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NUMERICAL CORRECTION AND DECONVOLUTION OF NOISY HV IMPULSES BY MEANS OF KALMAN FILTERING
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Abstract - Deconvolution of noisy transient signals is an impor-
tant task in several fields of science, as in HV engineering. Due
to the limited bandwidth of impulse voltage measurement
systems, the measured signal is often a more or less deformed
version of the original waveform, and what is worse, it is
usually corrupted by noise, which makes deconvolution rather
difficult.

The paper presents an optimized filtering method for
deconvolution, based on Kalman filtering. The results are signi-
ficantly better than that of formerly published algorithms.

After a brief survey of the literature, the new approach is
described and its performance is illustrated.

INTRODUCTION

In many fields of science we are interested in waveforms
that can only be observed after passing through a linear, time
invariant system. Examples include HV engineering (e.g. [1...7],
reflection seismology, astronomy, communication systems etc.
[8]. The effect of an LTI system is described by the convolution
(or Duhamel's) integral:

t
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where y(t) is the measured waveform, x(t ) denotes the input
signal we are interested in, and h(t) is the system impulse
response. The aim in such cases is to find x (1} if y(t) and h(t) are
given.

A similar problem arises if x(1) and y(t) can be measured
and h(t) is to be determined, or in general, if the distortion of
measurement results can be described by a formula like (1).
Applications include quite diverse tasks as X-ray diffractometry
[9], ultrasound tissue characterisation [10] etc.

Though Equ. (1) shows the problem at the first glance to be
solvable, there are some practical aspects causing difficulties:

a) y(t) can never be exactly measured because of the noise pro-
duced by electromagnetic interference and electronic compo-
nents. Quantization has the same effect.

b) Finite observation time causes edge effects.

¢) Data are often obtained in digital form (3], which has advan-
tages, but proper discretization of wide-band signals is not easy,
and roundoff errors of the arithmetics spoil precision of the
calculations, especially in the case of very selective system
transfer functions.

d) Equ. (1) means filtering, i.e. multiplication in the frequency
domain by

H(6 = F{h(t)}.
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Deconvolution can be similarly described as division by H(f). If
H(f) has zeros or very small values, the solution becomes inde-
finite, and noise is amplified unacceptably. In other terms, e.g.
the solution of the following set of equations for {x;}

k
Y= Y Xihk @
i=0

is an ill-posed problem, which means that small uncertainties
(or noise) result in large errors.

Due to these difficulties deconvolution is far from being
trivial.

If both x(1) and y(t) can be modelled by (in wide sense)
stationary stochastic processes, optimal (minimum variance)
solutions can be obtained by means of Wiener or Kalman fil-
tering, or other similar related algorithms [8] . However, the
problem of impulse deconvolution, where x(t) is a transient
waveform as it often arises in HV engineering, is substantially
different from the stationary case.

Apart from the above principal difference this optimal
criterion for the restoration of x(t) does not correspond entirely
to our demand. In HV impulse tests the slope and peak value of
the original impulse are needed, and the least squares criterion
has no practical meaning.

PREVIOUS RESULTS IN HV IMPULSE DECONVOLUTION

Kiersztyn [1] suggested a numerical method for decon-
volution. This is an attempt to find the inverse of (2). As it was
already stated in the discussions, his method was theoretically
correct, the "ill-posedness” of the problem, however, was not
treated.

Malewski {3] suggested smoothing of y(t) before de-
convolution, depending on noise and system characteristics. He
was in principle right, but unfortunately an elaborated method
or criterion was not provided.

Schon and Gitt [2] proposed an iterative, piecewise linear
restoration to improve the shortcomings (noise amplification)
of Kiersztyn's method. Though this rather heuristic approach
seems to work much better than simple direct deconvolution, it
is applicable first of all for piecewise linear waveforms.

Charrat et al. {4] presented another iterative algorithm to
restore x(1). Their approach, i.e. minimizing
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is kept constant, is a systematic one; however, the criterion
cannot be explained in heuristic terms.
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Nikolopoulos and Topalis [5] proposed practically the
same method as Malewski [3], but with the difference that after
smoothing deconvolution is performed step by step,
formulated on the basis of Laplace transfer functions of
elements of the measuring system.

Wei and Shee-kong [6] treated HV impulse deconvolution
on the basis of the

X = YO /HE 3

expression, taking apparently no care of noise problems.

