
Efficient and Scalable 3D Rendering Architecture

Péter Szántó, Béla Fehér
Budapest University of Technology and Economics

Department of Measurements and Information Systems
szanto@mit.bme.hu, feher@mit.bme.hu

1. Introduction

As the demand for complex display systems increases,
three dimensional graphics rendering becomes an
important feature in embedded systems, such as handheld
devices (PDAs, mobile phones), set top boxes and
onboard computers. Generating 3D graphics typically
requires dedicated hardware, as even the fastest desktop
CPUs are too slow to achieve real-time performance with
good quality, not to mention the slower embedded parts.
The main goal of this research project is to create a
scalable rendering architecture feasible for system on
chip (SOC) applications.
Typical embedded systems have quite different
possibilities compared to desktop computers. From the
3D rendering point of view, the main drawback is the
much lower external memory bandwidth, which is shared
between the different SOC units – an appropriate
architecture, therefore, has to save memory bandwidth by
using it as efficiently as possible. Scalability is also a
substantial feature, as different embedded systems may
have quite different performance requirements.

2. Basics of 3D rendering

Real-time 3D rendering is based on triangles: the surfaces
of complex objects are approximated by a 3D triangle
mesh ([1]). These meshes are defined in their local
coordinate system, and then transformed into the 3D
world according to their position and orientation, so that
the camera gets into the origin looking into the positive Z
direction.
Transformation is followed by rasterization. For every
screen pixel, the visible triangle – which is closest to the
camera at the given screen position – is determined. In
hardware implementation this is exclusively done with
the Z Buffer algorithm, which requires a per-pixel buffer
for storing the minimum Z value of the already processed
triangles ([1-3]). The per-pixel Z value of a new triangle
is compared with this buffer value to determine if it is
closer to the camera than any of the already processed
ones.

3. Hardware architecture

Figure 1 shows the simplified block diagram of the
proposed architecture. To save memory bandwidth, on-
chip buffers (grey boxes) are used. As these buffers for
the entire screen are too large to fit into on-chip
memories, the screen is segmented into small rectangles,
and rasterization happens segment by segment.
Processing starts by determining the visible triangle for
every segment pixel (HSR Unit, [5-6]), followed by the

computation of the output color value (Shading Unit) –
by doing this only for truly visible triangle pixels, a lot of
unnecessary work can be eliminated. To relieve the CPU,
transparent objects are handled entirely in hardware ([4]).
However, processing all triangles of the frame in all
segments would greatly decrease efficiency, therefore
before rasterization, the Segmenting Unit generates a list
for every segment, containing the triangles which cover
at least one pixel in the given segment.
As different applications can have very different average
triangle size, to maximize efficiency, the size of the
screen segment is configurable. By analyzing the
rendered frames, and varying the segment size between
frames, even adaptive optimization can be achieved.

Segmenting
Unit

Memory
Controller

HSR
Unit

Shading
Unit

Z Buffer Frame
Buffer

Transformed Data

Segment
Data

Visible
Object

Segment
Data

Transformed
Data

External Memory

RGB
Data

Triangle
Properties

Figure 1. Rasterizer block diagram

3.1. Segmenting Unit

This processing unit works triangle by triangle. For every
triangle, it steps through the affected segments, and
generates the triangle list for the HSR Unit. The stepping
algorithm is quite effective, as only those segments are
evaluated which have at least one pixel covered by the
processed triangle – so a new item in the list can be
generated every clock cycle. In order to maximize
reading performance in the HSR Unit, while at the same
time minimizing memory size, the list is chained, and
built up from 32-word blocks.

3.2. HSR Unit

The highly parallel HSR Unit is built up from several
similar processing units. When it processes a triangle, all
pixels of the segment are evaluated to decide which are
covered by the triangle – with triangles covering only
small fraction of the segment, this reduces efficiency;
however it allows easier control mechanism and

deterministic processing time. The architecture is feasible
to implement high performance edge anti-aliasing to
improve quality on lower resolution screens.

3.3. Shading Unit

The Shading Unit computes the output color values for
the segment. Basically, it is a programmable floating
point ALU, which uses the attributes of the triangles.
Such attributes are colors at the vertices, arrays assigned
to the triangles and the shading program. With the
appropriate compression of these attributes, memory
bandwidth can be further reduced. The Shading Unit uses
an on-chip Frame Buffer during processing, which is
saved into the external memory after the segment is
processed.

4. Results

At present, the Segmenting Unit and HSR Unit are
implemented in Verilog HDL, achieving 100 MHz clock
rate in our development Virtex2-6000 FPGA. The former
unit can generate one output every clock cycle, while the

HSR Unit is capable of processing two opaque pixels per
clock.
Further research is necessary on the effect of adaptive
segment size, effective data management and storage,
high performance floating point ALU and effective
compression schemes.

5. References

[1] A. Watt, 3D Computer Graphics, Addison-Wesley, 2000.
[2] R. N. Mahapatra, B. Murray: GEARS: Graphics Embedded

Accelerated Rendering System, Technical Report TR-CS-
2002-05-1

[3] H. Holten-Lund: Design for scalability in 3D computer
graphics architectures. Ph.D. Thesis, Technical University
of Denmark, 2001.

[4] P. Diefenbach, Pipeline Rendering: Interaction and
Realism Through Hardware-Based Multi-Pass Rendering,
Ph.D. Thesis, University of Pennsylvania, 1996.

[5] Kilgard, M. J., Everitt C. Optimized Stencil Shadow
Volumes. Game Developer Conference, 2003.

[6] Y. Wang, S. Molnar, Second-Depth Shadow Mapping.
Technical Report TR94-019, 1994.

