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ABSTRACT 
 
Segmented Screen Rendering (or Bucket Rendering) 
technique can considerably improve performance and/or 
lower external memory bandwidth requirements by 
segmenting the screen into small rectangles, and rendering 
these rectangles independently. Since the size of the buffers 
for a segment is significantly reduced compared to the full-
screen buffers, it is possible to use on-chip buffers, while at 
the same time segments can be processed in parallel. The 
drawbacks of this technique are the necessity of the bucket 
sorting algorithm which computes the overlapped segments 
for every triangle (the basic element of 3D rendering), and 
the redundant work caused by triangles overlapping more 
than one segment. 

This paper presents hardware architecture for exact bucket 
sorting, which – in contrast with bounding box bucket 
sorting – computes the segments overlapped by a given 
triangle exactly, reducing the redundant work in the 
following parts of the rendering pipeline. 
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1. INTRODUCTION 

Traditional hardware architectures render the scene triangle 
by triangle, which requires random accesses to the working 
buffers; hence large, screen-sized buffers are employed. By 
segmenting the screen into small rectangles and render 
these rectangles independently, the size of the working 
buffers can be reduced so they can be fitted into on-chip 
memory. Segmented Screen Rendering also allows high 
level of parallelism by rendering multiple segments by 
multiple rasterization units. The efficiency of the shading 
part of the pipeline can also be increased considerably with 
deferred shading; deferred shading first compute the visible 
triangle for the screen pixels, and then only these visible 
pixels are shaded, making this process much more effective 
than traditional renderers where pixels not visible on the 
final image may be also shaded. 

As any other techniques, this method also suffers from 
some drawbacks. First, the computation of the overlapped 

segments requires additional hardware unit and an 
additional external buffer is required to store a list for 
every segment containing the triangles overlapping those 
segment. Second, relatively large triangles overlap more 
than one segment, so later in the pipeline the attributes of 
these triangles are read more than once from external 
memory which clearly increases bandwidth usage. 

Segmented Screen Rendering technique is used in many 
software and hardware systems, such as Pixar’s 
RenderMan software, SGI Reality, Microsoft Talisman 
([3]), PowerVR ([5]), Intel Extreme Graphics, PixelPlanes 
and PixelFlow ([4]) and ATI R300 architectures. However, 
the bucket sorting algorithm in these architectures is quite 
different. The simplest solution, employed by SGI does not 
do any bucket sorting, but processes all triangles in all 
segments. This method is quite ineffective, since a lot of 
unnecessary work is done when dealing with triangles not 
having pixels in the processed segment. The Talisman 
architecture, earlier PowerVR designs and Intel Extreme 
Graphics do bucket sorting in software, using the CPU. As 
long as the transformation part of the rendering pipeline is 
done on the CPU, this is a viable solution, but nowadays 
transformation is done in the graphics unit, so software 
bucket sorting requires too much bi-directional bus 
transfers to be effective (and moreover, CPUs in typical 
embedded systems may not have enough processing power 
to do this extra task fast enough). PixelPlanes and 
PixelFlow uses bounding box bucket sorting; this means 
that the triangle is processed in all segments inside its 
bounding box. For small triangles this is effective, but as 
triangles gets larger (or more exactly, “narrower”), or the 
segment gets smaller efficiency decreases. For example, 
Figure 1 shows a triangle where the bounding box method 
marks 360 segments as overlapped, while exact bucket 
sorting marks only 72 segments. 

 
Figure 1. Bucket Sorting 



Selecting the correct segment size is a key point in both 
bounding box- and exact bucket sorting architectures ([1]). 
However, the optimal size is both resolution and 
application dependent. Moreover, in our rendering 
architecture, larger segment size decreases the efficiency of 
the Hidden Surface Removal (HSR) unit ([7]), as with 
larger segment size, the ratio of covered/non-covered 
pixels within the segment decreases. While earlier papers 
discussed several algorithms ([2]), hardware 
implementations are typically limited to the bounding box 
method. 