McKnight and Lagnese (7] presented the application of a
statistical method for obtaining confidence intervals for {xi}-
The results seem to be convincing, but computational efforts are
high.

OTHER PUBLICATIONS RELATED TO THE TOPIC

A series of papers deals with the problem of zeros.
Guillaume and Nahman [12], further Parruck and Riad [13] deal
with regularization of (3) by the replacement of 1/H(f), viz.
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respectively. The choice of y or A determines the maximum gain
applied to the noise spectrum. The method incorporates an
interesting way to decrease the difficulties with small values of
H(f); systematic theoretical foundation, however, is lacking.

Grimble [14], Candy and Zicker [15] proposed the use of
Kalman and Wiener filters modified for uncertain system
models. The measurement system with observation noise is
modelled in the usual way, and the input waveform is taken
into consideration as unknown disturbance which is produced
by a subsystem, excited by white noise. The method for
uncertain systems was originally proposed by Schmidt, and is
described by Jazwinski [16].

This last approach is based on the minimum variance
criterion. Though, as noted above, this criterion does not di-
rectly describe our target, a "best fit" on the input signal in any
sense may meet our demand. Moreover, noise amplifi-cation
through deconvolution (small H(f)-values )seems to be the
main trouble, and Wiener and Kalman filters do more or less
what one would expect from an optimal algorithm: com-
pensate the measurement system in such a way that where the
signal dominates in the frequency domain, the resulting trans-
fer function equals approximately 1; the resulting transfer
function decreases.

THE PROPOSED METHOD

The measurement system is to be modelled by the state
equation:

Xk+1 =Pxg +yuy, 6)]

where x} is the state vector and uk is the input waveform. The
observation equation is:

Yk = Mxg + vk, 6)

where vy is the observation noise (EMI, quantization etc.),
which is assumed to be white and to have a known variance ¢ .
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From Equ. (5) an augmented system is formed:

Xk+1 o V¥ Xk O
= + [ ], @

Uk+1 of Ay Jluk) \&
where ek is again assumed to be white (which is a rather
strange assumption, as the Kalman estimgtion of (ek} vylll
usually be not white, since {uk} is a deterministic pu.lse), Geisa
parameter we can adjust to find a good compromise between
signal restoration and noise amplification. Ay represents the
dynamic behaviour of {uk}, it can be chosen e.g. on the basis of
the energy density spectrum of {ug}, or most S}mply as
Ay = l(integrator). In the following simulations, Ay is chosen
to be equal to 1, since not otherwise stated.

For the model described in Egs. (6) and (7) the Kalan filter
equations are well-known, and they can be straightforwardly
programmed. In our simulations we have recalculated the
Kalman gain in every step (instationary Kalman filter). By
solving the Riccati matrix equation, the much simpler
stationary Kalman filter can be programmed as well, since
- according to our experience - the Kalman gain converges
already in some steps. When estimating the augmented state
vector (7) from (yy), the last element is our estimate for the

input series.

SIMULATION RESULTS

First we have compared the performance of the Kalman
filter for a well-documented case presented in [2]. Fig. 1 shows
the result of a direct deconvolution based on the solution of (2).
In this simulation the observation noise has uniform
distribution and zero mean, its maximum amplitude is 0.5% of
the maximum of the input waveform. The sampling interval is
5ns, the point number is 200.
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Figure 1 Deconvolution of the noisy output of a lowpass filter.

a = step response
b = input waveform
c noisy output
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result of deconvolution

In Fig. 2 the results of our method are presented
(continuous line). The fit with the original signal is good,
though some noise can still be observed. To understand how
the filter works, the Bode diagrams of the original and the
compensated systems are shown in Fig. 3. It is clearly visible that



the transfer function of the system is partly compensated, but a
decrease shows up beyond approx. 10MHz. Above this frequency
full compensation would amplify the noise too much with no
significant gain in the signal.
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Figure 2 Signal restoration using the Kalman filter. a, b, ¢ see
Fig. 1.

(Bode)

T
S

signae=0. 0070

MHz
Figure 3 Compensation of H(f)

u = H(f)
v = Transfer function of the Kalman filter
w = Compensated transfer function

The form of the transfer function of the compensated
system can well be explained if we plot the power density
spectrum (PSD) of the noises e and v (see Egs. (6) and (7),
reduced to the input of the system (Fig. 4). The compensated
bandlimit is about at the frequency, where the reduced
observation noise starts to dominate.

