
3D rendering using FPGAs

Péter Szántó, Béla Fehér
Department of Measurement and Information Systems

Budapest University of Technology and Economics
H-1117 Budapest, Magyar Tudósok krt. 2.
szanto@mit.bme.hu, feher@mit.bme.hu

Abstract.
Complex three dimensional graphics rendering is
computationally very intensive process, so even the
newest microprocessors cannot handle more complicated
scenes in real time. Therefore to produce realistic
rendering, hardware solutions are required. This paper
discusses an FPGA implementation which complies with
the newer, programmable standards. As the design
implements a somewhat unique hidden surface removal
algorithm originally created by PowerVR, the paper
focuses on this part.

1. Introduction

One of the most rapidly developing filed in the
hardware industry is 3D graphics rendering. Displaying
lifelike virtual worlds has not spread only in
workstations or PCs, but it starts to appear in mobile
devices. From the starts, 3D algorithms try to model real
world objects with models built up from triangles,
however the simulation of lifelike, complex surfaces
developed by huge margin.

Advanced 3D rendering is computationally a
very intensive task, so that even the highest end CPUs
cannot do it in real time, therefore dedicated hardware is
required. Our thought is a mobile device (cell phone,
PDA) which can do a lot of different tasks, eg.
decompression of motion pictures and/or music files or
3D gaming. As most of these functions are not needed
simultaneously, it is logical to use a shared hardware to
realize them. On the other side, these require quite
different algorithms and a lot of processing power –
therefore an FPGA may be an ideal solution. At power
up it can be configured to attend basic, frequent tasks;
however when the user wants to play a game, the FPGA
can be configured as a 3D accelerator.

The following basic steps are required to render a 3D
scene ([1.], [2.], [4]):
• Transformation and lighting:

o Tesselation
o Transformation
o Lighting

• Rasterization
o Shading
o Hidden surface removal

The first three steps are done for every vertex, while

the latter two is done for every screen pixel.
Tesselation is only needed when the objects are not

specified as a list of triangles, but other, higher order
surfaces. In real-time rendering this function is still not
widely supported.

Transformation transforms objects (actually their
vertices) from their local coordinate system into camera
space, and then applies perspective correct projection to
move from 3D space into the screen’s 2D coordinate
system.

Vertex based lighting is applied during the
transformation. For each vertex, two color components
(diffuse and specular) are computed according to the
light sources. A huge difference between real time and
non real time rendering is that the former uses local
illumination algorithms, that is, other objects do not have
influence on the color of the current object.
Constant shading uses one vertex color on the entire
triangle, while the more complicated Gouraud-shading
interpolates between the vertices’ colors to get the final
result for the triangle’s internal points.

The next step in traditional hardware architectures is
shading (the computation of output pixel colors). This is
one of the computationally most intensive parts of the
rendering. In simple cases only the computed vertex
colors are used, however much more complex surfaces
can be simulated with texture mapping.

Hidden surface removal checks whether the
rendered pixel of the actual triangle is visible or not.
There are a lot of different algorithms (scan-line, list
priority, Warnock, binary space partitioning), but
hardware realizations exclusively use the Z-buffer
method.

2. Texture Mapping

Before going into details, it is necessary to
understand the basics of texture mapping ([2], [3], [4]),
which is used to simulate detailed surfaces without too
complex object geometry.

In the simplest case a texture is a two
dimensional array representing the surface of an object.
A single element in the texture map is called texel
(texture element). Textures are assigned to triangles by
defining the texture coordinates (commonly referred as u
and v) at each vertex.
As perspective projection is not a linear transformation,
a screen pixel transformed into texture space can have
any shape defined with the four pixel corner points
(Figure 1. shows the situation with the bounding
rectangle grayed). The effect is that the area in the
texture covered by the transformed pixel may be smaller
or greater than an actual texel.

Figure 1. Screen pixel transformed into texture

space

In the former case simple bilinear filtering is

applied to reduce sampling errors.
The latter case is slightly more complicated.

