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Abstract. 
Complex three dimensional graphics rendering is 
computationally very intensive process, so even the 
newest microprocessors cannot handle more complicated 
scenes in real time. Therefore to produce realistic 
rendering, hardware solutions are required. This paper 
discusses an FPGA implementation which complies with 
the newer, programmable standards. As the design 
implements a somewhat unique hidden surface removal 
algorithm originally created by PowerVR, the paper 
focuses on this part. 
 
 
1. Introduction 
 

One of the most rapidly developing filed in the 
hardware industry is 3D graphics rendering. Displaying 
lifelike virtual worlds has not spread only in 
workstations or PCs, but it starts to appear in mobile 
devices. From the starts, 3D algorithms try to model real 
world objects with models built up from triangles, 
however the simulation of lifelike, complex surfaces 
developed by huge margin. 

Advanced 3D rendering is computationally a 
very intensive task, so that even the highest end CPUs 
cannot do it in real time, therefore dedicated hardware is 
required. Our thought is a mobile device (cell phone, 
PDA) which can do a lot of different tasks, eg. 
decompression of motion pictures and/or music files or 
3D gaming. As most of these functions are not needed 
simultaneously, it is logical to use a shared hardware to 
realize them. On the other side, these require quite 
different algorithms and a lot of processing power – 
therefore an FPGA may be an ideal solution. At power 
up it can be configured to attend basic, frequent tasks; 
however when the user wants to play a game, the FPGA 
can be configured as a 3D accelerator. 
 
The following basic steps are required to render a 3D 
scene ([1.], [2.], [4]): 
• Transformation and lighting: 

o Tesselation 
o Transformation 
o Lighting 

• Rasterization 
o Shading 
o Hidden surface removal 

 
The first three steps are done for every vertex, while 

the latter two is done for every screen pixel. 
Tesselation is only needed when the objects are not 

specified as a list of triangles, but other, higher order 
surfaces. In real-time rendering this function is still not 
widely supported. 

Transformation transforms objects (actually their 
vertices) from their local coordinate system into camera 
space, and then applies perspective correct projection to 
move from 3D space into the screen’s 2D coordinate 
system. 

Vertex based lighting is applied during the 
transformation. For each vertex, two color components 
(diffuse and specular) are computed according to the 
light sources. A huge difference between real time and 
non real time rendering is that the former uses local 
illumination algorithms, that is, other objects do not have 
influence on the color of the current object.  
Constant shading uses one vertex color on the entire 
triangle, while the more complicated Gouraud-shading 
interpolates between the vertices’ colors to get the final 
result for the triangle’s internal points. 

The next step in traditional hardware architectures is 
shading (the computation of output pixel colors). This is 
one of the computationally most intensive parts of the 
rendering. In simple cases only the computed vertex 
colors are used, however much more complex surfaces 
can be simulated with texture mapping. 

Hidden surface removal checks whether the 
rendered pixel of the actual triangle is visible or not. 
There are a lot of different algorithms (scan-line, list 
priority, Warnock, binary space partitioning), but 
hardware realizations exclusively use the Z-buffer 
method. 
 
2. Texture Mapping 
 

Before going into details, it is necessary to 
understand the basics of texture mapping ([2], [3], [4]), 
which is used to simulate detailed surfaces without too 
complex object geometry.  



In the simplest case a texture is a two 
dimensional array representing the surface of an object. 
A single element in the texture map is called texel 
(texture element). Textures are assigned to triangles by 
defining the texture coordinates (commonly referred as u 
and v) at each vertex. 
As perspective projection is not a linear transformation, 
a screen pixel transformed into texture space can have 
any shape defined with the four pixel corner points 
(Figure 1. shows the situation with the bounding 
rectangle grayed). The effect is that the area in the 
texture covered by the transformed pixel may be smaller 
or greater than an actual texel.  

 
Figure 1. Screen pixel transformed into texture 

space  
 
In the former case simple bilinear filtering is 

applied to reduce sampling errors. 
The latter case is slightly more complicated. 