2. ALGORITHM OVERVIEW 

Overlapping determination is based on a variable generated 
from the explicit equations of the triangle sides (Eq. 1.): 

x*)yy(y*)xx()y,x(A ii ∆∆ −−−=  (1) 
This variable is zero on the side, negative in one of the half 
planes and positive on the other half plane defined by the 
side. The exact sign on the two half planes depends on how 
the delta values in Eq. 1 are computed. 
In our algorithm vertices are sorted by their Y coordinates 
and named accordingly, as Figure 2 shows. 
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Figure 2. Covering determination 

Triangle side numbers are also based on the vertices. Side0 
is defined by Vertex A and B, Side1 is defined by Vertex A 
and C and Side2 is defined by Vertex B and C. The figure 
also shows the sign of the mentioned variable (A) when 
delta values are computed by subtracting values at the 
vertex with greater Y coordinate from values at vertex with 
lesser Y coordinate; for Side0 this means: 
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A point is inside the triangle if 
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is true, where sign(Ak(x,y)) is the sign bit of the A 
coefficient of side k at X,Y screen coordinates (1 when the 
variable is negative, 0 otherwise). It can be easily seen that 
the coefficient must be incremented by Δy when stepping 
one pixel to the positive X direction, and decremented by 
Δx when stepping in the Y direction. 

2.1 Segmentation algorithm 

Processing a new triangle starts in the segment containing 
the top triangle vertex: Vertex A. After finishing this 
segment row, the algorithm steps down to the next row, 
and processes overlapped segments within that row. When 
finished, it steps down again. Processing a triangle is 
completed, when the row which contains Vertex C is 
ended. Processing a new row does not start in the leftmost 
or rightmost segment overlapped by the triangle, thus there 
may be overlapped segments in both horizontal directions.  
Generally, five possible steps may be done in a segment 
(coordinate pairs – X, Y – in brackets show an example 
segment on Figure 3): 

• Step right (positive X direction), eg. (4, 3) 
• Step left (negative X direction), eg. (6, 5) 
• Jump to the segment which is one segment left 

from the starting position  (7, 3) 
• Step one segment row, using the A values of the 

current segment, eg. (8, 4) 
• Step one segment row, using the A values of a 

previous segment, eg. (4, 5) 

 
Figure 3. Stepping through a triangle 

Step left and step right are self-explanatory, the algorithm 
steps in the current segment row. This horizontal stepping 
process starts with right stepping. After the right step 
procedure is finished, the algorithm jumps to the position 
which is one segment left from the starting segment, and 
starts left stepping. When both horizontal directions are 
completed, the algorithm steps down into the next segment 
row.  
Depending on the last processed segment in the row, two 
cases are possible: if the segment below the current one 
overlaps with the triangle the algorithm steps into that 
segment. If this is not the case, the algorithm uses the data 
of a previous segment – the last processed segment which 
has the underneath segment overlapped with the triangle – 
for the row stepping.  

2.1.1 Stepping right or left 

This section describes the horizontal stepping actions. Only 
right stepping is discussed here, left stepping is essentially 



the same, but uses different segment side for the 
intersection tests. From now on, SVertex TL/TR/BL/BR 
refers to the top-left/top-right/bottom-left/bottom-right 
vertex of a segment. 
In trivial cases, the necessity of a right step can be 
determined by inspecting the two right vertices (SVertex TR 
and SVertex BR) of the segment. If any of them is covered 
by the triangle, a step is certainly required (Case0). 
Unfortunately, this is not enough in all situations. To 
handle other cases, intersection values are generated. A 
triangle side intersects with a segment side, if the sign of 
the appropriate A value is different at the two segment 
vertices defining the segment side. Figure 4a.  shows an 
example situation, when intersection values are necessary 
to correctly identify overlapping segments.  
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Figure 4. a. Side1 and Side2 Intersection; b. Step down 

In the segment marked with dark gray a right step should 
be performed, because the right side of the segment has 
intersections with Side1 and Side2. However, note that 
these intersections are also present at the light gray 
segment, where right stepping should be stopped, as Vertex 
C is reached. 
There are similar cases for Side0/Side1/Vertex B and 
Side0/Side2/Vertex B triplets. 

2.1.2 Jump in segment row 

When processing a new segment row does not start in the 
leftmost segment a jump will be required after the step 
right process. The necessity of jump is determined by 
inspecting the need of right step and left step at the starting 
segment of the row; the A values at the left segment 
vertices (SVertex TL and SVertex BL) are saved (AkSTRTL 
and AkSTRBL in Table 1). 
Jump takes the algorithm to the segment left from the 
starting segment (see Figure 3). The A values for SVertex 
TR and SVertex BR are the previously saved values, for 
SVertex TL and SVertex BL these have to be decremented 
by the delta values. If processing the current row is finished 
and the row containing Vertex C has not been reached, the 
algorithm steps down one row. 