The most straightforward solution is to average all the
texels that are covered by the transformed pixel. The
only problem with this solution is speed – reading all the
necessary texels from the external texture memory may
require too much bandwidth or take too much clock
cycles. To decrease the memory reads, pre-averaged
versions of the original texture are stored. The algorithm
is called Mipmapping, and the different resolution
textures are called mipmap levels. The (i+1.) level has
half the side size of the (i.) one, so a mipmapped texture
exactly has 4/3 the size of the original texture (1 + 1/4 +
1/16 +…). The mipmap level used is computed from the
bounding square (corner points are used to determine
this) of the transformed pixel. If a pixel covers 8x8
texels size in the 0. mipmap level, it exactly covers one
texel size in the 3. level. To eliminate shimmering with
moving objects, bilinear filtering is applied. More
advanced filtering algorithms use the bounding rectangle
instead of the bounding square (our implementation uses
4D pyramid anisotropic filtering), and even allows the
sides of this rectangle not to be parallel with the texture
space’s u and v axle.

Early hardware implementations supported only
one texture for a triangle (single texturing), while the
next generations supported more, however the supported
blending modes for the textures were quite limited.
Newest standards ([7.]) make texture combining a
programmable process. The unit responsible for this task
is called PixelShader, the implementation complies with

version is 1.4 (this is the most advanced which does not
require floating point color support).

3. Implementation

There are a lot of different implementations of
3D graphics algorithms in hardware. Desktop chips
nowadays use floating point computation throughout the
entire pipeline (and also accelerates transformation and
lighting), and they have multiple pipelines working in
parallel. Of course such processing power requires a lot
of hardware resources (eg. ATI’s R300 has more than
100million transistors) which is not available in FPGAs,
but our goal was not to implement an FPGA based
solution comparable to high-end desktop chips, but a
design capable of accelerating advanced shading
algorithms (a requirement earlier implementations ([5],
[8], [9]) do not fulfill) and still fitting into an FPGA and
having enough power for small displays can be found in
handhelds (about 320x200).

The implemented unit supports hidden surface
removal and shading in hardware. Figure 2. shows the
schematic diagram of the complete implementation. The
execution units will be discussed later, however there are
also storage elements. The blocks on the left side
represents external, off-chip memories, used to store
vertex data, texture information and final output color
values.

Screen Texture

Traditional 3D rendering architectures work
triangle by triangle: after a triangle is transformed, they
compute an output color and a Z value for every screen
pixel covered by the actual triangle. Then the Z value is
compared against the value stored in the Z buffer (a
buffer in external memory that stores a Z value for every
screen pixel), and if it is less, then that the color value is
written into the frame buffer, and the Z buffer is updated
with the actual value. There are two problems with this
method: first, a lot of work is wasted on computing non-
visible pixels, and second it needs a lot of memory
bandwidth due to Z buffer reads and writes (however it
must be noted that with optimization such as early Z
check a lot of unnecessary work can be eliminated).

Our implementation works a bit differently: it
waits all triangles to be transformed, and then starts the
rendering by dividing the screen into tiles [6]. A tile is
small enough (actually 32x16 pixels) to store its Z buffer
and frame buffer in on chip memory. Tiles have an index
buffer associated to them, which stores a pointer to
triangles which cover a pixel in that tile. Rendering is
done tile by tile, and starts with visibility testing: all
triangles in the actual tile are processed to determine the
visible one for every tile pixel. Output computing is only
done once for every pixel using the values generated by
the Hidden Surface Removal Unit (HSR): a triangle
index for the visible triangle, and the Z value. The HSR
unit will be discussed in detail later (section 3.1). The
HSR is followed by a Grouping Unit (GU) which
collects the tile pixels covered by the same triangle into

groups to minimize multiple triangle data reads from the
external memory during the shading.

Text_coord
Interpolator

(s, t, r)
RHW

Interpolator
Color

Interpolator

Divisor

Compute U Compute V

PixelShader
Unit

Frame Buffer

Vertex Data
Memory

Texture
Memory

Hidden
Surface
Removal

Z buffer Tr. Index
buffer

Grouping
Unit

Figure 2. Complete schematic diagram

The actual shading process starts after the GU.

