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SUMMARY 

A tutorial on the partial least-squares (PLS) regression method is provided. Weak points 
in some other regression methods are outlined and PLS is developed as a remedy for those 
weaknesses. An algorithm for a predictive PLS and some practical hints for its use are 
given. 

The partial least-squares regression method (PLS) is gaining importance in 
many fields of chemistry; analytical, physical, clinical chemistry and indus- 
trial process control can benefit from the use of the method. The pioneering 
work in PLS was done in the late sixties by H. Wold in the field of econo- 
metrics. The use of the PLS method for chemical applications was pioneered 
by the groups of S. Wold and H. Martens in the late seventies after an initial 
application by Kowalski et al. [ 11. In spite of the large amount of literature 
that emerged from these groups, most articles describing PLS give algorithms 
and theory that are incomplete and often difficult to understand. Two recent 
articles [2, 31 show that PLS is a good alternative to the more classical 
multiple linear regression and principal component regression methods 
because it is more robust. Robust means that the model parameters do not 
change very much when new calibration samples are taken from the total 
population. 

This article is meant as a tutorial. The reader is referred to texts on linear 
algebra [4, 51 if needed. The two most complete articles on PLS available at 
present are by S. Wold et al. [4, 61. The nomenclature used in Kowalski [6] 
will be used here. Furthermore, all vectors will be column vectors. The corre- 
sponding row vectors will be designated as transposed vectors. The notation 
will be kept as rigorous as possible. Table 1 lists the notation used. The 
paragraphs on multiple linear regression, principal component analysis and 
principal component regression are included because they are necessary for a 
good understanding of PLS. They do not represent a complete treatment of 
these subjects. 

aPresent address: Chemometrics Group, Department of Organic Chemistry,.Umea Univer- 
sity, S-901 87 Umel, Sweden. 
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TABLE 1 
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1, 

the Friibenius or Euclidian norm 
a dummy index for counting samples (objects) 
a dummy index for counting independent (x) variables 
a dummy index for counting dependent (y) variables 
a dummy index for counting components or factors 
the number of samples in the calibration (training) set 
the number of independent (x) variables 
the number of dependent (y) variables 
the number of factors used (< rank of X) 
the number of samples in a prediction (test) set 
a column vector of features for the independent variables (size m x 1) 
a column vector of features for the dependent variables (size p x 1) 
a matrix of features for the independent variables (size n x m) 

a matrix of features for the dependent variables (size n x p) 
a column of (size m x 1) 
a matrix of sensitivities for the MLR method (size m x p) 
a column vector of scores for the X block, factor h (size n x 1) 
a row vector of loadings for the X block, factor h (size 1 x m) 

a row vector of weights for the X block, factor h (size 1 x m) 

the matrix of X scores (size n x a) 
the matrix of X loadings (size a x m) 

a column vector of scores for the Y block, factor h (size n x 1) 
a row vector of loadings for the Y block, factor h (size 1 x p) 
the matrix of Y scores (size n x a) 

the matrix of Y loadings (size a x p) 
a rank 1 matrix, outer product of th and pi (size n X m) 

the residual of X after subtraction of h components (size n x m) 

the residual of Y after subtraction of h components (size n x p) 
the regression coefficient for one PLS component 
the identity matrix of size n x n 

the identity matrix of size m x m 

Calibration (training) and prediction (test) steps 
Chemical analysis usually consists of two steps. First, the characteristics of 

a method or instrument are investigated and an attempt is made to find a 
model for its behavior (a model is a relationship Y = f(X) between two 
groups of variables, often called dependent Y and independent X). This is 
the calibration or training step. The data set used for this step is called a 
calibration or training set. The model parameters are called regression 
coefficients or sensitivities. The second step is the one in which the indepen- 
dent variables are obtained for one or more samples. These are used together 
with the sensitivities to predict values for the dependent variables. This is the 
prediction or test step. The data set used in this step is the prediction or test 
set. 

The terms dependent block and independent block are introduced for the 
blocks of dependent and independent variables, respectively. 