2.1.3 Row step  

To ensure that row step takes the algorithm into a segment 
which is certainly overlapped by the triangle, the step does 

not occur in the last processed segment in the given row. 
Instead, a good place for the row step is calculated 
continuously; a segment is an acceptable step down 
position if the segment beneath it contains the triangle – 
which means (see Figure 3 and Figure 4b for easier 
understanding): 

• Any of the segment’s lower vertices are inside the 
triangle 

• Side0 and Side1 have intersection points on the 
bottom side of the segment, and the segment row 
containing Vertex B has not been processed yet 

• Side1 and Side2 have intersection points on the 
bottom side of the segment, and the segment row 
containing Vertex B has already been processed, and 
Vertex C is not in the currently processed segment 
row 

If a currently processed segment is marked as an acceptable 
place for row step, its X and Y coordinates along with the A 
values of its bottom vertices (SVertex BR and SVertex BL) 
are stored (AkSTLBL and AkSTLBR in Table 1). 
If the current position is a good step down point, the new A 
values should be computed from the values of the current 
segment; A values of SVertex TL are replaced with values 
at SVertex BL, while A values at SVertex TR are replaced 
with values at SVertex BR. New values for the bottom 
vertices are computed by decrementing the previous values 
with the appropriate delta values. If the current segment is 
not a good step down position, the values of the last good 
step down position should be used for the above 
computation. 

3. HW OVERVIEW 

The presented unit is part of a 3D rendering architecture, 
primarily targeted for embedded SO(P)C systems. Figure 5 
shows the simplified block diagram of our system, the 
segmenting unit marked with gray. 

Perifériák

CPU

Memory Controller

Shader
(VLIW FPU)

Transform HSR

3D Unit

On-chip Bus

Direct 
Connection

PerifériákPerifériákPeripherals

On-chip
Buffers

Input
Pipeline

Index
Generator

Address
Generator

 
Figure 5. SO(P)C system with 3D rendering capability 

As our development platform is a Xilinx XC2V6000-4 
FPGA, the selected microcontroller is a Xilinx Microblaze. 



The 3D Unit is connected to the processor through the 
standard OPB on-chip bus, while the Shader Unit will have 
a direct, fast connection (FSL), to act as a more general co-
processor (the Shader is under development). 
The Segmenting Unit uses the X and Y coordinates of the 
transformed and clipped vertices to determine the 
overlapped segments for every triangle. It consists of three 
main parts. The Input Pipeline calculates the required 
initial and incremental (Δx, Δy) values for the Segment 
Generator, which does the actual overlapped segment 
computation. The Address Generator handles 
communication with the external memory controller and 
generates an appropriate data format to be written to the 
memory. 
Table 1 summarizes the required A value operations in 
different step cases. AkTL, AkTR, AkBL and AkBR represent 
the arrays of the three A variables at the different segment 
vertices; for example AkTL array contains the three A 
variables of the three triangle sides at the top-left segment 
vertex (SVertex TL). With the same logic, the dkX and dkY 
arrays contain the three Δx and Δy values (see Eq. 1) for the 
three triangle sides. 

Table 1. Micro operations 

 AkTL AkTR AkBR AkBL 
Load AkTL_In AkTR_In AkTR_In 

– dkX_In 
AkTL_In 
– dkX_In 

Right AkTR AkTR + 
dkY 

AkBR + 
dkY 

AkBR 

Left AkTL – 
dkY 

AkTL AkBL AkBL – 
dkY 

Jump AkSTRTL 
– dkY 

AkSTRTL AkSTRBL AkSTRBL 
– dkY 

Row + 
GP 

AkBL AkBR AkBR – 
dkX 

AkBL – 
dkX 

Row AkSTLBL AkSTLBR AkSTLBR 
– dkX 

AkSTLBL 
– dkX 

 
Load is the starting phase, when the Segment Generator 
loads the input values generated by the Input Pipeline – the 
three A values for SVertex TL and SVertex TR. The values 
for the other two segment vertices are computed in the 
Segment Generator. 
Right, left and jump represent the appropriate horizontal 
stepping cases, AkSTRTL and AkSTRBL are the arrays of A 
values at SVertex TL and SVertex BL at the starting 
segment (left segment vertices). 
Row+GP is the case when the actually processed segment 
is a good step down point, while Row is the case when it is 
not. In the previous case, the A values of the current 
segment should be used for the row stepping, while in the 
latter case the A values at SVertex BL and SVertex BR of 
the last good step down point are used – namely AkSTLBL 
and AkSTLBR. 