The shading pipeline first interpolates the color
components, texture addresses and RHW coordinate
(reciprocal homogeneous W, computed at the
transformation stage) for the actual pixel using the given
values for the triangle vertices. Unfortunately texture
coordinates do not change linearly with screen space x
and y coordinates (they do so in camera space), so
another coordinates are used: s and t. First, the s and t are
computed for the vertices with the following formula:

RHWvt
RHWus

*
*

=
=

(1)

These can be linearly interpolated using the
screen’s x, y coordinates. However, to address textures, u
and v must be computed, so the interpolated s and t must
be divided with the interpolated RHW value. After the
texture coordinates are determined, the PixelShader Unit
computes the final output color.

On the schematic diagram a MAX unit is also
present: this unit is used to implement Cubic

Environment Mapping. This texture mapping technique
requires an interpolated three dimensional vector and a
divisor to divide two components of the vector with the
maximal amplitude component. So, in case of cube map
texture, our implementation defines the maximum
component, properly arrange the other two (this means
switching and/or negating) and performs the division.

To understand the following decisions, we have
to look into PixelShader specification a bit.

A PixelShader program is divided into two
phases (phase one and two). In both phases, texture
addressing instructions are followed by arithmetic
instructions. The difference is that in the first phase only
Texture coordinate registers are available to address
textures (these store the result of the interpolation
process), while in the second Temporary registers may
also be used – and these registers get their values during
the execution of the first phase’s arithmetic instructions.
To determine which mipmap level to use, the covered
texture area must be computed – so texture coordinates
must be computed not just for the pixel center, but also
for the pixel corners – this can be done with four times
more PS units (one for the pixel center and another four
for the corners), or in four more clock cycles.

To avoid this problem, the hardware does not
compute mipmap level for every pixel, but for every 2x2
pixel block. The first phase instructions are executed on
every pixel of such a block, and then mipmap levels are
computed using the available data at the four pixel
centers. This may degrade effectiveness if the pixels in
the block are not covered by the same triangle, and make
the Grouping Unit a bit more complicated, but the fact
that only one PixelShader and divisor is needed
compensates this.

3.1 The Hidden Surface Removal Unit

As mentioned in the general description, the
HSR determines the visible triangle for every pixel in a
given tile. To achieve this, it must decide whether a pixel
is covered by the currently processed triangle, and in
case it does, the Z value must be computed and
compared with the one in the Z buffer. To make this
process fast, 16 parallel units are used. Each unit works
on one line of the tile (32 pixels), and has a double
buffered, dual port Z buffer memory and a double
buffered Index memory, just as Figure 3. shows. A tile is
small enough to have these memories on-chip, so
external memory bandwidth is not wasted during this
process. Triangles are defined with vertices sorted by
growing y coordinates.
Covering is determined using the coefficients of the
triangle sides. The Compute_M0 computes the x
coordinate for all three sides using the following
formula:

ByAx += * (2)

where y is the y coordinate of the top pixel line A and B
are the coefficients defined with the appropriate screen
space vertex coordinates (xs0, xs1, ys0, ys1).

00

10

10

* ss

ss

ss

yAxB
yy
xxA

−=
−
−

=

(3)

Compute
M0..2 Compute Z0

CELL0

CELL1

CELL15

A0, A1, A2 GEF

m0, m1, m2 z0

Z Buffer 0

Z Buffer 1

Z Buffer 15

TR_Num 1

TR_Num 15

TR_Num 0

input 0

input 1

output 0

output 1

input 15

Vertex Data

Figure 3. Hidden Surface Removal

For the Z value interpolation, the coefficients of the
plane equation are used, defined by the formulas shown
below (using screen space vertex coordinates):

)***(
)(*)()(*)(

)(*)()(*)(
)(*)()(*)(

111

01210121

01210121

01210121

zCyBxAD
xxyyyyxxC

zzxxxxzzB
yyzzzzyyA

zzzz

ssssssssz

ssssssssz

ssssssssz

++−=
−−−−−=
−−−−−=
−−−−−=

(4)

z

z
z

z

z
z

z

z
z

C
D

G

C
BF

C
A

E

−=

−=

−=

(5)

A Z value is then calculated using

zzz GyFxEz ++= ** (6)

expression. The current implementation does not
compute these coefficients in hardware, the host has to
do this.