3 

Mean-centering and scaling of variables 
Before the model is developed, it is convenient to tailor the data in the 

calibration set in order to make the calculations easier. For ease of explana- 
tion, the values for each variable are used in the mean-centered form. The 
average value for each variable is calculated from the calibration set and then 
subtracted from each corresponding variable. In the rest of the text, all 
variables, both dependent and independent, are assumed to be mean-centered. 

There are also different ways of scaling the variables. It should be pointed 
out that the dependent variables and the independent ones can be scaled 
differently because the sensitivities absorb the differences in scaling. There 
are essentially three ways of treating variables. In one, no scaling is needed 
when all the variables in a block are measured in the same units, as in spec- 
trometry. In the second, variance scaling is used when the variables in a 
block are measured in different units (e.g., ppm, %, km); scaling is accom- 
plished by dividing all the values for a certain variable by the standard devia- 
tion for that variable, so that the variance for every variable is unity. Thirdly, 
one can decide that certain variables are of less importance and hence should 
not influence the model very much; so they are given a smaller weight. 

An illustration of scaling and mean centering is given in Fig. 1. In the fur- 
ther text, all variables are assumed to have some type of scaling, whichever is 
considered to be most appropriate. 

MULTIF’LE LINEAR REGRESSION (MLR) 

The multiple linear regression (MLR) problem can be stated as follows. 
Features are measured for m variables Xj (j = 1 - m) and for a variable y with 
the goal to establish a linear (or first-order) relationship between them. This 
can be represented mathematically as 

y = blxl + b2x2 + bJrJ + . . . + b,x, + e (la) 

Fig. 1. Data preprocessing. The data for each variable are represented by a variance bar 
and its center. (A) Most raw data look like this. (B) The result after mean-centering only. 
(C) The result after variance-scaling only. (D) The result after mean-centering and variance- 
scaling. 
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y = ‘f b,x, + e 
J=l 

(lb) 

y = x’b + e UC) 
In Eqn. l(a), the xJ are called independent variables and y is the dependent 
variable, the bJ’s are sensitivities and e is the error or residual. In Eqn. l(c), y 
is a scalar, b is a column vector and x’ is a row vector. 

Equation 1 describes multilinear dependencies for only one sample. If one 
gets n samples, the y, (i = 1 - n) can be written as a column vector y, b 
remains the same and the vectors, xi, form the rows of a matrix X: 

y=Xb+e (2) 

For a better understanding of these matrix equations, they are also given in 
graphical representation: 

m 1 1 

iml 

= X b + e 

m 

n n n 

In this case, n is the number of samples and m the number of independent 
variables. 

It is now possible to distinguish among three cases. 
(1) m > II. There are more variables than samples. In this case, there is an 

infinite number of solutions for b, which all fit the equation. This is not 
what is wanted. 

(2) m = n. The numbers of samples and of variables are equal. This situation 
may not be encountered often in practical situations. However, it gives a 
unique solution for b provided that X has full rank. This allows us to write 

e=y-Xb=O (3) 

e is called the residual vector. In this case, it is a vector of zeroes: 0. 
(3) m < n. There are more samples than variables. This does not allow an 

exact solution for b. But one can get a solution by minimizing the length of 
the residual vector e in the following equation: 

e=y-Xb (4) 

The most popular method for doing this is called the “least-squares method”. 
The least-squares solution is 

b = (X’X)-‘X’y (5) 

(Complete explanations are available elsewhere [5, 7, 81.) Equation 5 gives a 
hint towards the most frequent problem in MLR: the inverse of X’X may 



not exist. Collinearity, zero determinant and singularity are all names for the 
same problem. A good description of this situation is available [ 91. 

At this point, it might appear that there always have to be at least as many 
samples as variables, but there are other ways to formulate this problem. One 
of them is to delete some variables in the case m > n. Many methods exist 
for choosing which variables to delete [ 7,8). 

Multiple linear regression with more than one dependent variable 
A popular misconception is that MLR is only possible for one dependent 

variable. This is the case that is almost always found in textbooks. Also, 
most software packages run MLR in this way. It is easy to extend MLR for 
more dependent variables. The example given here is for two variables, but 
extension to more than two is straightforward. 

