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Abstract—Optimizing overall performance of Wireless Sensor 
Networks (WSNs) is important due to the limited resources 
available to nodes. Several aspects of this optimization problem 
have been studied (e.g. improving Medium Access Control 
(MAC) protocols, routing, energy management) mostly 
separately, although there is a strong inter-connection between 
them. In this paper an Artificial Intelligence (AI) based 
framework is presented to address this problem. Mixed-
Observability Markov Decision Processes (MOMDPs) are used 
to effectively model multiple aspects of WSNs in stochastic 
environments including MAC in data link layer, routing in 
network layer, data aggregation, power management, etc. 
MOMDPs distinguish between full and partial observability, 
hence they are more efficient than other similar AI methods. 
The proposed framework provides global optimization of user-
defined performance metrics, e.g. minimization of time delay, 
energy consumption and data inaccuracy. Near-optimal joint 
network policies are obtained via offline approximation of 
optimal MOMDP solutions and they are distributed among the 
individual nodes. Resulting node-policies place effectively no 
additional computational overhead on nodes in runtime. 
Experiments evaluate the framework by demonstrating near-
optimal solutions for a small-scale WSN in detail in case of 
given tradeoff criteria. The proposed approach produces better 
joint network behavior in 5 out of 6 cases compared to other 
two standard methods in simulation by increasing overall 
network performance by more than 20% in average. 

Keywords-partially observable Markov decision processes; 
wireless sensor networks; mixed observability; overall 
performance optimization; decentralized; tradeoff optimization 

I.  INTRODUCTION 
Wireless Sensor Networks (WSNs) [1] are used for 

decentralized measurement of real-time data. The recent 
application of such networks ranges from home automation, 
through industry control to outer space monitoring [2]. The 
overall efficiency of such networks is important in every 
application, yet there is still no general means to optimize it. 
The difficulty arises from the limited resources of nodes; the 
uncertain, dynamic environment; nodes’ partial and 
asymmetric information about the current state of the 
environment; the decentralized nature of nodes’ operation; 
and the strong inter-connection between different network 
layers such as Medium Access Control (MAC) protocols in 
data link layer; routing in network layer, topology control 

and data aggregation algorithms; power management 
schemes; sleep/wake and data generation policies, etc. 

Several methods were proposed to cope with the above 
issues [3], [4], [5] and [6], but none of them provides a 
means to solve them together in general. The proposed 
solutions are either too specific (e.g. [3]), or of limited scope 
(e.g. [5][7]), or overly simplifying (e.g. [6]), or their 
(near)optimality is not guaranteed (e.g. [4]). There is also 
research about tradeoff optimization in WSNs [8], however it 
takes account of 3 fixed factors currently (delay, energy and 
accuracy), and has no guarantee about optimality. 

In this paper the above issues are addressed in general. 
Well established optimization methods are borrowed from 
Artificial Intelligence (AI), and applied to find a multi-layer 
policy/program for each WSN node to altogether produce an 
approximately optimal joint network behavior according to a 
given, user-defined performance metric. 

A straightforward choice for this reason is to apply 
Partially Observable Markov Decision Processes (POMDPs) 
[9][10] which guarantee optimal behavior in uncertain 
environments, but because of the complexity of real-world 
situations, approximations are needed in practice (currently 
optimal solutions of problems with around 1060 states can be 
approximated [11]). Beside approximation another approach 
is to factorize the problem description. One of the most 
recent techniques combining approximation and factorization 
is MOMDP (Mixed Observability MDP) [12], which 
intuitively divides the problem into a fully and a partially 
observable part, which are then vectorized further into 
individual inter-related variables. Beyond the convenience of 
use of this approach, it also allows a significant speed-up by 
reducing the dimensionality of the problem. 

Because of the above advantages we chose MOMDPs to 
model and optimize WSNs in our work, but MOMDPs 
similarly to POMDPs are single agent concepts, while WSNs 
incorporate multiple agents (nodes). Decentralized POMDPs 
(DEC-POMDPs) [13] could offer a solution, but at the price 
of very high computational complexity. So we finally 
decided to model the whole network as a single agent with 
MOMDP, approximate an optimal MOMDP solution offline 
and then distribute this near-optimal solution (which is a 
near-optimal policy for the whole network) among the 
individual nodes to govern their individual behavior in 
runtime. Resulting node-policies are collections of simple 
non-numeric if-then rules, which place effectively no 
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 ܾԢሺݏԢሻ ൌ ߬ሺܾ, ܽ, Ԣሻݏሻሺ݋ ൌ ,Ԣݏሻܼሺ݋ሺߟ ܽ, ሻ݋ ∑ ܶሺݏ, ܽ, ௌאሻ௦ݏԢሻܾሺݏ  (1) 

Equation (1) calculates the probability that after 
executing a, given b, we arrive to state s’, and then weights 
this with the probability of receiving observation o in s’ after 
executing a. ߟሺ݋ሻ ൌ 1 ሾ∑ ܼሺݏԢ, ܽ, ሻ݋ ∑ ܶሺݏ, ܽ, ௌאௌ௦ᇲאሻ௦ݏԢሻܾሺݏ ሿ⁄  is a 
normalizing constant. 

Now based on b’ the agent chooses its new action 
according to ߨ . After executing ߨሺܾԢሻ  a transition occurs, 
and a new observation is received again. The agent updates 
its belief accordingly and the whole process repeats again. 
The initial belief ܾ଴ is assumed to be given at the beginning. 

The above concept can be used for online decision 
making when actions are chosen and observations are 
received in runtime accompanied with the appropriate ܴሺݏ, ܽሻ  rewards, or it can be used offline by calculating 
contingencies in advance. In the latter case the agent receives 
only an expected reward, ݎሺܾ, ܽሻ ൌ ∑ ܾሺݏሻܴሺݏ, ܽሻ௦אௌ . 

The online approach does less calculations overall than 
the offline approach and also it can be used in case when the 
reward function is initially not known, but the agent needs to 
update the probability of every ݏԢ א ܵ state at every step, so 
it may not be feasible for large state spaces in runtime with 
bounded resources. In this case it may be more suitable to 
use the offline approach. Either way the choice of actions is 
of central importance. What action should we choose at a 
given time period? Are there optimal actions and/or 
policies? To answer this we need to define optimality first. 
In case of POMDPs a policy כߨ is optimal if it maximizes 
the expected total reward discussed earlier. This optimal 
reward value is defined recursively as follows. ܸכሺܾ଴ሻ ൌ maxܽݎൣܣאሺܾ଴, ܽሻ ൅ ߛ ∑ ,ሺܾ଴ݖ ܽ, ,൫߬ሺܾ଴כሻܸ݋ ܽ, ைאሻ൯௢݋ ൧ (2) 

Equation (2) is the maximal expected total reward that is 
achievable starting from ܾ଴; ܸכ is the optimal value function; 
and a policy כߨ  that achieves ܸכሺܾ଴ሻ  from ܾ଴ , i.e. which 
produces the appropriate actions in Eq. (2), is an optimal 
policy. ݖሺܾ, ܽ, ሻ݋ ൌ ∑ ܾሺݏሻܼሺݏ, ܽ, ௌאሻ௦݋  for any ܾ א  .ܤ

Finding an optimal policy is intractable in practice for 
realistic problems with large state spaces, but it is known that ܸכ  can be approximated arbitrarily closely by a convex, 
piecewise-linear function 

ሺܾሻכܸ  ൎ ܸሺܾሻ ൌ maxఈא୻ሺߙ · ܾሻ ሺܾ׊ א  ሻ, (3)ܤ

where Γ is a finite set of ߙ-vectors, and ߙ · ܾ  is the scalar 
product of ߙ, a vector of size 1 ൈ |ܵ|, and ܾ , the discrete 
vector representation of a belief of size |ܵ| ൈ 1. An action ܽሺߙሻ א ܣ  is associated with each ߙ א Γ  vector, which is 
optimal for the given belief b, if ߙ solves Eq. (3). 