For every pixel, only an addition (or
subtraction) is needed to generate new Z value or
intersection points. To decide which two of the three
intersection points have to be used to determine
covering, a mode_y value is generated. The definition of
mode_y is shown on Figure 4.

Vertex 0

Vertex 1

Vertex 2

mode_y = 0

mode_y = 1

mode_y = 2

mode_y = 3

mode_y = 4

mode_y = 0

Figure 4. Mode_y definition

The meaning of Mode_y:

• Mode_y=0: this line is outside of the triangle
• Mode_y=1: the y coordinate is bigger than

vertex0’s y coordinate and smaller than or equal
to vertex1’s y coordinate. Intersection 0 and 1
should be used.

• Mode_y=2: the y coordinate is bigger than
vertex1’s y coordinate, and smaller than
vertex2’s y coordinate. Intersection 1 and 2
should be used.

• Mode_y=3: the y coordinate is equal to
vertex0’s y coordinate.

• Mode_y=4: the y coordinate is equal to
vertex2’s y coordinate.

For filling, top-left convention is used, that is a pixel is
covered by a given triangle in the following cases:

• It is inside the triangle
• It is on the left edge of a triangle
• It is on the top edge of a triangle (top edge is a

horizontal edge)
• It has the same coordinates as vertex0 or

vertex2
Any incoming triangle has the M0, Z0, A and

mode_y for the 0. tile line already computed (this is done
during - in parallel with - the memory reads to get the
vertex data).

In every clock cycle, all even numbered cells
step one pixel right: increment the x coordinate and
compute a new Z value (add A to the previous value).

ZE F

Odd numb
x, and subt
values then us
be able to do
in one cycle du
every cell com
cell.
Figure 5. sho

processed, t
coefficient B a
time, the 0.
process. If t
processing

 different clock cycles, therefore for
one pix

Z values’ fractional part is stored with 24 bit
nal inside a triangle),

owever the HSR unit also computes Z value when a
ixel is

ered cells step backwards,
ract A to get a new Z value

ed for the comparison w
 the comparison and the

al port memory is use
putes a new mode_y

ws the schematic diagram

After all 32 pixels in the
he Z values are in

nd passed to the next
 cell reads the data of the
here is no more triangle i

 of the next tile starts imme

mx y Ax yx TR Num

second Z and Index memories. In order to maximize
operating frequency, all on-chip memory reads and
writes take place in

E F Z

el the visibility testing requires three clock
cycles, while the complete line is processed in 34
clocks.

precision (this value is fractio
h
p not covered by the triangle, and therefore
additional eight bits are used to be able to compute them
for the whole tile.

Computation is done with fixed point arithmetic
to minimize area requirement and make addition as fast
as possible without too much pipeline stages.

yx mx Ax TR Num

ADD

1y

SET mode_y

mode_y
reg

3x ADD

mx reg

re

TR Num
reg

ADD

MUX MUX

Z regE reg F reg

Compa

Cover test

TR Num
BufferZ Buffer

Figure 5. Z Cell schematic diagram
ne (between
with IEEE single

ess it is
dinates are

 RHW value
ordinate was

quation.
mat - is that

re to reduce
es are then

so they decrement
. The computed Z
ith the Z buffer; to
possible Z writing
d. Parallel to this,
value for the next

 of a Z cell.

 given line are
cremented with
cell. At the same
 next triangle to

n the current tile,
diately using the

3.2 The shading pipeline

The first part of the shading pipeli
the GU and the PS unit) works
precision floating point data format, unl
absolutely unnecessary (e.g. screen pixel coor
stored as integers). Texture coordinates and
are interpolated the same way the Z co
computed, using the coefficients of the plane e
The difference - beyond the floating point for
these coefficients are computed in hardwa
external memory reads. The computed valu
stored in on-chip cache (Block RAM).

The interpolator has mixed floating
point/integer multipliers and floating point adders. The
former has three stages, while the latter has five. The
Compute

, while final color values have 8 bits per
channel.