Suppose there are two dependent variables, y1 and y2. In this case, one can 
simply write two MLR’s and find two vectors of sensitivities, bl and b2: 

y1 = Xbl + e,; y2 = Xb2 + e, (6) 

But one can then put y1 and y2 side by side in a n X 2 matrix and do the same 
for bl and b2 and el and e,. So one gets 

Y=XB+E (7) 

where Y = (y1y2), B = (b,b,) and E = (ele2). A more graphical representation 
for 2 - p dependent variables is 

2-p 

[j-Fpid’ 

n n n 

This is the general case that will be referred to in the further text. 

Summary: MLR 
- For m > n, there is no unique solution unless one deletes independent 
variables. 
- For m = n, there is one unique solution. 
- For m < n, a least-squares solution is possible. For m = n and m < n, the 
matrix inversion can cause problems. 
- MLR is possible with more than one dependent variable. 

PRINCIPAL COMPONENT ANALYSIS (PCA): NIPALS METHOD 

Principal component analysis (PCA) is a method of writing a matrix X of 
rank r as a sum of r matrices of rank 1: 

X=M,+M,+M,+...+M, (8) 
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or in graphical representation: 

w+-J+m+...+m 

(Rank is a number expressing the true underlying dimensionality of a matrix.) 
These rank 1 matrices, Mh, can all be written as outer products of two 
vectors, a score th and a loading pk: 

x = t1p; + t2p; + . . . * . . . . + t,p:, (9) 

or the equivalent X = TP’ (P’ is made up of the p’ as rows and T of the t as 
columns) or graphically: 

a=fl@+a,@+ +@a 

n 
=ypy ” ” 

0 n 

To illustrate what the th and p;1 mean, an example for two variables, in the 
two-dimensional plane, is shown in Fig. 2A. Extension to more dimensions is 
easy but difficult to show on paper. For the example in Fig. 2A, the principal 
component is the line of best fit for the data points that are shown in Fig. 2B. 
Best fit means that the sum of squares of 3c1 and ;Y~ residuals is minimized. 
This is also the average of both regression lines. It goes from - to +=. The 
p; is a 1 X 2 row vector. Its elements, p 1 and p2, are the direction cosines, or 
the projections of a unit vector along the principal component on the axes of 

Fig. 2. A principal component in the case of two variables: (A) loadings are the angle 
cosines of the direction vector; (B) scores are the proJections of the sample points (l-6) 
on the principal component direction. Note that the data are mean-centered. 
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the plot. The scores vector, th, is a n X 1 column vector. Its elements are the 
coordinates of the respective points on the principal component line (Fig. 2B). 
For this example, it can easily be understood why one wants the length of 
the pk to be one [cos (0,)’ + cos (0,)” = cos (0,)’ + sin (0,)’ = l] ; similar 
rules exist for more than two dimensions. 

Generally, what one wants is an operator that projects the columns of X 
onto a single dimension and an operator that projects the rows of X onto a 
single dimension (see Fig. 3). In the first case, each column of X is repre- 
sented by a scalar; in the second case, each row of X is represented by a scalar. 
In the rest of this section it will be shown that these operators are of a 
very simple nature. 

Nonlinear iterative partial least squares (NIPALS) does not calculate all 
the principal components at once. It calculates t1 and pi from the X matrix. 
Then the outer product, tip’,, is subtracted from X and the residual E 1 is 
calculated. This residual can be used to calculate t2 and pi: 

El = X-ttlp: E2=E1--t2p;... 

Eh =Eh- I -thd . . . Etanh(xj = o= Etanti(x)- 1 -ttanh~X&.anh~X~ (10) 

The NIPALS algorithm is as follows: 

(1) take a vector x, from X and call it t,,: th = x, (11) 

(2) calculate pk: ph = tLX/tkth (12) 

(3) normalize p;1 to length 1: p;, = P;lold/llP;loldll (13) 

(4) calculate th : th = xph/phph (14) 

(5) compare the th used in step 2 with that obtained in step 4. If they are the 
same, stop (the iteration has converged). If they still differ, go to step 2. 

m m 1 

EH 

t 

“Y 

n n 

m . . 

I 
1 

P' 

Fig. 3. Scores and loadings are obtained by projecting X into vectors. Loadings. each 
column of X is projected into an element of the vector p’. Scores: each row of X is pro- 
jected into an element of the vector t. 
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(Note that after the first component is calculated, X in steps 2 and 4 has to 
be replaced by its residual.) 