Several approximation methods exist to construct Γ  in 
tractable time (e.g. [15]), so it can be a base of a near-
optimal policy ߨ෤ ሺܾሻכ ൌ ܽሺarg maxఈא୻ሺߙ · ܾሻሻ א  .ܣ

C. MOMDP 
MOMDP [12] is a recent approach trying to reduce the 

complexity of POMDP by dividing its representation of 

states into fully and partially observable parts, and then focus 
on solving the partially observable sub-problems of reduced 
dimensionality, i.e. in MOMDP the set of states is a 
Cartesian product ܵ ൌ ܺ ൈ ܻ, where X is the set of values of 
fully observable state-variables, and Y is the set of values of 
partially observable state-variables. Thus ݏ א ܵ in MOMDP 
is a pair ݏ ൌ ሺݔ, ሻݕ , where ݔ א ܺ  and ݕ א ܻ . As a 
consequence the state transition function T is also divided in 
two: ௑ܶ: ܺ ൈ ܻ ൈ ܣ ൈ ܺ ՜ ሾ0,1ሿ  and ௒ܶ: ܺ ൈ ܻ ൈ ܣ ൈ ܺ ൈ ܻ ՜ሾ0,1ሿ , where ௑ܶሺݔ, ,ݕ ܽ, Ԣሻݔ  and ௒ܶሺݔ, ,ݕ ܽ, ,Ԣݔ Ԣሻݕ  denote 
transition probabilities of fully and partially observable 
variables respectively. The observation function Z and the 
reward function R are also modified accordingly. The former 
is ܼ: ܺ ൈ ܻ ൈ ܣ ൈ ܱ ՜ ሾ0,1ሿ , where ܼሺݔᇱ, ,ᇱݕ ܽ, ሻ݋  is the 
probability of observing ݋ א ܱ in resulting state ሺݔԢ, Ԣሻݕ א ܵ 
after executing action ܽ א :ܴ while the latter is ,ܣ ܺ ൈ ܻ ൈܣ ՜ Թ , where ܴሺݔ, ,ݕ ܽሻ  denotes the reward for taking 
action ܽ א ,ݔin state ሺ ܣ ሻݕ א ܵ. The listed relations among 
variables are summarized in the following figure. 

 

 
Figure 3.  MOMDP scheme [12] 

As hinted before an MOMDP model is solved for every 
possible ݔ א ܺ value of the fully observable state-variables 
by solving the respective POMDP sub-problem. Given ݔ א ܺ, the set of possible beliefs is ܤ௒ሺݔሻ ൌ ሼሺݔ, ܾ௒ሻ|ܾ௒ ௒ܤ ௒ሽ, whereܤא ൌ ∆ሺܻሻ, the set of all possible beliefs above 
the values of partially observed variables Y. That means that 
there is no probability distribution given above X, since ݔ א ܺ  is always observable. Thus approximation of the 
optimal value function ܸכ  produces a separate set of ߙ -
vectors for each ݔ א ܺ, which is denoted by Γ௒ሺݔሻ. 

MOMDPs are more effective, when most of the variables 
are fully observable, which is exactly the case in WSNs 
(where there is mostly always a node that can observe the 
actual value of any variable except for e.g. environmental 
event occurrence, or the activity of far nodes). Given a belief ሺݔ, ܾ௒ሻ  the near-optimal policy ߨ෤ כ  should now produce an 
action ߨ෤ ,ݔሺכ ܾ௒ሻ ൌ ܽ൫arg maxఈא୻ೊሺ௫ሻሺߙ · ܾ௒ሻ൯ א ܽ i.e. an ,ܣ א  ܣ
action which is associated with the ߙ -vector ߙ ൌ arg maxఈא୻ೊሺ௫ሻሺߙ · ܾ௒ሻ. 

Beyond sets of ߙ-vectors an MOMDP policy ߨ can also 
be represented with a directed policy graph (c.f. Fig. 4) 
where vertices are ۃሺݔ, ܾ௒ሻ, ,ݔሺߨ ܾ௒ሻۄ  pairs, whose outgoing 
edges lead to vertices ۃሺݔᇱ, ܾ௒ᇱ ሻ, ,ᇱݔሺߨ ܾ௒ᇱ ሻۄ for every ݔᇱ א ܺ and ݋ א ܱ , where the next belief ܾ௒ᇱ ൌ ߬ሺݔ, ܾ௒, ,ݔሺߨ ܾ௒ሻ, ,ᇱݔ  ሻ can݋
be calculated according to Eq. (6) in [12] as a consequence 
of (1). Edges are labeled with 4-tuples 
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,ᇱݔۃ ௑ܶሺݔ, ,ݕ ܽ, ,ᇱሻݔ ,݋ ,ᇱݔሺݖ ܾ௒ᇱ , ܽ, ۄሻ݋ , where ݖሺݔᇱ, ܾ௒ᇱ , ܽ, ሻ݋ ൌ∑ ܾ௒ᇱ ሺݕᇱሻܼሺݔᇱ, ,ᇱݕ ܽ, ௒אሻ௬ᇱ݋ . These labels fix “observation” ሺݔᇱ,  ሻ according to which the belief is updated. The policy݋
graph is constructed starting from the initial belief ሺݔ଴, ܾ௒଴ሻ. 
The following figure illustrates MOMDP policy graphs. 

 

 
Figure 4.  Illustration of MOMDP policy graphs 

III. PROPOSED APPROACH 
In this section we present an approach that uses MOMDP 

to model WSNs and optimize their overall network 
performance (time delay, energy usage, data accuracy, etc.). 
In Section III/A the modeled WSNs are presented, in Section 
III/B their MOMDP model is given, and in Section III/C the 
application of the solution of such a model is discussed. 

A. Properties of modeled WSNs 
The properties of the considered WSNs are common. We 

assume that one communication channel is available to 
nodes. The MAC protocol governing channel access is 
CSMA/CA. All nodes have the same type of sensor. Events 
occur according to Poisson distribution, which is a priori 
known. Sensor nodes can listen to events, but the detection 
may be false-positive (i.e. if there is no event, the node can 
still falsely detect it), or false negative with a given 
probability. Otherwise event detection is correct. 

This is followed by data generation, which can also go 
wrong with a given a probability (so no data is generated). 
The same happens, when there is no event occurring. The 
goal of the network is eventually that every generated data is 
relayed to the sink node (maybe via multiple hops). 

Sensor nodes can listen to events; generate, aggregate, 
send or receive data, or just be idle (but respond to incoming 
transmissions). They can execute only one of these actions at 
a given time. The sink node on the other hand can process 
and receive data simultaneously. The processed data 
disappears from the sink node. Processing always succeeds. 

