the
cases in 2.1.1. The LEFT_LOGIC and RIGHT_LOGIC
generate a left and right step required signal using the
intersection control signals, the “inside the triangle” signals
and the VB_InCol and VC_InCol signals. The STEP_SEL
block is a priority encoder which selects the appropriate
step from the mentioned signals and the synchronization
signals. LOAD is active for one cycle when new triangle is

read, BUSY is set by LOAD, and reset when processing the
current triangle is finished.

AkTL
REG

AkTR
REG

AkBR
REG

AkBL
REG

INTERS
BOTT

INTERS
RIGHT

INTERS
LEFT

UPDATE
STL

RIGHT
LOGIC

LEFT
LOGIC

INPUT_VALID

INSIDE
SVTL

INSIDE
SVTR

INSIDE
SVBR

INSIDE
SVBL

VB_InCol
VC_InCol

VB_InRow
VC_InRow

STEP
LOGIC

NEW
ROW

JUMP
REG

STEP
SEL

LOAD
LOGIC

BUSY

STEP

BUSY

Figure 7. Control Logic

3.3 Address generator

The address generator accepts the output of the Segment
Generator as an input (triangle pointer and segment
coordinates), and generates an appropriate external
memory address for the triangle number (pointer) to write
to. Pointers for a given segment are stored in 32-word
blocks in the external memory. The first 31 element of
these blocks are triangle pointers, while the 32nd is a
pointer to the next 32-word block. This organization allows
the HSR Unit to read the pointers in bursts, and does not
waste too much memory (depending on the average
number of triangles falling into a segment). Figure 8 shows
the schematic of the unit.
The Address Memory stores one word for every segment:
the memory address where to write the next triangle
pointer. The SEGMENT_NUM block generates the read
address for this memory from the SX and SY coordinates of
the segment. This address is stored in a register for later
use. The five least significant bits of the output of the
memory is compared with COMP_VALUE (which equals
to 31) to determine if the write address is the last element
in a 32-word block – so new block should be reserved. The
result of the comparison is stored in a register, just as the
output of the Address Memory.
When no new block is required, the output of the Address
Memory becomes the address for external memory write
(EXT_WR_ADDR), and one new value can be written at
every clock cycle. The word assigned to the given segment
in Address Memory is updated with the incremented value
of the write address.
Reserving a new 32-word block requires two external
memory writes: the pointer to the new block (stored in

NEXT_BLOCK register) should be written to the last
element of the current block, while the triangle pointer
should be written to the first element of the new block. In
order not to exceed one memory write per clock, the
Address Generator disables the Segment Generator for one
clock cycle in such cases (this is also needed when the
memory is busy with other tasks). In the first clock cycle,
the triangle pointer is written into the first element of the
new block. In the second clock cycle, the pointer to the
new block is written into element 32 of the current block,
using the content of the AMEM_OUT register. The
appropriate word of the Address Memory is updated with
the incremented pointer of the new block, while the
NEXT_BLOCK register is incremented by 32.

Figure 8. Address Generator

When processing a new frame starts, the memory
containing the write addresses should be set to the
initialization value, which is segment number multiplied
with 32. This is done by rendering two triangles which act
as a full-screen background.

4. CONCLUSION

The Segmenting Unit can generate a new valid segment
coordinate at every clock cycle, and the structure of the
Pointer Buffer allows fast, burst reads in the HSR Unit.
Preliminary clock speed requirements were defined by two
factors. Our development platform has embedded
multipliers, which can achieve about 100 MHz. The
selected central microprocessor (MicroBlaze) also works at
this frequency, so 100 MHz was selected as a target for our
modules to achieve after place and route. The presented
architecture is able to fulfill this, using Synplicity Amplify
synthesizer.

4.1 Theoretical performance numbers

With the achieved clock speed some general statements can
be made about worst case and best case performance of the
architecture.
The worst case is when every triangle is relatively large,
and segment size is set to minimum (32*16 pixels). For
example, with an average 100 segments/triangle, and
640x480 resolution, one triangle takes 100 clock cycles to
process, so performance is 1000000 triangles/second. The

best case is when all triangles cover pixels in only three
segments (below this, the Input Pipeline is the limiting
factor). In this case the unit can process one triangle every
clock cycle, so peak performance is 33 million triangles/
second.
With 30 frames/second rendering speed, the worst case
situation allows 33000 triangles/frame, while the best case
is 1.1 million triangles/frame. The first number is not that
much; however it is still enough for simpler scenes. The
second number is far higher – real-time applications do not
use such a large number of triangles today, and it is not
likely to be reached in the near future.
Real applications are somewhere between the two
presented situations, typically somewhat closer to the best
case.

4.2 Logic utilization

The following table summarizes the required logic
resources for the presented functional blocks in our target
architecture. FF shows the required number of flip-flops,
LUT is the number of 4-input look up tables, MUL is the
number of embedded multiplier blocks, while BRAM is the
number of the required BlockRAM blocks.

Table 2. Logic utilization

 FF LUT MUL BRAM
Input Pipe. 1100 1200 4 -
Segment Gen. 900 2800 - -
Address Gen. 250 250 1 2

5. REFERENCES
[1] Michael Cox, Narendra Bhandari, Architectural Implications

of Hardware-Accelerated Bucket Rendering On the PC,
Siggraph/Eurographics Workshop On Graphics Hardware,
1997

[2] I. Antochi, B.H.H. Juurlink, S. Vassiliadis, P. Liuha, Scene
Management Models and Overlap Tests for Tile-Based
Rendering, EUROMICRO Symposium on Digital System
Design, 2004

[3] Jay Torborg, James T. Kajiya, Talisman: Commodity
Realtime 3D Graphics for the PC, ACM Computer Graphics
Proceedings, 1996

[4] Eyles, John, Steven Molnar, John Poulton, Trey Greer,
Anselmo Lastra, and Nick England, PixelFlow: The
Realization, Proceedings of the Siggraph/Eurographics
Workshop on Graphics Hardware, 1997

[5] Imagination Technologies Ltd, PowerVR SDK,
www.pvrdev.com

[6] ATI Technologies, Radeon X800 Architeture White Paper,
http://www.ati.com/products/radeonx800/RADEONX800Ar
chitectureWhitePaper.pdf

[7] Péter Szántó, Béla Fehér, High Performance Visibility
Testing with Screen Segmentation, ESTIMedia 2004