An explanation of how NIPALS works can be seen when one realizes that 
thth in Eqn. 12, lIpAll in Eqn. 13 and pLph in Eqn. 14 are scalars. These scalar 
constants are best combined in one general constant C. Then one can substi- 
tute Eqn. 12 into 14: th = Xp, and px = t;X give Cph = (Xp,)‘X, or Cpk = 
p;lX’X, or (CI, - X’X)p, = 0; or one can substitute Eqn. 14 into 12 and get 
(C’I, - XX’)th = 0. These are the eigenvalue/eigenvector equations for X’X 
and XX’ as used in the classical calculation. (I, is the identity matrix of size 
n X n; I, is that of size m X m. ) The classical eigenvector and eigenvalue 
theory is well described by Strang [lo]. 

It has been shown that on convergence, the NIPALS solution is the same 
as that calculated by the eigenvector formulae. The NIPALS method is con- 
venient for microcomputers; it is also necessary for a good understanding of 
PLS. Otherwise, it does not matter what method one uses. In practical situa- 
tions, NIPALS usually converges; in the case of nonconvergence, two or 
more very similar eigenvalues exist. Then it does not matter which combina- 
tion or rotation of eigenvectors is chosen. The reader is referred to Mardia 
et al. [ 51 for a more detailed discussion of PCA. 

Summary: PCA 
- A data matrix X of rank r can be decomposed to a sum of r rank 1 matrices. 
- These rank 1 matrices are outer products of vectors called scores and load- 
ings. 
- The scores and loadings can be calculated pair-by-pair by an iterative pro- 
cedure. 

PRINCIPAL COMPONENT REGRESSION (PCR) 

The results from the section on PCA can be used to explain the principal 
component transformation of a data matrix X. This is a representation of X 
as its scores matrix T (where dimensions having small eigenvalues are ex- 
cluded). The transformation is 

T = XP (= TP’P = TI,) (15) 

or graphically: 

So now the MLR formula can be written as 

Y = TB + E (solution: B = (T’T)-‘T’Y) (16) 
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or graphically: 

The variables of X are replaced by new ones that have better properties 
(orthogonality) and also span the multidimensional space of X. The inversion 
of T’T should give no problem because of the mutual orthogonality of the 
scores. Score vectors corresponding to small eigenvalues can be left out in 
order to avoid collinearity problems from influencing the solution [9] . 

PCR solves the collinearity problem (by guaranteeing an invertible matrix 
in the calculation of 8) and the ability to eliminate the lesser principal com- 
ponents allows some noise (random error) reduction. However, PCR is a two- 
step method and thereby has the risk that useful (predictive) information 
will end up in discarded principal components and that some noise will 
remain in the components used for regression. 

Detailed information on PCR is given by Mardia et al. [5] and Draper and 
Smith [ 71. Gunst and Mason [ 81 give a slightly different definition of PCR. 

Summary: PCR 
- A data matrix can be represented by its score matrix. 
- A regression of the score matrix against one or several dependent variables 
is possible, provided that scores corresponding to small eigenvalues are 
omitted. 
- This regression gives no matrix inversion problems; it is well conditioned. 

PARTIAL LEAST-SQUARES REGRESSION 

Model building 
The PLS model is built on the properties of the NIPALS algorithm. As 

mentioned in the PCR section, it is possible to let the score matrix represent 
the data matrix. A simplified model would consist of a regression between 
the scores for the X and Y block. The PLS model can be considered as con- 
sisting of outer relations (X and Y block individually) and an inner relation 
(linking both blocks). 

The outer relation for the X block (cf. PCA section) is 

X = TP’ + E = C thp;t + E (17) 

One can build the outer relation for the Y block in the same way: 

y = DQ’ + F* = C uhq; + F” (18) 

Graphically, Eqns. 17 and 18 can be shown as 
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“~j-p+Q 
” ” ” 

The summations are from 1 to a. One can describe all the components and 
thus make E = F* = 0 or not. How and why this is done is discussed below. 
It is the intention to describe Y as well as is possible and hence to make IIF* 
as small as possible and, at the same time, get a useful relation between X 
and Y. The inner relation can be made by looking at a graph of the Y block 
score, u, against the X block score, t, for every component (Fig. 4). The 
simplest model for this relation is a linear one: 

fib = bhth (19) 

where b, = u~t&,th. The bh play the role of the regression coefficients, b, in 
the MLR and PCR models. 