There is a non-zero probability of data loss during 
transmission. Sending a message drains energy from the 
sender, but reception may drain even more from the receiver. 
Energy usage is proportional to the size of transmitted data. 
Similarly listening and data generation also drain energy. 
The energy consumed by the network to generate and deliver 

all data to the sink is called total energy. The time needed for 
listening, data generation, aggregation and data transmission 
is assumed to take one period of time. The time of generating 
and delivering all data to the sink is called total delay. 

Aggregation aims to save energy by integrating all 
individual data which is present at a given sensor node at a 
given time into one message of size of a generated data. 
There is no redundant data at nodes (only the most recent 
version is stored). Energy usage of aggregation is negligible. 

Data accuracy is the proportion of data generated in the 
network and the data size of messages received by the sink. 
The sink’s energy is not considered in the model, since it is 
much less limited that the energy of sensor nodes. 

B. An MOMDP model of WSNs 
In this subsection we model the above informal 

specification of WSNs formally with MOMDPs. Such a 
model can then be solved via existing MOMDP/POMDP 
solvers, and the obtained near-optimal solution (joint 
network policy) can be applied to WSN optimization. 

There are many possible ways to use MOMDP to model 
WSNs. Our approach takes into account that the solution of 
the model needs to be distributed among individual nodes to 
be implementable in practice (see. Section III/C). 

Let us start by first defining the set of states, ܵ ൌ ܺ ൈ ܻ, 
as discussed in Section II/C. To model the position of every 
generated data in the network (as a part of the state) we 
introduce the following Boolean variables representing the 
truth about data of node i being at node j: ݀ܽܽݐ௜,௝ ,݁ݏሼ݂݈ܽא ݅ ሽ for every݁ݑݎݐ א 2ே\ሼ௦௜௡௞ሽ\ሼ׎ሽ and ݆ א ܰ , where 
N is the non-empty set of network nodes (including the sink 
node, which isn’t generating data), so data i can be any non-
empty element of the power-set of set ܰ\ሼ݇݊݅ݏሽ . This is 
because of aggregation, which can produce any combination 
(subset) of data generated at sensor nodes. So for example 
variable ݀ܽܽݐሼଵሽ,ଶ represents the fact about data generated at 
node 1 being at node 2; ݀ܽܽݐሼଵ,ଶሽ,ଵ on the other hand denotes 
the fact that data ሼ1,2ሽ , which is an aggregation of data 
generated at node 1 and 2, is at node 1. 

We assume, that on a network level all these variables are 
fully observable, because there is always a node that can 
observe the exact value of any of these variables (node j can 
observe the ever actual value of any ݀ܽכܽݐ,௝ variable). Thus 
the set of fully observable state-variables, X is the Cartesian 
product of the domain of any possible ݀ܽܽݐ௜,௝ variable. 

 ܺ ൌ ∏ Dom൫݀ܽܽݐ௜,௝൯௜אଶಿ\ሼೞ೔೙ೖሽ\ሼ׎ሽ,௝אே . (4) 

In case of two sensor nodes and a sink there would be |ܺ| ൌ 2ଽ ൌ 512  possible fully observable states of the 
environment. Thus, since the number of different data is 
exponential in the number of nodes, and the set of fully 
observable states is exponential in the number of different ݀ܽܽݐ௜,௝  variables, the number of fully observable states is |ܺ| ൌ 2|ே|൫ଶ|ಿ|షభିଵ൯ in case of only Boolean variables, which 
means that it is super-exponential in the number of nodes (a 
hint on the complexity of the problem). But this is the case 
with any environment, whose state-space is a Cartesian 
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product of state-variables’ enumerable domains, and the 
number of state-variables is exponential (a quite typical 
scenario for realistic models of environments). In our 
approach it is the duty of the solver to overcome this 
complexity (e.g. by approximation), although the model 
could also be simplified. 

The partially observable part of the environment, Y, in 
accordance with Section III/A, consists only of variables 
describing local event occurrence at sensor nodes: ݁ݐ݊݁ݒ௜ ,݁ݏሼ݂݈ܽא  ሽ represents the fact, if an event is occurring at݁ݑݎݐ
sensor node ݅ א ܰ\ሼ݇݊݅ݏሽ. Thus the set of states, S, is the 
Cartesian product of sets X and Y. In case of our previous 
example with two sensor nodes and a sink node, the size of 
this space would be |ܵ| ൌ |ܺ||ܻ| ൌ 2ଽ · 2ଶ ൌ 2048 , which 
would be divided by MOMDP into 512 partially observable 
subspaces each having 4 possible states (representing joint 
event occurrence at the two sensor nodes). 

Initially ݀ܽܽݐ௜,௝ ൌ ݁ݏ݈݂ܽ  should hold for every ݅ ݆ ሽ and׎2ே\ሼ௦௜௡௞ሽ\ሼא א ܰ, since there is no generated data in the 
network. The a priori probability of event occurrence at 
sensor nodes ݅ א ܰ\ሼ݇݊݅ݏሽ, ݌ሺ݁ݐ݊݁ݒ௜ ൌ  .ሻ should be given݁ݑݎݐ

The joint set of observations is ܱ ൌ ∏ ܱ௜௜אே\ሼ௦௜௡௞ሽ , where ܱ௜ ൌ ሼ݂݈ܽ݁ݏ,  ሽ, whose values represent the fact, if sensor݁ݑݎݐ
node i detects an event. The probability of an observation is 
defined by observation function Z, and depends on the state 
and nodes’ actions - only nodes listening are able to detect 
events. Beside listening, sensor nodes are also able to 
generate data, to send data to neighboring nodes (this 
includes the reception of data by the receiver), and to 
aggregate all their data into one message, or just stay idle 
(do_nothing). Thus a sensor node ݅ א ܰ\ሼ݇݊݅ݏሽ has a set of 
actions ܣ௜ ൌ ሼ݄݀݃݊݅ݐ݋݊_݋, ,݊݁ݐݏ݈݅ ,݁ݐܽݎ݁݊݁݃ ሽ݁ݐܽ݃݁ݎ݃݃ܽ ڂ … …  ௣,௤ means sending݀݊݁ݏ ேሺ௜ሻ, whereאሽ,௤׎ଶಿ\ሼೞ೔೙ೖሽ\ሼא௣,௤ൟ௣݀݊݁ݏ൛ڂ
data p to node q, and ܰሺ݅ሻ denotes the set of neighbors of i. 
The sink node’s actions are: ܣ௦௜௡௞ ൌ ሼ݄݀݃݊݅ݐ݋݊_݋,  .ሽݏݏ݁ܿ݋ݎ݌
The set of joint network-actions is thus ܣ ൌ ∏ ேא௜௜ܣ . 

We can now define the state transition function T, which 
in MOMDP is divided into ௑ܶ and ௒ܶ. We will further divide 
both of these functions by separately defining transition 
probabilities for each respective variable. Thus for example 
the probability, that given state ݏ ൌ ሺݔ, ሻݕ א ܵ  and action ܽ א ܣ  the value of fully observable variables will be ݔᇱ ൌ൫݀ܽܽݐ௜,௝ᇱ ൯௜אଶಿ\ሼೞ೔೙ೖሽ\ሼ׎ሽ,௝אே א ܺ  after transition is the product ௑ܶሺݔ, ,ݕ ܽ, Ԣሻݔ ൌ ∏ ௑ܶ൫ݔ, ,ݕ ܽ, ௜,௝ᇱܽݐܽ݀ ൯௜אଶಿ\ሼೞ೔೙ೖሽ\ሼ׎ሽ,௝אே . 