The most straightforward solution is to average all the 
texels that are covered by the transformed pixel. The 
only problem with this solution is speed – reading all the 
necessary texels from the external texture memory may 
require too much bandwidth or take too much clock 
cycles. To decrease the memory reads, pre-averaged 
versions of the original texture are stored. The algorithm 
is called Mipmapping, and the different resolution 
textures are called mipmap levels. The (i+1.) level has 
half the side size of the (i.) one, so a mipmapped texture 
exactly has 4/3 the size of the original texture (1 + 1/4 + 
1/16 +…). The mipmap level used is computed from the 
bounding square (corner points are used to determine 
this) of the transformed pixel. If a pixel covers 8x8 
texels size in the 0. mipmap level, it exactly covers one 
texel size in the 3. level. To eliminate shimmering with 
moving objects, bilinear filtering is applied. More 
advanced filtering algorithms use the bounding rectangle 
instead of the bounding square (our implementation uses 
4D pyramid anisotropic filtering), and even allows the 
sides of this rectangle not to be parallel with the texture 
space’s u and v axle.  

Early hardware implementations supported only 
one texture for a triangle (single texturing), while the 
next generations supported more, however the supported 
blending modes for the textures were quite limited. 
Newest standards ([7.]) make texture combining a 
programmable process. The unit responsible for this task 
is called PixelShader, the implementation complies with 

version is 1.4 (this is the most advanced which does not 
require floating point color support). 

 
3. Implementation 
 

There are a lot of different implementations of 
3D graphics algorithms in hardware. Desktop chips 
nowadays use floating point computation throughout the 
entire pipeline (and also accelerates transformation and 
lighting), and they have multiple pipelines working in 
parallel. Of course such processing power requires a lot 
of hardware resources (eg. ATI’s R300 has more than 
100million transistors) which is not available in FPGAs, 
but our goal was not to implement an FPGA based 
solution comparable to high-end desktop chips, but a 
design capable of accelerating advanced shading 
algorithms (a requirement earlier implementations ([5], 
[8], [9]) do not fulfill) and still fitting into an FPGA and 
having enough power for small displays can be found in 
handhelds (about 320x200).  

The implemented unit supports hidden surface 
removal and shading in hardware. Figure 2. shows the 
schematic diagram of the complete implementation. The 
execution units will be discussed later, however there are 
also storage elements. The blocks on the left side 
represents external, off-chip memories, used to store 
vertex data, texture information and final output color 
values. 

Screen       Texture 

Traditional 3D rendering architectures work 
triangle by triangle: after a triangle is transformed, they 
compute an output color and a Z value for every screen 
pixel covered by the actual triangle. Then the Z value is 
compared against the value stored in the Z buffer (a 
buffer in external memory that stores a Z value for every 
screen pixel), and if it is less, then that the color value is 
written into the frame buffer, and the Z buffer is updated 
with the actual value. There are two problems with this 
method: first, a lot of work is wasted on computing non-
visible pixels, and second it needs a lot of memory 
bandwidth due to Z buffer reads and writes (however it 
must be noted that with optimization such as early Z 
check a lot of unnecessary work can be eliminated).  

Our implementation works a bit differently: it 
waits all triangles to be transformed, and then starts the 
rendering by dividing the screen into tiles [6]. A tile is 
small enough (actually 32x16 pixels) to store its Z buffer 
and frame buffer in on chip memory. Tiles have an index 
buffer associated to them, which stores a pointer to 
triangles which cover a pixel in that tile. Rendering is 
done tile by tile, and starts with visibility testing: all 
triangles in the actual tile are processed to determine the 
visible one for every tile pixel. Output computing is only 
done once for every pixel using the values generated by 
the Hidden Surface Removal Unit (HSR): a triangle 
index for the visible triangle, and the Z value. The HSR 
unit will be discussed in detail later (section 3.1). The 
HSR is followed by a Grouping Unit (GU) which 
collects the tile pixels covered by the same triangle into 



groups to minimize multiple triangle data reads from the 
external memory during the shading. 
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Figure 2. Complete schematic diagram 
 
The actual shading process starts after the GU. 