This model, however, is not the best possible. The reason is that the prin- 
cipal components are calculated for both blocks separately so that they have 
a weak relation to each other. It would be better to give them information 
about each other so that slightly rotated components result which lie closer 
to the regression line of Fig. 4. 

Over-simplified model: 2x PCA. An over-simplified model can be written 
in algorithmic form as in the NIPALS section. 

For the X block: ( 1) take tstart = some Xj; (2) p’ = t’X/t’t (= U’x/U’U); 

(3) PlW = Pbd/llP;i& (4) t = XP/P’Pi (5) compare t in steps 2 and 4 and if 
they are equal stop, else go to 2. 

Fig. 4. The inner relation. A linear regression of u against t. Note that the data are mean- 
centered. 
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For the Y block, (1) take uStart = some yj; (2) q’ = u’Y/u’u (= t’Y/t’t); 
(3) qLw = qbM/llqhdll; (4) u = Yq/q’q; (5) compare u in steps 2 and 4 and if 
they are equal stop, else go to 2. 

Improving the inner relation: exchange of scores. The above relations are 
written as completely separated algorithms. The way each can get informa- 
tion about the other is to let t and u change place in step 2. (Note the parts 
in parentheses in this step.) Thus, the two algorithms can be written in 
sequence: (1) take uStart = some y,; (2) p’ = u’X/u’u (w’ = uX/u’u); (3) ph,, = 
Pbld/llPbdll (wLJ = wbJllw&ll); (4) t = Xp/p’p (t = Xw/w’w); (5) q’ = t’Y/t’t; 
(6) qkw = q&/llq&ll; (7) u = Yq/q’q; (8) Compare the t in step 4 with the 
one in the preceding iteration step. If they are equal (within a certain round- 
ing error), stop; else go to 2. (In the case for which the Y block has only one 
variable, steps 5-8 can be omitted by putting Q = 1.) 

This algorithm usually converges very quickly to give rotated components 
for X and Y block. 

Obtaining orthogonal X block scores. There is still a problem; the algo- 
rithm does not give orthogonal t values. The reason is that the order of calcu- 
lations that was used for the PCA has been changed. Therefore, the p’ are 
replaced by weights w’ (see formulas in parentheses in previous subsection). 
An extra loop can be included after convergence to get orthogonal t values: 

P ’ = t’x/t’t (20) 

With pk = p&/llp&ll, it becomes possible to calculate the new t: t = Xp/p’p, 
but this turns out to be just a scalar multiplication with the norm of the p’ in 
Eqn. 20: t,, = t,llp&ll . Orthogonal t values are not absolutely necessary, 
but they make the comparison with PCR easier. One must give the same 
resealing to the weights, w’, if the prediction is to be made without error: 
W’ = w&llp&ll . Then t can be used for the inner relation as in Eqn. 19, and 
thlmresiduals can be calculated from El = X - tip’, and FT = Y - u,q’,. In 
general, 

Eh=Eh---tthp;l; X=E,, (21) 

F$=Ft----t+,q;l; Y=F,, (22) 

But in the outer relation for the Y block, uh is replaced by its estimator, uh = 
bhth, and a mixed r&itiOn iS obtained: 

Fh = Fh - 1 - b,,thq;, (23) 

(It is recalled that the aim is to make IIFhll small.) This mixed relation ensures 
the ability to use the model parameters for predicting from a test set. Further- 
more, because the rank of Y is not decreased by 1 for each component, one 
can go on until the rank of the X block is exhausted. The complete algorithm 
is given in the Appendix together with an illustration of the matrices and 
vectors. 
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Summary: PLS 
- There are outer relations of the form X = TP’ + E and Y = UQ’ + F*. 
- There is an inner relation Qh = bhth. 
- The mixed relation is Y = TBQ’ + F where l[Fll is to be minimized. 
- In the iterative algorithm, the blocks get each other’s scores, this gives a 
better inner relation. 
- In order to obtain orthogonal X scores, as in the PCA, it is necessary to 
introduce weights. 