We need to define transition probabilities for every fully 
and partially observable variable. The main principle of this 
is the following. Concerning ݀ܽܽݐ௜,௝ , we can distinguish 5 
cases depending on the value of i and j. 

1) |݅| ൌ 1, ݆ ൌ ݅: in case of non-aggregated data i, if j=i, 
the probability that ݀ܽܽݐ௜,௝ᇱ ൌ  i.e. that node i will have) ݁ݑݎݐ
its own locally generated data after transition) depends on 
whether it or its neighbors have it actually, if it has others’ 
individual data, what action ܽ௜ א ௜ܣ  it takes, and what 
actions its neighbors take. It can send its data away (if the 
other node is not busy), or receive it from some other node, 
or just generate it with a given probability, or aggregate it 
into a message with other data (if it has that other data). 

2) |݅| ൌ 1, ݆ ് ݅, ݆ ൌ  in case 1) j couldn’t be the :݇݊݅ݏ
sink node, since it isn’t generating data (c.f. Section III/A), 
but if j is the sink node, the probability that ݀ܽܽݐ௜,௝ᇱ ൌ  ݁ݑݎݐ
for data i depends on whether the sink node or its neighbors 
have i, what action the sink node takes, and what actions its 
neighbors take. It can receive i from a sensor node, or “lose 
it” by processing it, or receive a new version while 
processing the previous. The transmission probabilities 
should be defined accordingly to cover data loss, etc. 

3) |݅| ൌ 1, ݆ ് ݅, ݆ ് ݇݊݅ݏ : in case of a single data i 
being at another node (not which generated it), but not at the 
sink, the probability of ݀ܽܽݐ௜,௝ᇱ ൌ  depends on whether j ݁ݑݎݐ
or its neighbors have i, if j is sending i away, or receiving it 
from a neighbor (which should have it for that), or if j is just 
aggregating i with other data (in case it has that other data). 

4) |݅| ൐ 1, ݆ ൌ  in case i is an aggregated data, the :݇݊݅ݏ
probability that ݀ܽܽݐ௜,௝ᇱ ൌ  holds, depends on if the sink ݁ݑݎݐ
has i, if its neighbors have it, if it is processing it and/or 
receiving it, or if it is just idle. The probability of the sink 
having i next in case a neighbor is sending it to the sink, and 
it is not having i, should be equal for example to the case 
when the sink has i, but it is processing it, while a neighbor 
is sending it. This is since processing is always successful. 

5) |݅| ൐ 1, ݆ ്  the probability that a sensor node j :݇݊݅ݏ
will have an aggregated data i after state-transition depends 
on whether j or its neighbors have i, whether j is sending i 
away, or receiving i from some neighbor, or whether j 
creates i by aggregating the necessary single data. 

The value of the partially observable variables, ݁ݐ݊݁ݒ௜ ሺ݅ א ܰ\ሼ݇݊݅ݏሽሻ, is not depending on anything – it is 
stochastic. This means that the probability p൫݁ݐ݊݁ݒԢ݅ ൌtrue|. . . ሻ is unconditional, and should be equal to the initial 
probability ݌ሺ݁ݐ݊݁ݒ௜ ൌ ݅׊ ሻ for݁ݑݎݐ א ܰ\ሼ݇݊݅ݏሽ. 

Now let us focus on the observation function Z, and the 
reward function R. The probability that node i detects a local 
event after nodes take joint action ܽ א Ԣݏ and arrive to a state ܣ ൌ ሺݔԢ, Ԣሻݕ א ܵ  is ݌൫݋Ԣ݅ ൌ ,Ԣݔ|݁ݑݎݐ ,Ԣݕ ܽ൯ , which depends only 
on whether node i was listening, and if the event in the 
resulting state ݏԢ is occurring. Thus we should define only the 
following probabilities: ݌൫݋Ԣ݅ ൌכ Ԣ݅ݐ݊݁ݒ݁| ൌכ, ܽ݅ ൌ ൯݊݁ݐݏ݈݅ . 
Otherwise ݌൫݋Ԣ݅ ൌ Ԣ݅ݐ݊݁ݒ݁|݁ݏ݈݂ܽ ൌכ, ܽ݅ ൌכ൯ ൌ 1  should hold. 
We should allow false-positive and false-negative 
observations as discussed in Section III/A. 

Concerning the reward function, we propose to divide it 
also among the nodes, i.e. ܴሺݔ, ,ݕ ܽሻ ൌ ∑ ܴ௜ሺݔ, ,ݕ ܽሻ௜אே  should 
hold, where ܴ௜ሺݔ, ,ݕ ܽሻ denotes the individual reward of node ݅ א ܰ in case nodes choose action ܽ א ݏ in state ܣ ൌ ሺݔ, ሻݕ  By default the reward should be zero, but in case node i is .ܵא
sending a message (without interfering with other nodes) the 
reward should be negative. In case node i is receiving a 
message, the reward should be also negative, since sending 
and receiving drain energy. Listening, and generating data 
should also have a negative reward, but less negative, than 
sending/receiving, and it should be independent of success. 
In case of the sink node reward shouldn’t depend on other 
nodes’ activity, only on its own and the data it has. If it does 
nothing (is idle, or receives data), its reward should be zero. 
But if it processes data, then it should get a positive reward, 
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which should compensate the cost of relaying that data to the 
sink. We suggest that processing a collection of single data 
should have a greater reward than processing the same data 
in aggregated form, to put an emphasis on data accuracy. 

Eventually the MOMDP model of the WSN discussed in 
Section III/A is complete this way, except for the definition 
of the discount factor ߛ. We suggest to set it around ߛ ൌ 0,95 
by default, then run some tests to calibrate it appropriately. 

C. Applying the solution of the MOMDP model for WSNs 
After solving the MOMDP model constructed in Section 

III/B with an existing MOMDP solver, it is not trivial to 
apply the solution in practice, since it is a joint policy for the 
whole network, which first needs to be distributed among the 
individual nodes. The problem is that nodes can’t observe the 
observations of other nodes; the local state-variables of other 
nodes, which are fully observable only to those nodes; their 
actions (if they are out of reach); and consequently others’ 
beliefs, on which their decisions are based. 

To cope with the above mentioned difficulties two 
methods for the distribution of joint MOMDP policies are 
proposed. The first approach assumes that local information 
can be exchanged between nodes to form a consistent global 
picture of the true state at every time-period at every node so 
they can use the joint policy to decide about actions, while 
the second method isn’t assuming this possibility and thus 
the joint policy needs to be really divided among the nodes. 

1) Every node using the same joint policy for decision: 
The following pseudo-code summarizes the program 
governing the individual behavior of a WSN node in case of 
local information exchange. 

