Deep networks for classification



From NN to DL

e Classical NN
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* Open questions: how many hidden layer?



MLP with many hidden layers

* One hiden layer is enough for the universal
approximation property, but there may be
advantageous if more hidden layers are used.

— More complex mapping with smaller number of
neurons in the hidden layers

— Different types of hidden layers can be applied

* Drawbacks
— BP training is slow

— Too many free parameters, too large degree of
freedom

— Intensive computation




Classification

* |[nput data collection from the cases to be
classified

* Definition of descriptive parameters
— Examples (industrial problem, diagnostic problem,...)

— Image clasification
e ROl selection,
e features of the ROIs, construction of feature vectors

e Construct a clasifier (MLP, Basis function network, SVM,...)
based on the feature vectors and the corresponding labels

* Train the classifier



Medical diagnosis as a classification
problem
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Basic steps of classification

M Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor

Feature Trainable
Extractor Classifier
@ Mainstream Pattern Recognition 9until recently)
Feature Mid-Level Trainable
Extractor Features Classifier
M Deep Learning: Multiple stages/layers trained end to end
Low-Level Mid-Level | | High-Level | | Trainable
Features Features Features Classifier




Feature selection

Dimension reduction to determine the most
important features (PCA, KPCA)

Dimension reduction to determine the most
relevant features (PLS, sensitivity analysis)

Looking for a sparse solution (regularization, ...)



Training

e MLP BP algorithm

— Drawbacks saturating nonlinear activation function
e Sigmoidal nonlinearity, the derivatives go to zero ....
e Calculation of exponential function values
e Slow and computationally complex algorithm
* Stick at a local minimum

— How to improve the architecture for avoiding the
drawbacks

* Change the activation function



Activation functions
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- No saturation
== softplus

- No required complex
derivative

- Univ approximation
capability remains

- Efficient gradient-
based learning
algorithms




A new MLP architecture

C(X,Y,0)

1

« Complex learning machines can be
built by assembling modules into

Squared Distance

networks

i

W3, B3 Linear

4 « Linear Module
« Qut = W.In+B

« RelLU Module (Rectified Linear Unit)
« Out, = 0 if In,<0
 Out, = In, otherwise

« Cost Module: Squared Distance
. C = ||In1 - In2]]2
« Objective Function
. L(®)=1/p Z, C(X*,YK,0)
. @ =(W1,B1,W2,B2,W3,B3)

Y (desired output)



Training (BP)
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X (input)
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Training algorithms

SGD

Minibatch

Different gradient algorithms
Momentum (Nesterov momentum)



Data set

* Increase the number of labelled data
 Artificially generated samples (augmentations)
— Shifting
— Rotating
— Flip vertically or horizontally



Feature selection

* Introduction of different type-layers
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* Feature selection is done by the network itself

— Filtering (convolution), many convolutional layers
— Dimension reduction, feature selection



Convolutional layer
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Feature selection

Low-Level| |Mid-Level| [High-Level Trainable
ey ——t —
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



Pooling layer
MAX pooling, average pooling
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Dimension reduction



Fully connected layers
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A complex network
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A complex network
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The first convolutional layer filters the 224x224x3 input image with
96 kernels of size 11x11x3 with a stride of 4 pixels (this is the distance

between the receptive field centers of neighboring neurons in the kernel
map. 224/4=56

The pooling layer: form of non-linear down-sampling. Max-pooling

partitions the input image into a set of rectangles and, for each such sub-
region, outputs the maximum value



Dropout

Complex neurons (to reduce free parameters )

@O ¢
Dropout. set the output of each hidden neuron to zero w.p. 0.5.



Dropout

Dropout: set the output of each hidden neuron to zero w.p. 0.5.

= The neurons which are “dropped out” in this way do not contribute to
the forward pass and do not participate in backpropagation.

= SO0 every time an input is presented, the neural network samples a
different architecture, but all these architectures share weights.

= This technique reduces complex co-adaptations of neurons, since a
neuron cannot rely on the presence of particular other neurons.

» Itis, therefore, forced to learn more robust features that are useful in
conjunction with many different random subsets of the other neurons.

=  Without dropout, our network exhibits substantial overfitting.

= Dropout roughly doubles the nhumber of iterations required to converge.



Autoencoders

 Feature selection, dimension reduction
e (bottleneck layer)



An example

ety

GooglLeNet [Szegedy et al., 2014]




Transfer learning

Transfer learning
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Implementation

TensorFlow
http://download.tensorflow.org/paper/whitepaper2015.pdf

TensorFlow - Multi GPU 1\'
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/ six training images that produce feature vectors in
Test column the last hidden layer with the smallest Euclidean distance
from the feature vector for the test image.



Implementation

Models:
GoogleNet: CNN model finetuned on the Extended Salient Object Subitizing dataset

(~11K images) and synthetic images. This model significantly improves over our previous
models. Recommended.

AlexNet: CNN model finetuned on our initial Salient Object Subitizing dataset (~5500
images). The architecture is the same as the Caffe reference network.

VGG16: CNN model finetuned on our initial Salient Object Subitizing dataset (~5500

images).

Many further details can be found in http://deeplearning.net/

Some figures of this slide set was obtained from:
- Deep Learning NIPS’2015 Tutorial, Geoff Hinton, Yoshua Bengio & Yann LeCun
- Introduction to Machine Learning CMU-10701 Deep Learning


https://gist.github.com/jimmie33/7ea9f8ac0da259866b854460f4526034
https://gist.github.com/jimmie33/0585ed9428dc5222981f
https://gist.github.com/jimmie33/27c1c0a7736ba66c2395
http://deeplearning.net/
http://deeplearning.net/
http://deeplearning.net/