3.1 Input Pipeline 

The Input Pipeline reads transformed vertex coordinates, 
computes the required input values for the Segmenting 
Generator and handles synchronization and load balancing 
with previous units via a FIFO. Architecturally, it consists 
of two pipelines. The first, short pipeline reads the FIFO 
and generates valid triangles with vertices sorted according 
to their Y coordinates. The second, longer pipeline 
computes the required values for the Segment Generator: 
incremental values (Δx, Δy) for the three triangle sides and 
the A values of the three sides at SVertex TL and SVertex 
TR. The pipeline stages do the following work: 

• Sort triangle vertices by their Y coordinates 
• For each triangle vertices, compute the segments 

which contain the given vertex 
• Compute screen coordinates of SVertex TL 
• Compute delta values in Eq. 1 from SVertex TL 
• Compute products in Eq. 1 
• Compute A variable for SVertex TL 
• Compute A variable for SVertex TR 

To limit resource usage, the Input Pipeline computes all 
required values for a new triangle in three clock cycles. 
This limits performance of the Segmenting Unit when 
triangles are very small compared to the segment size and 
only overlap pixels in one or two segments, however with 
programmable segment size and real objects this should not 
happen too frequently. 

3.2 Segment Generator 

Figure 6 shows the high level block diagram of the 
Segment Generator. Gray boxes represent registers, white 
ones are combinatorial logics. 
SX and SY contain the processed segment’s X and Y 
coordinates. When a new triangle is loaded these registers 
are updated with the X and Y coordinates of the segment 
containing Vertex A (VA_Segment_X and VA_Segment_Y 
on Figure 6). The coordinates of the segments containing 
Vertex B and Vertex C are also saved into VB_Seg and 
VC_Seg registers. The ADDSUB blocks right to the SX, SY 
registers consist of a large number of adders and 
subtractors to generate all possible coordinates for the 
different steps, while the MUX units select the appropriate 
values to write back into SX and SY using the output of the 
SEL LOGIC block (which generates the step to be done). 
Generating all possible results and multiplexing them 
requires more logic resources than multiplexing the inputs 
of the adders, but our target clock frequency required this 
method. The COMPMUX blocks compare the segments of 
Vertex B and Vertex C with all possible segments that are 
possible in the next cycle, and selects the appropriate using 
the output of the SEL LOGIC. This value is written into a 
register and used by SEL LOGIC. 



The upper part of the figure is responsible for modifying 
the A values according to Table 1. The Ak_REG block is 
the array of the 12 A values: for all three triangle sides at 
all four segment vertices. The ADDSUB unit 
increments/decrements the contents of the A registers with 
the delta values (as with SX and SY, all possible results are 
generated for the fastest possible clock speed), while the 
MUX right to it selects the correct input according to the 
step being done (output of SEL_LOGIC). SEL_LOGIC 
generates the step to be done, using the “inside the 
triangle” signals (generated by IN_TR) of the segment 
vertices, the intersection values (generated by INTERS), 
and the contents of the VB_InRow, VB_InCol, VC_InRow, 
VC_InCol registers. These registers contain a flag which is 
set if the current segment row and column contains Vertex 
B or Vertex C. 

 
Figure 6 Segment Generator architecture 

Figure 7 shows the more detailed schematic of the control 
logic (the generation of the step signal). The registers at the 
left side contains the array of A values for each segment 
vertex. The control logic uses only the MSB of these values 
(sign bit). The “INSIDE SVTL ... SVBL” blocks are 
XOR/AND networks, which generate “inside the triangle” 
signals for the four segment vertices according to Eq. 3.  
The blocks beneath (INTERS RIGHT/BOTT/LEFT) 
generate the necessary “intersection” signals for the left, 
bottom and right sides of the segment according to the 
cases in 2.1.1. The LEFT_LOGIC and RIGHT_LOGIC 
generate a left and right step required signal using the 
intersection control signals, the “inside the triangle” signals 
and the VB_InCol and VC_InCol signals. The STEP_SEL 
block is a priority encoder which selects the appropriate 
step from the mentioned signals and the synchronization 
signals. LOAD is active for one cycle when new triangle is 

read, BUSY is set by LOAD, and reset when processing the 
current triangle is finished. 
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Figure 7. Control Logic 