On the basis of these results, the following questions may
arise:

- Is the performance only restricted to first-order systems?

- What happens if the state-space model of the system is not
completely correct?

- Is the performance influenced by the waveform of the pulses?
- What happens when the observation noise is increased?

- Can also high quantization noise strongly be reduced?

- Is the algorithm not too time-consuming?
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Figure 4 Power spectral density of the noises reduced to the
input of the system.

f = PSD of the reduced obs. noise
g = PSD of the reduced (hypothetical) noise e

Let us examine the above questions one by one.

Results on a second-order system

Fig. 5 shows an example for the same input ramp
function as assumed before but with a second-order step
response and an output function distorted by the same noise
magnitude as for Fig. 2: The performance is worse than that in
the first-order case, though the result is much better than the
restored input signal (i.e. the dotted "curve") produced by
9-point smoothing and deconvolution. In this simulation, Ay
(see equ. 7) was chosen to describe approximately the spectral
behaviour of {uk} - see also Fig. 9: a second-order system with
two poles of f = 1,05 MHz.
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Figure 5 Deconvolution for a second-order system.
a,b,c seeFig. 1.



Deconvolution with imperfect system model

To have an impression about the sensitivity of the
algorithm on modelling imperfections, the output of the
formerly used first-order system has been processed supposing
an increased time constant (Fig. 6) , Tp = 1.1 T1. This change did
not deteriorate the performance significantly, if compared with
Fig. 2.
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Figure 6 Deconvolution with imperfect system model

A direct deconvolution has been performed too, but after a
15-point smoothing (dotted curve), with the same system
model. The results are obviously similar, though the peak value
of the restored input is less. The different behaviour may be
explained on the basis of the transfer functions (Fig. 7
smoothing only roughly approximates deconvolution.
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Figure 7 Transfer functions for the compensated system (dashed
line) and for the output signal with 15-point smoothing (full
line; one sample per 5 ns).

Deconvolution of an aritifcial waveform

To check whether the performance relies on the form of
the used chopped impulse only , an artificial waveform has
been created (exponential plus sine) and processed with the
algorithm. Fig. 8 shows the results for the first-order system and
the 0.5% observation noise for the output signal. The
reconstructed input signal fits again well with the original one.
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Figure 8 Reconstruction of an oszillating waveform. a, b, ¢ see

Fig. 1.

To explain at this point the rather good performance of the
Kalman filter, the energy density spectra of the two input signals
used are displayed in Fig. 9, together with the energy of the
reduced observation noise, calculated for the finite
measurement time. It can be seen that nearly the whole energy
of the signals is to be found within the passband of the
compensated system, for which the energy of the noise remains
almost negligible.
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Figure 9 Energy density spectra for the two input signals used
and for the observation noise (0.5%).

High-level observation noise

The observation noise applied up to now may be assumed
to be very low. Therefore, a heavily distorted output signal with
5% noise amplitudes was reconstructed for conditions otherwise
used in Fig. 2. The results are shown in Fig. 10. Though the
reconstructed input becomes rather noisy, the result resembles
to the original input pulse.

Deconvolution of roughly quantized waveforms

An output signal has been digitized with 2B =64 quan-
tum levels in the (0,1) interval. Reconstruction is reasonably
good (see Fig. 11), i.e. that the quantization error can well be
modelled with the white noise model.
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Figure 10 Deconvolution of a very noisy output signal. a, b, ¢

see Fig. 1.
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Figure 11 Reconstruction for a digitized output signal with low
rated resolution. a, b, ¢ see Fig. 1.

Calculation speed

All calculations for the 200 samples taken for each
example did not take more time than 1 min when the Kalman
gain was recalculated at every step, and 30 s using the stationary
Kalmann filter (with pre-calculated gain) on an IBM-PC/AT. By
using the simplifications proposed by Jazwinski [16), these
calculation times can be further reduced.

CONCILUSIONS

A Kalman filter based optimized deconvolution method
[15] has been presented and investigated for the reconstruction
of linearly rising front-chopped pulses. On the basis if
simulations it seems to be well suited for the use in HV
measurements.
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