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1. Introduction 
 
As the demand for complex display systems increases, 
three dimensional graphics rendering becomes an 
important feature in embedded systems, such as handheld 
devices (PDAs, mobile phones), set top boxes and 
onboard computers. Generating 3D graphics typically 
requires dedicated hardware, as even the fastest desktop 
CPUs are too slow to achieve real-time performance with 
good quality, not to mention the slower embedded parts. 
The main goal of this research project is to create a 
scalable rendering architecture feasible for system on 
chip (SOC) applications. 
Typical embedded systems have quite different 
possibilities compared to desktop computers. From the 
3D rendering point of view, the main drawback is the 
much lower external memory bandwidth, which is shared 
between the different SOC units – an appropriate 
architecture, therefore, has to save memory bandwidth by 
using it as efficiently as possible. Scalability is also a 
substantial feature, as different embedded systems may 
have quite different performance requirements. 
 
2. Basics of 3D rendering 
 
Real-time 3D rendering is based on triangles: the surfaces 
of complex objects are approximated by a 3D triangle 
mesh ([1]). These meshes are defined in their local 
coordinate system, and then transformed into the 3D 
world according to their position and orientation, so that 
the camera gets into the origin looking into the positive Z 
direction. 
Transformation is followed by rasterization. For every 
screen pixel, the visible triangle – which is closest to the 
camera at the given screen position – is determined. In 
hardware implementation this is exclusively done with 
the Z Buffer algorithm, which requires a per-pixel buffer 
for storing the minimum Z value of the already processed 
triangles ([1-3]). The per-pixel Z value of a new triangle 
is compared with this buffer value to determine if it is 
closer to the camera than any of the already processed 
ones. 
 
3. Hardware architecture 
 
Figure 1 shows the simplified block diagram of the 
proposed architecture. To save memory bandwidth, on-
chip buffers (grey boxes) are used. As these buffers for 
the entire screen are too large to fit into on-chip 
memories, the screen is segmented into small rectangles, 
and rasterization happens segment by segment. 
Processing starts by determining the visible triangle for 
every segment pixel (HSR Unit, [5-6]), followed by the 

computation of the output color value (Shading Unit) – 
by doing this only for truly visible triangle pixels, a lot of 
unnecessary work can be eliminated. To relieve the CPU, 
transparent objects are handled entirely in hardware ([4]). 
However, processing all triangles of the frame in all 
segments would greatly decrease efficiency, therefore 
before rasterization, the Segmenting Unit generates a list 
for every segment, containing the triangles which cover 
at least one pixel in the given segment.  
As different applications can have very different average 
triangle size, to maximize efficiency, the size of the 
screen segment is configurable. By analyzing the 
rendered frames, and varying the segment size between 
frames, even adaptive optimization can be achieved. 
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Figure 1. Rasterizer block diagram 

 
3.1. Segmenting Unit 
 
This processing unit works triangle by triangle. For every 
triangle, it steps through the affected segments, and 
generates the triangle list for the HSR Unit. The stepping 
algorithm is quite effective, as only those segments are 
evaluated which have at least one pixel covered by the 
processed triangle – so a new item in the list can be 
generated every clock cycle. In order to maximize 
reading performance in the HSR Unit, while at the same 
time minimizing memory size, the list is chained, and 
built up from 32-word blocks. 
 
3.2. HSR Unit 
 
The highly parallel HSR Unit is built up from several 
similar processing units. When it processes a triangle, all 
pixels of the segment are evaluated to decide which are 
covered by the triangle – with triangles covering only 
small fraction of the segment, this reduces efficiency; 
however it allows easier control mechanism and 



deterministic processing time. The architecture is feasible 
to implement high performance edge anti-aliasing to 
improve quality on lower resolution screens. 
 
3.3. Shading Unit 
 
The Shading Unit computes the output color values for 
the segment. Basically, it is a programmable floating 
point ALU, which uses the attributes of the triangles. 
Such attributes are colors at the vertices, arrays assigned 
to the triangles and the shading program. With the 
appropriate compression of these attributes, memory 
bandwidth can be further reduced. The Shading Unit uses 
an on-chip Frame Buffer during processing, which is 
saved into the external memory after the segment is 
processed. 
 
4. Results 
 
At present, the Segmenting Unit and HSR Unit are 
implemented in Verilog HDL, achieving 100 MHz clock 
rate in our development Virtex2-6000 FPGA. The former 
unit can generate one output every clock cycle, while the 

HSR Unit is capable of processing two opaque pixels per 
clock. 
Further research is necessary on the effect of adaptive 
segment size, effective data management and storage, 
high performance floating point ALU and effective 
compression schemes. 
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