Properties of the PLS factors 
For the user of PLS, it is obviously of interest to know what kind of pro- 

perties to expect from it. The main properties can be summarized as follows. 
The quantities p;I and q;l have unit length for each h: llp~ll = IlqLll = 1, or 

ZPt = 1 and Zq& = 1 forj = 1 to m. 
Both th and uh are centered around zero for each h: Zthi = 0 and Zuhy = 0 

for i = 1 to n. 
The w; are orthogonal: wfwj = 6i,Jl Wf112 where 6,j is the Kronecker delta. 
The th are orthogonal: titj = 6i~lltil12. 
It is useful to check that these properties hold for a number of data sets. 

These properties are also good indicators for computer rounding errors. 

Prediction 
The important part of any regression is its use in predicting the dependent 

block from the independent block. This is done by decomposing the X block 
and building up the Y block. For this purpose, p’, q’, w’ and b from the cali- 
bration part are saved for every PLS factor. It should be noted that the new 
X block has r samples instead of n. 

The independent blocks are decomposed and the dependent block is built 
up. For the X block, t is estimated by multiplying X by w as in the model 
building part 

ih = E+_Iw~ (24) 

E, =Eh+-&,p;I 

For the Y block: 

Y = Fh = E b&q; 

(25) 

(26) 

where the summation is over h for all the factors (a) one wants to include 
and X = EO, Y = F,. 

Number of components 
If the underlying model for the relation between X and Y is a linear model, 

the number of components needed to describe this model is equal to the 
model dimensionality. Nonlinear models require extra components to des- 
cribe nonlinearities. The number of components to be used is a very impor- 
tant property of a PLS model. 
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Although it is possible to calculate as many PLS components as the rank 
of the X block matrix, not all of them are normally used. The main reasons 
for this are that the measured data are never noise-free and some of the 
smaller components will only describe noise, and that, as mentioned in 
earlier paragraphs, it is common to leave out small components because they 
carry the problems of collinearity. 

This means that there must be one or several methods to decide when to 
stop. One possible criterion can be found in Eqn. 23, where the norm of Fh 
should be small. Figure 5 gives a plot of llF,Jl vs. the number of components. 
It is possible to choose a threshold level and to stop when llFhll goes below 
that threshold. Another possibility is to look at the difference between actual 
and previous llF,J values and to stop when this becomes small compared to 
some previously established measurement error. A combination of threshold 
and difference methods would be preferable. 

Sometimes the analysis of variance with F-test on the inner relation can be 
used to validate the model. In this case, one uses the F-test on the linear 
regression [ 71. 

The above-mentioned methods are valuable for the model-building stage 
of PLS. If prediction is desired, another class of methods must be used to 
establish the number of components needed. These methods are called cross- 
validation. One can calculate a statistic for lack of prediction accuracy called 
PRESS (prediction residual sum of squares). Figure 6 gives a sample plot of 
the PRESS statistic against the number of components. It is obvious that one 
wants to use the number of components that gives a minimal PRESS. The 
location of this minimum is not always well defined. The evaluation of the 
number of components is analogous to the concept of detection limits, 
i.e., the smallest signal that can be detected in the presence of noise. See 
[ 111 for more detail. 

t 

I I I I , 

0 2 4 6 8 IO 
NUMBER OF COMPONENTS 
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.-- 0” 
-e-_. ’ 
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I I I 1 

0 2 
NUMBER :F COkPONE!NTS 

I l 

IO 

Fig. 5. 11 Fhll vs. the number of PLS components. A threshold and/or a difference criterion 
(see A in figure) can be used to stop the algorithm. 

Fig. 6. Plot of PRESS against the number of components. This criterion evaluates the 
predictive power of the model. The number of components giving a minimum PRESS is 
the right number for the model that gives optimal prediction. In this example, models 
with 4-8 components would be acceptable. 
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Statistics 
From the matrices of residuals Eh and F,,, sums of squares can be calcu- 

lated as follows: the total sum of squares over a matrix, the sums of squares 
over rows, and the sums of squares over columns. These sums of squares can 
be used to construct variance-like estimators. The statistical properties of 
these estimators have not undergone a rigorous mathematical treatment yet, 
but some properties can be understood intuitively. 