 
Algorithm 1: WSN node program based on joint MOMDP policy ߨ 

1:  NODEPRGቀ݅, గܩ ൌ ሺܸ, ,ሻܧ ଴ݒ ൌ ൫ሺݔ଴, ܾ௒଴ሻ, ܽ଴൯ቁ 
ݐ  :2 ՚ 0 
3:  while ݁ݑݎݐ 
4:    execute ሾܽ௧ሿ௜ 
ݐ    :5 ՚ ݐ ൅ 1 
6:    observe ݋௜௧ א ௜ܱ and ሾݔ௧ሿ௜ 
7a:   construct and broadcast ݋݈݈݁ܪ௜௧ 
7b:   wait to receive ݋݈݈݁ܪ௝௧ of every ݆ א ܰ\ሼ݅ሽ 
7c:   relay selected ݋݈݈݁ܪ௝௧ ሺ݆ א ܰ\ሼ݅ሽሻ 
8:    construct ሺݔ௧, ,௧ሿ௜ݔே\ሼ௜ሽ and ሺሾא௝௧ൟ௝݋݈݈݁ܪ௧ሻ from ൛݋  ௜௧ሻ݋
9:    select ݒ௧ ൌ ൫ሺݔᇱ,כሻ, ܽᇱ൯ from ܸ 
       where ݔᇱ ൌ ,௧ିଵݒ௧ and ሺݔ ,כ,௧ݔۃ ,ۄכ,௧݋ ௧ሻݒ א  ܧ
10:   ܽ௧ ՚ ܽᇱ 
11: end-while 

 
Algorithm 1 has 3 inputs (#1): the identifier i of the WSN 

node in the MOMDP model; the ܩగ  graph of a joint 
MOMDP policy ߨ; and the root vertex of the graph, ݒ଴. After 
initialization of time-period to t=0 (#2) the algorithm goes 
into an infinite loop (#3). Here at first action ሾܽ଴ሿ௜  prescribed 
to node i by joint action ܽ଴ at ݒ଴ is executed (#4). After the 
execution of ሾܽ଴ሿ௜ time-period t is updated to t=1 (#5), and 
observation ݋௜ଵ  and the value of node i’s local, fully-
observable variables, ሾݔଵሿ௜  is received (#6). Now all nodes 
should exchange their observations and the value of their 
local fully-observed state-variables in compact Hello-

messages (#7a-7c). Such a message of node i at the 
beginning of time period t can be the following. 

௜௧݋݈݈݁ܪ  ൌ ,݅ۃ ,ݐ ,௜௧݋ ሼሺ݆, ሼ݉ሽሻሽ௝אN\ሼୱ୧୬୩ሽ:ୢୟ୲ୟ೘,೔ୀ௧௥௨௘ٿ௝א௠(5) ۄ 

Here i is the identifier of the node; t is the ID of the new 
time period; ݋௜௧ is the ID of the observation node i received 
after acting at t-1; this is followed by a set of ሺ݆, ሼ݉ሽሻ pairs, 
where j is a sensor node ID, and ሼ݉ሽ is a set of message IDs 
which are present at node i at the beginning of period t and 
which contain data generated at node j. If a message 
contains just the singular data generated at node j, then its 
ID should be m=0. What is not mentioned in the Hello-
message of node i, is assumed not to be present at node i. 
The exchange of Hello-messages can be done via existing, 
efficient protocols, but in case of a larger network this may 
lead to a non-negligible time and energy overhead. In this 
case Algorithm 2 may be considered instead of Algorithm 1. 

After a node received the most recent Hello-messages 
from every other node, it can exactly identify the ݒ௧ vertex in 
the joint policy graph, in which the network should be (#8-
9). During the selection of ݒ௧ , beliefs and probabilities are 
not playing a role, so they can be arbitrary (*), or for 
efficiency reasons they could even be omitted from ܩగ. The 
node can now drop all the received Hello-messages, and act 
according to ܽ଴  in ݒ௧  (#10, #4...). Since every node in the 
WSN acts according to Algorithm 1, they jointly realize ߨ. 

2) Decentralization of a joint policy for the nodes: If the 
mutual exchange of local information is not possible (e.g. 
the network is too large; or the real time-interval 
corresponding to a time period is so small, that the 
additional overhead is significant; or if generated data size is 
comparable to the size of Hello-messages), then we should 
enable nodes to act based only on their local information. 

The problem with this is that if we would try to 
decompose the MOMDP model into |ܰ| separate MOMDPs 
for every node, and then solve these models separately, then 
in case of node i, for example, we couldn’t overcome the 
need to specify the probabilities of other nodes’ actions in 
node i’s MOMDP model, since those actions can influence 
node i’s observations and the value of its resulting local fully 
observable state-variables (the latter happens in WSNs 
because of data transmission from node to node, and the 
former may also happen if we include observation of 
neighbors’ actions). Now other nodes’ actions depend on the 
solution of their separate MOMDP models, which also need 
to incorporate the probabilities of other’ actions, including 
those of node i. This would mean that node i’s solution 
depends on others’ solutions which depend on its solution, 
which is an infinite regress. This is partly the reason why 
transition and observation independent DEC-POMDPs were 
proposed [13], but that assumption is not holding for WSNs 
as stated just before. So we could try to find a single 
MOMDP policy for every node, but each one can have 
different local fully observable variables, so the domain of 
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that single MOMDP policy may need to differ in case of 
different nodes, which is not possible. 

Mainly these are the reasons why we chose in case 2) to 
solve the MOMDP model just as a POMDP, and then 
distribute this POMDP solution among the agents according 
to Algorithm 2. 
 
Algorithm 2: Decentralization of a joint factored POMDP policy ߨ 
1: DECPOLሺܰ, ሺܵ, ሼ ௜ܵሽ௜אே, ሼܣ௜ሽ௜אே, ሼ ௜ܱሽ௜אே, ܶ, ܼ, ሼܴ௜ሽ௜אே, ,ሻߛ ܾ଴, ,ߨ  ௠௔௫ሻݐ
ݐ  :2 ՚ 0, ܽ଴ ՚  ሺܾ଴ሻߨ
3:  foreach ݅ א ܰ 

௜ܤ    :4 ՚ ௜଴ܤ ,׎ ՚ ሼܾ଴ሽ, ݒ଴ ՚ ሺܾ଴, ሾܽ଴ሿ௜ሻ, ௜ܸ ՚ ሼݒ଴ሽ, ܧ௜ ՚  ׎
5:    foreach ܽ௜ א ሺܽ௜଴݌ ,௜\ሼሾܽ଴ሿ௜ሽܣ ൌ ܽ௜ሻ ՚ 0, end-for 
ሺܽ௜଴݌    :6 ൌ ሾܽ଴ሿ௜ሻ ՚ 1 
7:  end-for 

8:  while (ݐ ൏ :݅׊ ௠௔௫ and notݐ ௜௧ܤ ك  (௜ܤ
ݐ   :9 ՚ ݐ ൅ 1 
10:  foreach ݅ א ܰ 

௜௧ܤ    :11 ՚ ௜ܤ ,׎ ՚ ௜ܤ ׫  ௜௧ିଵܤ
12:    foreach ܽ௜ א ሺܽ௜௧݌ ,௜ܣ ൌ ܽ௜ሻ ՚ 0, end-for 
13:    foreach ܾ א  ௜௧ିଵܤ
14:     ܽ௧ିଵ ՚ ௧ିଵݒ ,ሺܾሻߨ ՚ ሺܾ, ሾܽ௧ିଵሿ௜ሻ 
15:     foreach ݋௜ א ௜ܱ and ݏ௜௧ א ௜ܵ 
16:      ܾ௜௧ ՚ ߬ሺܾ, ሾܽ௧ିଵሿ௜, ,௜௧ݏ ௜௧ܤ ,௜ሻ݋ ՚ ௜௧ܤ ׫ ሼܾ௜௧ሽ, ܽ௧ ՚  ሺܾ௜௧ሻߨ
ሺܽ௜௧݌      :17 ൌ ሾܽ௧ሿ௜ሻ ՚ ሺܽ௜௧݌ ൌ ሾܽ௧ሿ௜ሻ ൅ ,௜݋ሺ݌ ,ܾ|௜௧ݏ ሾܽ௧ିଵሿ௜ሻ 
௧ݒ      :18 ՚ ሺܾ௜௧, ሾܽ௧ሿ௜ሻ, ௜ܸ ՚ ௜ܸ ׫ ሼݒ௧ሽ, ܧ௜ ՚ ௜ܧ ׫ ሼሺݒ௧ିଵ, ,௜௧ݏ ,௜݋  ௧ሻሽݒ
19:     end-for 
20:    end-for 
21:  end-for 
22: end-while 