The shading pipeline first interpolates the color 
components, texture addresses and RHW coordinate 
(reciprocal homogeneous W, computed at the 
transformation stage) for the actual pixel using the given 
values for the triangle vertices. Unfortunately texture 
coordinates do not change linearly with screen space x 
and y coordinates (they do so in camera space), so 
another coordinates are used: s and t. First, the s and t are 
computed for the vertices with the following formula: 

RHWvt
RHWus

*
*

=
=

 
 
(1) 

These can be linearly interpolated using the 
screen’s x, y coordinates. However, to address textures, u 
and v must be computed, so the interpolated s and t must 
be divided with the interpolated RHW value. After the 
texture coordinates are determined, the PixelShader Unit 
computes the final output color.  

On the schematic diagram a MAX unit is also 
present: this unit is used to implement Cubic 

Environment Mapping. This texture mapping technique 
requires an interpolated three dimensional vector and a 
divisor to divide two components of the vector with the 
maximal amplitude component. So, in case of cube map 
texture, our implementation defines the maximum 
component, properly arrange the other two (this means 
switching and/or negating) and performs the division. 

To understand the following decisions, we have 
to look into PixelShader specification a bit. 

A PixelShader program is divided into two 
phases (phase one and two). In both phases, texture 
addressing instructions are followed by arithmetic 
instructions. The difference is that in the first phase only 
Texture coordinate registers are available to address 
textures (these store the result of the interpolation 
process), while in the second Temporary registers may 
also be used – and these registers get their values during 
the execution of the first phase’s arithmetic instructions. 
To determine which mipmap level to use, the covered 
texture area must be computed – so texture coordinates 
must be computed not just for the pixel center, but also 
for the pixel corners – this can be done with four times 
more PS units (one for the pixel center and another four 
for the corners), or in four more clock cycles. 

To avoid this problem, the hardware does not 
compute mipmap level for every pixel, but for every 2x2 
pixel block. The first phase instructions are executed on 
every pixel of such a block, and then mipmap levels are 
computed using the available data at the four pixel 
centers. This may degrade effectiveness if the pixels in 
the block are not covered by the same triangle, and make 
the Grouping Unit a bit more complicated, but the fact 
that only one PixelShader and divisor is needed 
compensates this. 

 
3.1 The Hidden Surface Removal Unit 
 

As mentioned in the general description, the 
HSR determines the visible triangle for every pixel in a 
given tile. To achieve this, it must decide whether a pixel 
is covered by the currently processed triangle, and in 
case it does, the Z value must be computed and 
compared with the one in the Z buffer. To make this 
process fast, 16 parallel units are used. Each unit works 
on one line of the tile (32 pixels), and has a double 
buffered, dual port Z buffer memory and a double 
buffered Index memory, just as Figure 3. shows. A tile is 
small enough to have these memories on-chip, so 
external memory bandwidth is not wasted during this 
process. Triangles are defined with vertices sorted by 
growing y coordinates. 
Covering is determined using the coefficients of the 
triangle sides. The Compute_M0 computes the x 
coordinate for all three sides using the following 
formula: 

ByAx += *  (2) 



where y is the y coordinate of the top pixel line A and B 
are the coefficients defined with the appropriate screen 
space vertex coordinates (xs0, xs1, ys0, ys1). 
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Figure 3. Hidden Surface Removal 

 
For the Z value interpolation, the coefficients of the 
plane equation are used, defined by the formulas shown 
below (using screen space vertex coordinates): 
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A Z value is then calculated using 

zzz GyFxEz ++= **  (6) 

expression. The current implementation does not 
compute these coefficients in hardware, the host has to 
do this. 

For every pixel, only an addition (or 
subtraction) is needed to generate new Z value or 
intersection points. To decide which two of the three 
intersection points have to be used to determine 
covering, a mode_y value is generated. The definition of 
mode_y is shown on Figure 4. 

Vertex 0

Vertex 1

Vertex 2

mode_y = 0

mode_y = 1

mode_y = 2

mode_y = 3

mode_y = 4

mode_y = 0

 
Figure 4. Mode_y definition 

 
The meaning of Mode_y: 

• Mode_y=0: this line is outside of the triangle 
• Mode_y=1: the y coordinate is bigger than 

vertex0’s y coordinate and smaller than or equal 
to vertex1’s y coordinate. Intersection 0 and 1 
should be used. 