3.3 Address generator 

The address generator accepts the output of the Segment 
Generator as an input (triangle pointer and segment 
coordinates), and generates an appropriate external 
memory address for the triangle number (pointer) to write 
to. Pointers for a given segment are stored in 32-word 
blocks in the external memory. The first 31 element of 
these blocks are triangle pointers, while the 32nd is a 
pointer to the next 32-word block. This organization allows 
the HSR Unit to read the pointers in bursts, and does not 
waste too much memory (depending on the average 
number of triangles falling into a segment). Figure 8 shows 
the schematic of the unit. 
The Address Memory stores one word for every segment: 
the memory address where to write the next triangle 
pointer. The SEGMENT_NUM block generates the read 
address for this memory from the SX and SY coordinates of 
the segment. This address is stored in a register for later 
use. The five least significant bits of the output of the 
memory is compared with COMP_VALUE (which equals 
to 31) to determine if the write address is the last element 
in a 32-word block – so new block should be reserved. The 
result of the comparison is stored in a register, just as the 
output of the Address Memory. 
When no new block is required, the output of the Address 
Memory becomes the address for external memory write 
(EXT_WR_ADDR), and one new value can be written at 
every clock cycle. The word assigned to the given segment 
in Address Memory is updated with the incremented value 
of the write address. 
Reserving a new 32-word block requires two external 
memory writes: the pointer to the new block (stored in 



NEXT_BLOCK register) should be written to the last 
element of the current block, while the triangle pointer 
should be written to the first element of the new block. In 
order not to exceed one memory write per clock, the 
Address Generator disables the Segment Generator for one 
clock cycle in such cases (this is also needed when the 
memory is busy with other tasks). In the first clock cycle, 
the triangle pointer is written into the first element of the 
new block. In the second clock cycle, the pointer to the 
new block is written into element 32 of the current block, 
using the content of the AMEM_OUT register. The 
appropriate word of the Address Memory is updated with 
the incremented pointer of the new block, while the 
NEXT_BLOCK register is incremented by 32. 

 
Figure 8. Address Generator 

When processing a new frame starts, the memory 
containing the write addresses should be set to the 
initialization value, which is segment number multiplied 
with 32. This is done by rendering two triangles which act 
as a full-screen background.  

4. CONCLUSION 

The Segmenting Unit can generate a new valid segment 
coordinate at every clock cycle, and the structure of the 
Pointer Buffer allows fast, burst reads in the HSR Unit. 
Preliminary clock speed requirements were defined by two 
factors. Our development platform has embedded 
multipliers, which can achieve about 100 MHz. The 
selected central microprocessor (MicroBlaze) also works at 
this frequency, so 100 MHz was selected as a target for our 
modules to achieve after place and route. The presented 
architecture is able to fulfill this, using Synplicity Amplify 
synthesizer. 

4.1 Theoretical performance numbers 

With the achieved clock speed some general statements can 
be made about worst case and best case performance of the 
architecture. 
The worst case is when every triangle is relatively large, 
and segment size is set to minimum (32*16 pixels). For 
example, with an average 100 segments/triangle, and 
640x480 resolution, one triangle takes 100 clock cycles to 
process, so performance is 1000000 triangles/second. The 

best case is when all triangles cover pixels in only three 
segments (below this, the Input Pipeline is the limiting 
factor). In this case the unit can process one triangle every 
clock cycle, so peak performance is 33 million triangles/ 
second. 
With 30 frames/second rendering speed, the worst case 
situation allows 33000 triangles/frame, while the best case 
is 1.1 million triangles/frame. The first number is not that 
much; however it is still enough for simpler scenes. The 
second number is far higher – real-time applications do not 
use such a large number of triangles today, and it is not 
likely to be reached in the near future. 
Real applications are somewhere between the two 
presented situations, typically somewhat closer to the best 
case. 

4.2 Logic utilization 

The following table summarizes the required logic 
resources for the presented functional blocks in our target 
architecture. FF shows the required number of flip-flops, 
LUT is the number of 4-input look up tables, MUL is the 
number of embedded multiplier blocks, while BRAM is the 
number of the required BlockRAM blocks. 

Table 2. Logic utilization 

 FF LUT MUL BRAM 
Input Pipe. 1100 1200 4 - 
Segment Gen. 900 2800 - - 
Address Gen. 250 250 1 2  
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