23: return ሼܩ௜ ൌ ሺ ௜ܸ,  ேא௜ሻሽ௜ܧ
 
Algorithm 2 has 5 inputs (#1): (i) the set N of WSN 

nodes; (ii) a factored POMDP having a factored set of 
actions ܣ ൌ ∏ ேא௜௜ܣ , a factored set of observations ܱ ൌ∏ ܱ௜௜אே  and a factored reward function ܴሺݏ, ܽሻ ൌ ∑ ܴ௜ሺݏ, ܽሻ௜אே  
for every ݏ א ܵ and ܽ א -The possible values of those state .ܣ
variables which are fully observable to node i, denoted by ܵ௜, 
are also given. It should be noted that ܵ ൌ ∏ ܵ௜௜אே  may not 
necessarily hold in general, i.e. we don’t assume, that every 
state-variable is observable by one and only one agent, i.e. in ܵ ൌ ܵ௜ ൈ ܵି௜, ܵି௜ is not necessarily the set of values of state-
variables fully observable by agents –i (other than i), but in 
general it is the set of values of state-variables not fully 
observable by agent i; (iii) an initial belief ܾ଴; (iv) a POMDP 
policy ߨ; and (v) a maximum number of iterations, ݐ௠௔௫. 

Initially the algorithm sets the time-period to t=0, and the 
joint action ܽ଴ to the recommendation of joint policy ߨ for 
initial belief ܾ଴ (#2). This is followed by further initialization 
steps for every node i (#3-7), where the set of all previously 
reached beliefs of node i, ܤ௜ is initially empty; the set of i’s 
possible beliefs at t=0, ܤ௜଴  contains only ܾ଴ ; the set of 
vertices ௜ܸ  of node i’s graph ܩ௜  contains only vertex ݒ଴ ൌሺܾ଴, ሾܽ଴ሿ௜ሻ , where ሾܽ଴ሿ௜  is the action recommended by the 
joint action ܽ଴ for node i; the set of directed edges ܧ௜ of ܩ௜ is 
empty; and the probability ݌൫ܽ௜଴ ൌ ܽ௜൯  that node i will 
execute action ܽ௜ at t=0 is set to zero for every ܽ௜ א  ௜ exceptܣ
for ܽ௜ ൌ ሾܽ଴ሿ௜, whose probability is set to 1, since it should be 
certainly executed at t=0 by i in terms of joint policy ߨ in ܾ଴. 

The main part of the algorithm is a while-cycle (#8-22), 
where the stop-criteria is that either t should reach ݐ௠௔௫, or 
the latest set of possible beliefs of node i, ܤ௜௧  should be 

completely contained in the set of previously reached beliefs, ܤ௜, for every i. If the stop-criteria is satisfied, then a directed 
graph ܩ௜ ൌ ሺ ௜ܸ,  ௜ሻ of node i’s policy is returned for every iܧ
(#23). Otherwise the while-cycle starts by incrementing t 
(#9), and then executes a belief and action probability update 
and an expansion of ܩ௜ for every i (#10-21). For this first ܤ௜௧ 
is initialized to be empty, and ܤ௜௧ିଵ is united with ܤ௜  (#11). 
This is followed by setting the probability ݌ሺܽ௜௧ ൌ ܽ௜ሻ of node 
i executing action ܽ௜  at time-period t initially to zero for 
every ܽ௜ א  ௜ (#12). Now the algorithm takes every previousܣ
belief ܾ א ௜௧ିଵܤ  of node i, and figures out what beliefs are 
reachable from b, with what probability, and what action 
follows from that according to ߨ  (#13-20). So first we 
identify the joint action ܽ௧ିଵ which is recommended by ߨ in 
b, and which also specifies node i’s action ሾܽ௧ିଵሿ௜. We create 
a vertex ݒ௧ିଵ ൌ ሺܾ, ሾܽ௧ିଵሿ௜ሻ from this belief-action pair (#14). 
We now calculate all the new beliefs ܾ௜௧ of node i possibly 
resulting from executing ሾܽ௧ିଵሿ௜  at time t-1, the 
corresponding actions of node i, and the probability of these 
actions, which depend on the probability of node i’s 
observations and the observed value of its fully observable 
variables ܵ௜. Thus between lines (#15-19) we are examining 
the case of every possible ݋௜ א ܱ௜ and ݏ௜௧ א ܵ௜, where ݏ௜௧  is a 
possible value of node i’s fully observable variables. 
Assuming a given ݋௜ א ܱ௜ observation and ݏ௜௧ א ܵ௜ value, first 
we calculate the belief ܾ௜௧ ൌ ߬ሺܾ, ሾܽ௧ିଵሿ௜, ,௜௧ݏ  ௜ሻ resulting from݋
taking action ሾܽ௧ିଵሿ௜ , at time t-1 in belief b, and then 
observing ݋௜  and ݏ௜௧ . This possible new belief, ܾ௜௧  is then 
added to the set of possible beliefs of node i at time t, ܤ௜௧, and 
also a joint action ܽ௧ is derived from ܾ௜௧ according to (#16) ߨ. 
The calculation of belief ܾ௜௧ is omitted due to its complexity. 

In line (#17) we continue by incrementing the hitherto 
accumulated probability ݌ሺܽ௜௧ ൌ ሾܽ௧ሿ௜ሻ that node i does ሾܽ௧ሿ௜ 
at time t with the probability of observing ݋௜ and ݏ௜௧ (given b 
and ሾܽ௧ିଵሿ௜), since this is a probability that we get belief ܾ௜௧ 
according to (#16), which then determines ሾܽ௧ሿ௜ ൌ ሾߨሺܾ௜௧ሻሿ௜ . 
For complexity reasons we omit the calculation of 
probability ݌ሺ݋௜, ,ܾ|௜௧ݏ ሾܽ௧ିଵሿ௜ሻ. It is straightforward to derive. 

If the probability ݌ሺ݋௜, ,ܾ|௜௧ݏ ሾܽ௧ିଵሿ௜ሻ is not zero, then we 
create a vertex ݒ௧ ൌ ሺܾ௜௧, ሾܽ௧ሿ௜ሻ representing the belief-action 
pair we just reached, and add it to the set of vertices ௜ܸ of 
graph ܩ௜, and also add an edge from ݒ௧ିଵ to ݒ௧ labeled with ݏ௜௧  and ݋௜  (#18), which means that if i is in ݒ௧ିଵ  and does ሾܽ௧ିଵሿ௜  and then observes ݏ௜௧  and ݋௜ , then it should go to ݒ௧ 
and execute action ሾܽ௧ሿ௜ according to ߨ, and so on. 