• Mode_y=2: the y coordinate is bigger than 
vertex1’s y coordinate, and smaller than 
vertex2’s y coordinate. Intersection 1 and 2 
should be used. 

• Mode_y=3: the y coordinate is equal to 
vertex0’s y coordinate. 

• Mode_y=4: the y coordinate is equal to 
vertex2’s y coordinate. 

 
 



For filling, top-left convention is used, that is a pixel is 
covered by a given triangle in the following cases: 

• It is inside the triangle 
• It is on the left edge of a triangle 
• It is on the top edge of a triangle (top edge is a 

horizontal edge) 
• It has the same coordinates as vertex0 or 

vertex2 
Any incoming triangle has the M0, Z0, A and 

mode_y for the 0. tile line already computed (this is done 
during  - in parallel with - the memory reads to get the 
vertex data).  

In every clock cycle, all even numbered cells 
step one pixel right: increment the x coordinate and 
compute a new Z value (add A to the previous value). 
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3.2 The shading pipeline 
 

The first part of the shading pipeli
the GU and the PS unit) works 
precision floating point data format, unl
absolutely unnecessary (e.g. screen pixel coor
stored as integers). Texture coordinates and
are interpolated the same way the Z co
computed, using the coefficients of the plane e
The difference - beyond the floating point for
these coefficients are computed in hardwa
external memory reads. The computed valu
stored in on-chip cache (Block RAM). 



The interpolator has mixed floating 
point/integer multipliers and floating point adders. The 
former has three stages, while the latter has five. The 
Compute

, while final color values have 8 bits per 
channel.
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_U and Compute_V modules are nothing more 
than floating point multipliers with fixed point output 
(three stages). The divisor unit is based on an iterative 
algorithm, and is eight stages long. 

The PS unit itself represents color values with 
16 bits per channel (red, green, blue, alpha) during the 
computation

 This unit is also pipelined, it has four stages and 
two parallel blocks (a Texture Sampling and an 
Arithmetic unit). The PS unit complies with Microsoft’s 
Pixel Shader 1.4 specifications which defines register 
numbers and instruction set. 
 
4. Experiences with DK1 
 

The design was done using Celoxica DK1 
Suite, the development board was a Celoxica 

RC1000 FPGA card. 
With Handel-C (the C based hardware 

description language behind DK1) it is possible to use 
the traditional block based hardware description, 
however it also gives the designer the possibility for 
further abstraction, and let him concentrate on the pure 
algorithm regardless of the particular hardware 
realization. 

Although a software version of the algorithms 
had been coded before the hardware design started, the 

PGA implementation isF
c
design philosoph
fu

signals. We found Handel-C supports this 
method well. However we feel that it is not too difficult 
to rewrite the current Handel-C code into VHDL. 

The RC1000 FPGA card has a Xilinx Virtex 
2000E FPGA on it with 8 Mbytes 

r banks, which can be accessed parallel with 32 
bit data width. The FPGA has the necessary number of 
Logic Cells and Block RAM size to implement the 
design. However the card itself has an unfortunate 
disadvantage, as communication is primarily supported 
through memory buffers using DMA, and direct 
communication with the FPGA is quite limited. 
Therefore at any time, one of the memory banks is 
reserved for the host to upload transformed vertex data 
into the card’

5. Conclusion 
 

The design proved that a 3D rendering 
hardware can be implemented in FPGAs. There are 
nough resources to implement the needed logic be

a
color precision (

Celoxica DK1 could achieve not much more than this 
with the floating poi
achieved with the design. Clock speed is mainly l
by the HSR (and the Block RAMs) and the i
pipeline, while the PixelShader’s arithmetical unit c
reach much more. The speed of the RAMDAC
(which handles synchronization signals for the disp
is different, and determined by sc
refresh rate. 

The current implementation does not use 16 
processing unit as written earlier, but only 4. Ther
this is not the most resource hungry part o
the floating point interpolation and division u
31% of the chip. The one PixelShader u
the GU takes 10%, while the HSR consumes 8%. 
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