The sum of squares of the Fh is the indicator of how good the model is 
(Eqn. 23). The sum of squares of Eh is an indicator of how much of the X 
block is not used in the model. In some cases, a substantial part of the X 
block does not participate in the model, which means that the independent 
variables have unexpected properties or large errors. 

Fig. 7. Statistics for the variables. The data are shown as bars representing the sum of 
squares per variable (for the model building both X and Y variables; for the prediction 
only X variables). After 0 PLS components, the data is in mean-centered and variance- 
scaled form. As the number of PLS components increases, the information in each 
variable is exhausted. The hatched bar shows the behavior of a “special” variable, one 
that contributes little to the model. 

Fig. 8. Statistics for the objects (samples). The data are shown as bars representing the 
sum of squares per object. As the number of PLS components increases, the sum of 
squares for each object decreases. The hatched bar shows the behavior of a “special” 
object, probably an outlier. 
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Fig. 9. A graphical represent&on of the matrices and vectors used in PLS. 

Sums of squares over the columns indicate the importance of a variable 
for a certain component. Sums of squares over the rows indicate how well 
the objects fit the model. This can be used as an outlier detection criterion. 
Illustrations are given in Fig. 7 for variable statistics and in Fig. 8 for sample 
statistics. More on this can be found in the articles by S. Wold et al. as cited 
elsewhere [4,6]. 

An advantage of PLS is that these statistics can be calculated for every 
component. This is an ideal means of following the model-building process. 
The evolution of these statistics can be followed (as shown in Figs. 7 and 8) 
as more and more components are calculated so that an idea of how the 
different objects and variables fit can be obtained. In combination with a 
criterion for model dimensionality, the statistics can be used to estimate 
which objects and variables contribute mainly to the model and which 
contribute mainly to the residual 

Conclusion 
The topic of partial least squares is much larger than the material covered 

above. Some subjects not discussed at all or not in detail are: outlier detec- 
tion, treatment of missing data, F and t statistics, classification/pattern 
recognition, leverage, selection of variables, data transformations, extensions 
to more blocks and hierarchical models, and lack of fit. 

There are also other PLS algorithms. Each may have some advantage in a 
particular application. The algorithm given here is one of the most complete 
and elegant ones when prediction is important. An example of its application 
to simulated data is given in the next paper [ 111. 
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Appendix: The PLS algorithm 
It is assumed that X and Y are mean-centered and scaled: 

For each component: (1) take w = some y,. 

In the X block: (2) w’ = u’X/u’u 

(3) wtw = w&/l1 w&l (normalization) 

(4) t = Xwlw’w 

In the Y block: (5) q’ = t’Y/t’t 

(6) qh, = q~&llq;11dll (normalization) 

(7) u = Yqlq’q 

the Center for Process 
Cooperative Research 

Check convergence: (8) compare the t in step 4 with the one from the preceding iteration 
If they are equal (within a certain rounding error) go to step 9, else go to step 2. (If the 
Y block has only one variable, steps 5-8 can be omitted by putting q = 1, and no more 
iteration is necessary.) 

Calculate the X loadings and rescale the scores and weights accordingly: 

(9) p’ = t’xlt’t 

(IO) P;lew = p&j/II p&II (normalization) 

(11) tnew = toldllpbldll 

(12) w&v = w&jllp;ldtt 

(p’, q’ and w’ should be saved for prediction; t and u can be saved for diagnostic and/or 
classification purposes). 

Find the regression coefficient b for the inner relation: 

(13) b = u’t/t’t 

Calculation of the residuals. The general outer relation for the X block (for component 

h) is 

Eh = Eh-i - thp;I; X = E, 

The mixed relation for the Y block (for component h) is 

F,, = Fh-i - bhthqh; Y = F, 

From here, one goes to Step 1 to implement the procedure for the next component. 
(Note: After the first component, X in steps 2,4 and 9 and Y in steps 5 and 7 are replaced 
by their corresponding residual matrices E,, and F,, .) 

Matrices and vectors are shown graphically in Fig. 9. 
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