Algorithm 2 returns a simple mixed-observability policy 
graph ܩ௜ for every WSN node i (#23) at a cost of complexity ࣩሺ|ܰ||ܱܵ௠௔௫|௧೘ೌೣሻ , where |ܱܵ௠௔௫| ൌ max௜אே|ܱ௜ ൈ ܵ௜| . The 
construction of the policy graphs is done offline, but they are 
used by the nodes in runtime. It should be noted, that the 
constructed graphs are not equivalent to original joint policy ߨ, rather they are just a joint approximation of it, which is 
based on the assumption, that the solution method that 
constructed ߨ  improved its ܸ  value for every belief ܾ א ܤ . 
Eventually Algorithm 2 approximates the DEC-POMDP 
problem [13] in general sacrificing the guarantee of 
optimality for smaller complexity. 
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IV. EXPERIMENTS 
In this section we report on our preliminary experiments 

with a simple 3-node WSN network (c.f. Fig. 5) with 
properties according to Section III/A. Naturally our approach 
is not restricted to such simple networks (it can actually work 
for larger WSNs with arbitrary topology), but optimization 
of larger networks is computationally more intensive, and the 
examination of results would also be more complex and thus 
less illustrative. The below network is just enough to 
demonstrate the concept in a necessary level of detail. 

 

 
Figure 5.  Simple WSN topology with |ܰ| ൌ 3 nodes (B is the sink node) 

Experiments were conducted on a single PC with 4 GB 
of memory, a quad-core Intel i5 2.8 GHz CPU (but only 1 
core was used for tests), and 32-bit Windows 7. We used the 
latest version (v0.95) of APPL (Approximate POMDP 
PLanning) open-source POMDP/MOMDP solver written in 
C++. It does an approximation of the optimal policy by 
sampling the optimally reachable beliefs. During this it 
maintains a lower ܸ, and upper ܸ bound on the optimal value 
function ܸכ. The approximation stops when ܸ െ ܸ is below a 
given threshold. In our experiments this threshold was 10-3. 

APPL accepts factored POMDPs/MOMDPs described in 
XML (eXtensible Markup Language), and produces solution 
policies consisting of Γ௒ሺݔሻ sets of ߙ-vectors for each ݔ א ܺ 
and also policy graphs as described in Section II/C. 

The MOMDP model of the WSN shown in Fig. 5 was 
created according to Section III/B. We defined 9 fully-
observable ݀ܽܽݐ௜,௝ variables (for representing the position of 
data generated at node 1, 2 and their aggregation 1+2 being 
at nodes 1, 2 and B), which are initially all false with a 
probability ݌൫݀ܽܽݐ௜,௝ ൌ ൯݁ݏ݈݂ܽ ൌ 1, and 2 partially observable ݁ݐ݊݁ݒ௜ variables (representing event occurrence at sensors), 
which are true with a probability ݌ሺ݁ݐ݊݁ݒ௜ ൌ ሻ݁ݑݎݐ ൌ 0.1 . 
Since events are assumed to occur according to Poisson 
distribution, 0.1 is eventually the probability that ݇ ൒ 1 
events occur during a time-period with ߣ ൎ 0.10536052 
events occurring expectedly per period. Correspondingly 2 
observation variables ܱ௜ were defined for the 2 sensor nodes 
(to model their possible detection of event occurrence). 

This was followed by 3 action variables ܣ௜ for each node 
with possible values according to Section III/B. The 
transition probabilities of state-variables (݀ܽܽݐ௜,௝ and ݁ݐ݊݁ݒ௜) 
were set in principle also according to Section III/B. Their 
concrete numerical values were mainly the following: 
probability p=1.0 was assigned by default to ݀ܽܽݐ௜,௝ 
variables’ value not changing except when sending, 
receiving, generating or aggregating. Successful sending had 
a probability of p=0.99. Receiving side could fail with 
p=0.01. Thus the probability of successful transmission was 
p=0.992=0.9801. The probability of the other 3 cases can be 
calculated similarly. The probability of successfully 
generating data in case of event occurrence was p=0.98. 

Processing and aggregation were successful with probability 
p=1.0 in case data was present at the node. 

Observation function Z was as follows: the probability of 
not detecting an event when doing anything but listening was 
set to p=1.0. In case of listening the probability of detection 
was set to p=0.97 in case the event was occurring, and to 
p=0.05 in case it was not occurring (false-positive detection). 
The probabilities of the other 2 cases of not detecting the 
event can be calculated from these values. 

Every node had its own reward function ܴ௜ as discussed 
in Section III/B. In particular for the sake of simplicity 
sending was assumed to draw 10 mA of energy, while 
receiving a bit more, 15 mA for a message of 512 bytes (we 
experimented with more realistic values also, e.g. 17.4 and 
19.7 mA, but that didn’t change the end results essentially). 
We assumed that the time needed for sending/receiving is 
proportionate with energy usage, and thus set the reward for 
successfully sending a 512 byte message to –10 and for 
receiving it, to –15. In case of the sink node we didn’t 
consider the cost of receiving (c.f. Section III/B). The 
(negative) reward for listening and generating data was set 
relative to previous rewards, to –1 and –5 respectively. 
Aggregation had no cost, and thus no reward. 

The reward of the sink node was zero except when it 
processed data (a motivation for the MOMDP solver to 
construct policies that eventually relay data to the sink). We 
experimented with several values for processing data. For 
example, when the reward for processing a single data at the 
sink was Rሺ1ሻ ൌ 15.9 , a surprisingly simple policy graph 
emerged (with 1 vertex and 1 edge) suggesting to always be 
idle for all the nodes. The cause for this is that even in the 
best case the cost of node 1 getting its data to the sink would 
be (–1)+(–5)+(–10) = –16 (listening+generating+sending), 
while the reward for processing it would be 15.9, which 
would produce a negative total expected reward overall, 
which is worse than a reward of zero for being idle. This 
emphasizes that setting the reward values in the MOMDP 
model appropriately is of crucial importance. These rewards 
must reflect real investment and gain in the real WSN, and 
only then can the generated joint policy be considered really 
optimal. As a reference for finding these rewards we can e.g. 
approximate the investment of getting the data of the farthest 
sensor node in network to the sink on the least hops route. 

On the other hand, a significantly more complex joint 
policy graph (with 36 vertices and 190 edges) emerged with Rሺ1ሻ ൌ 100 and Rሺ2ሻ ൌ 1.5 · Rሺ1ሻ ൌ 150, where Rሺ2ሻ denotes 
the reward for processing aggregated data at the sink. This 
policy realized non-aggregating network behavior generating 
and routing data of node 1 and 2 to the sink nearly optimally. 

With given reward configuration the near-optimal 
behavior of the network may include data aggregation. For 
this the reward for processing aggregated data must be above 
a given level. In our WSN scenario, if 2 · Rሺ1ሻ ൐ Rሺ2ሻ holds, 
that means that data accuracy is rewarded, while 2 · Rሺ1ሻ ൑Rሺ2ሻ means that we neglect data accuracy. We did several 
test runs with the latter setting (Rሺ1ሻ ൌ 100 and Rሺ2ሻ ൌ 200). 
The result was that the generated joint policy now included 
aggregation (but only conditionally). 
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Fig. 6 shows a near-optimal solution of a scenario, where Rሺ1ሻ ൌ 47 and Rሺ2ሻ ൌ 1.5 · Rሺ1ሻ ൌ 70.5 , which is enough to 
motivate the network to manifest node 1’s data at the sink 
(for a best case reward of –16+47=31), but it is not enough to 
compensate for also manifesting node 2’s data at the sink in 
any way (and thus node 2 is idle, reserving overall energy). 
If Rሺ1ሻ is set below a given level, then it becomes not worth 
for given nodes even to generate their data (or to listen), not 
speaking of routing it toward the sink. In our case node 1 
goes idle around Rሺ1ሻ ൎ 16 as discussed before. 