Design

 based on an entirely different
ode, which was created using the traditional hardware

y; the system was divided into
nctional blocks with well defined inputs, outputs and

control

of SRAM arranged
into fou

s memory.

locks,
nd they can be designed efficiently even with 64 bit

16 bit per channel).

Our targeted clock speed was 20 MHz – as

nt multiplier – and this can be
imited

nterpolation
an

 unit
lay)

reen resolution and

Z
efore

f the design;
nit occupy

nit needs 15%,

ng, A.

e
Developer Magazine, April, 1995. – April, 1996.
[3] Watt, Alan: 3D Computer Graphics, Pearson Education
Ltd./Addison-Wesley Publishing, 2000.
[4] Dr. Szirmay-Kalos, László (editor), Theory of Three
Dimensional Computer Graphics, Publishing House of the
Hungarian Academy of Sciences, 1995
[5] Styles, Henry, Luk, Wayne: Customizing Graphics
Applications: Techniques and Programming Interface, IEEE
Symposium on Field-Programmable Custom Computing
Machines, IEEE Computer Society Press, 2000.
[6] Imagination Technologies, PowerVR Software
Development Kit, Imagination Technologies,
http://www.pvrdev.com
[7] Microsoft, Microsoft DirectX9 Software Development Kit,
Microsoft Corporation, http://msdn.microsoft.com
[8] Mrochuk, Jeff, Carson, Benj, Ling, Andrew: Manticore
project, http://www.icculus.org/manticore/
[9] 3D Graphics Core Group: Low Power Core for 3D
Graphics Texture Mapping, http://www-
unix.ecs.umass.edu/~nramaswa/3dg/proj_details.htm

_U and Compute_V modules are nothing more
than floating point multipliers with fixed point output
(three stages). The divisor unit is based on an iterative
algorithm, and is eight stages long.

The PS unit itself represents color values with
16 bits per channel (red, green, blue, alpha) during the
computation

 This unit is also pipelined, it has four stages and
two parallel blocks (a Texture Sampling and an
Arithmetic unit). The PS unit complies with Microsoft’s
Pixel Shader 1.4 specifications which defines register
numbers and instruction set.

4. Experiences with DK1

The design was done using Celoxica DK1
Suite, the development board was a Celoxica

RC1000 FPGA card.
With Handel-C (the C based hardware

description language behind DK1) it is possible to use
the traditional block based hardware description,
however it also gives the designer the possibility for
further abstraction, and let him concentrate on the pure
algorithm regardless of the particular hardware
realization.

Although a software version of the algorithms
had been coded before the hardware design started, the

PGA implementation isF
c
design philosoph
fu

signals. We found Handel-C supports this
method well. However we feel that it is not too difficult
to rewrite the current Handel-C code into VHDL.

The RC1000 FPGA card has a Xilinx Virtex
2000E FPGA on it with 8 Mbytes

r banks, which can be accessed parallel with 32
bit data width. The FPGA has the necessary number of
Logic Cells and Block RAM size to implement the
design. However the card itself has an unfortunate
disadvantage, as communication is primarily supported
through memory buffers using DMA, and direct
communication with the FPGA is quite limited.
Therefore at any time, one of the memory banks is
reserved for the host to upload transformed vertex data
into the card’

5. Conclusion

The design proved that a 3D rendering
hardware can be implemented in FPGAs. There are
nough resources to implement the needed logic be

a
color precision (

Celoxica DK1 could achieve not much more than this
with the floating poi
achieved with the design. Clock speed is mainly l
by the HSR (and the Block RAMs) and the i
pipeline, while the PixelShader’s arithmetical unit c
reach much more. The speed of the RAMDAC
(which handles synchronization signals for the disp
is different, and determined by sc
refresh rate.

The current implementation does not use 16
processing unit as written earlier, but only 4. Ther
this is not the most resource hungry part o
the floating point interpolation and division u
31% of the chip. The one PixelShader u
the GU takes 10%, while the HSR consumes 8%.

References

[1] Möller, Tomas, Haines, Eric: Real Time 3D Renderi
K. Peters Ltd., 2000.
[2] Hecker, Chris: Perspective Texture Mapping, Gam