 
Figure 6.  Policy graph ܩగ (| గܸ| ൌ 6, |గܧ| ൌ 16) of a near-optimal joint 

policy ߨ in case of Rሺ1ሻ ൌ 47 and Rሺ2ሻ ൌ 70,5. 

The near-optimal joint policy shown in Fig. 6 has the 
following logic: it starts in vertex 0, where the fully observed 
state is x=(), meaning that no generated data is anywhere, 
while the belief over the partially observed state associates a 
probability of p=0.92=0.81 to y=(), which means that neither 
sensors’ event is occurring with this probability. That is just 
according to the initial state of our MOMDP model. In this 
belief-state the joint policy prescribes joint action a=(listen, 
do_nothing, do_nothing) to node 1, 2 and B respectively. 
After the joint execution of a the new belief-state may be 
either vertex 1 or vertex 2 depending on which observation 
did node 1 receive after listening: F=False (with probability 
p=0.858) or T=True (with probability p=0. 142). The fully 
observable state does not change by executing joint action a. 

If the observation of node 1 is F, then we should continue 
in vertex 1, where the same joint action is recommended 
again (and again in case of failure). In case of success (if 
node 1 finally detects the an event while listening) we go to 
vertex 2, where the state is still x=(), but the probability of 
the occurrence of an event at node 1 (while not occurring at 
node 2) has a probability of p=0.615, which is the highest 

achievable value. So in this case of this belief the policy 
recommends to node 1 to generate data while other nodes 
should still be idle (do_nothing). Data generation may fail 
with a probability p=0.331, so we would be routed back to 
vertex 0 from vertex 2. Otherwise it is successful (the data 
appears at node 1), and so we go to vertex 3, where node 1 
should try to send its generated data to the sink node 
according to the policy. Four outcomes of sending this data 
are possible: (i) the transmission is successful with 
probability p=0.9801 [go to vertex 5]; (ii) data is really lost 
with probability p=0.0001 [stay in vertex 3]; (iii) data is not 
lost, but node 1 doesn’t receive the ACK from node B, and 
so it isn’t dropping the data, with probability p=0.0099 [go 
to vertex 4]; or (iv) data is lost because of some failure at 
node B about which node 1 is not notified, with probability 
p=0.0099 [go to vertex 0]. Staying in vertex 3 means a 
necessary re-transmission of data. Going to vertex 4 implies 
an unnecessary re-transmission of data (while the sink should 
already process the received data). Going to vertex 5 is the 
normal case with probability p=0.98: here node 1 should 
start to listen again, while the sink should process its 
received data. Overall this joint policy in Fig. 6 nearly 
maximizes the total expected reward of the WSN in Fig. 5. 

To evaluate the effectiveness of the MOMDP policies 
generated e.g. for the above 3 highlighted cases, we made a 
comparison with Dynamic Source Routing (DSR) [16], 
which is equivalent to optimal static routing (best 
benchmark) in case of the simple WSN in Fig. 5, since there 
is only one acyclic route from each sensor to the sink. At 
MAC level nodes used CSMA/CA. They listened until event 
detection, and then tried to generate data. In case of no 
aggregation they tried to relay available (successfully 
received/generated) data instantly toward the sink according 
to CSMA/CA. In case of full aggregation node 1 waited for 
node 2’s data to arrive, aggregated it with its own (if it was 
available, otherwise it listened and generated it), and then the 
aggregated data was sent to the sink, which processed it 
instantly. Table I summarizes the results of this evaluation. 

TABLE I.  QUANTITATIVE COMPARISON OF NETWORK PERFORMANCE 
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Table I shows the average of total energy use (∑E [mA]), 
throughput (Bytes per period: Bpp, e.g. Bps) and total 
reward (∑R, corresponding to network performance metric) 
of different policies in different cases, each value gained 
from 100 runs each 10000 time-periods long. Mainly DSR 
with no/full-aggregation was compared against near-optimal 
MOMDP policies generated for the 3 above highlighted 
cases, in each case with a data size of 0.5 and 2 KB (in the 2 
KB case energy for sending/receiving and thus reward R(1) 
and R(2) were 4-times higher proportionally). This means 
3*3*2=18 cases, each with 3 numeric values (∑E, Bpp, ∑R). 
The standard deviation of each value is also included in the 
table (as a result of the stochastic environment). Simulations 
were implemented in MATLAB R2011a, and show that 
MOMDP performed best in 5 out of 6 cases (3*2=6 rows) in 
terms of performance metric (∑R) which we were seeking to 
maximize. The best value for every case in each category is 
underlined. The only case, where MOMDP’s ∑R was worse 
than optimal routing (by 0.7%: effectively equivalent) was 
due to local information exchange overhead (Hello 
messages). Without overhead it would be better even then. 
This overhead becomes less significant for larger data (e.g. 2 
KB) and in larger networks the near-optimality of MOMDP 
should compensate this even more compared to e.g. DSR. 

The time for generating MOMDP policies can be divided 
in 3 parts: (i) parsing the MOMDP model took around 14s in 
average; (ii) the initialization of the algorithm took 30 
minutes in average; and finally (iii) the approximation took 
only around 1-1.5 seconds. Thus the initialization phase of 
the algorithm consumed most of the time. Nonetheless these 
results are currently state-of-the-art considering that the 
problem solved has 211 states, indicating that with further 
optimization, by exploiting the parallelization/distribution 
possibilities of MOMDP solution algorithms (e.g. even by 
taking advantage of special hardware), by specializing the 
algorithm for the WSN domain, by allowing longer runtimes 
(on stronger, dedicated hardware) and/or by integrating 
recently successful online solution principles [11] WSNs 
larger by orders of magnitude can be optimized in practice. 

V. CONCLUSIONS 
A generic framework was presented for overall network 

performance optimization in WSNs based on offline 
approximation of optimal joint MOMDP policies. A realistic 
MOMDP model of WSNs was given, and two algorithms to 
distribute its solution among individual nodes depending on 
whether local information exchange is allowed. Resulting 
node-policies optimize overall WSN behavior according to a 
user-defined performance metric (e.g. finding the best 
tradeoff between total energy usage, time delay and data 
accuracy). The framework was demonstrated in case of a 
smaller WSN in detail by generating and evaluating its near-
optimal joint policies in several cases and comparing them 
against CSMA/CA with optimal routing (DSR). MOMDP 
performed best in 5 out of 6 cases by increasing network 
performance with more than 20% in average. 

Further research should focus mainly on scaling up the 
method to cope with larger networks e.g. by exploiting 
parallelization/distribution; by specializing the method for 

the WSN domain; and/or by integrating it with online 
MOMDP solution principles. The overhead of information 
exchange could be reduced by narrowing its horizon from 
the whole network to nodes’ relevant neighborhood. The 
WSN model could be improved by allowing action duration; 
by adding observations of neighboring nodes’ actions; or by 
merging listening and data generation into one action. Clock 
synchronization issues and a possible change of model-level 
assumptions in runtime could be considered. Also a deeper 
investigation of decentralization of joint policies could be 
performed and the approach should be tested in real WSNs. 
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