
Mixed observability Markov decision processes for overall network performance
optimization in wireless sensor networks

Daniel L. Kovacs
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Budapest, Hungary

dkovacs@mit.bme.hu

Wuyungerile Li, Naoki Fukuta, Takashi Watanabe
Faculty of Information
Shizuoka University
Hamamatsu, Japan

{li, fukuta, watanabe}@aurum.cs.inf.shizuoka.ac.jp

Abstract—Optimizing overall performance of Wireless Sensor
Networks (WSNs) is important due to the limited resources
available to nodes. Several aspects of this optimization problem
have been studied (e.g. improving Medium Access Control
(MAC) protocols, routing, energy management) mostly
separately, although there is a strong inter-connection between
them. In this paper an Artificial Intelligence (AI) based
framework is presented to address this problem. Mixed-
Observability Markov Decision Processes (MOMDPs) are used
to effectively model multiple aspects of WSNs in stochastic
environments including MAC in data link layer, routing in
network layer, data aggregation, power management, etc.
MOMDPs distinguish between full and partial observability,
hence they are more efficient than other similar AI methods.
The proposed framework provides global optimization of user-
defined performance metrics, e.g. minimization of time delay,
energy consumption and data inaccuracy. Near-optimal joint
network policies are obtained via offline approximation of
optimal MOMDP solutions and they are distributed among the
individual nodes. Resulting node-policies place effectively no
additional computational overhead on nodes in runtime.
Experiments evaluate the framework by demonstrating near-
optimal solutions for a small-scale WSN in detail in case of
given tradeoff criteria. The proposed approach produces better
joint network behavior in 5 out of 6 cases compared to other
two standard methods in simulation by increasing overall
network performance by more than 20% in average.

Keywords-partially observable Markov decision processes;
wireless sensor networks; mixed observability; overall
performance optimization; decentralized; tradeoff optimization

I. INTRODUCTION
Wireless Sensor Networks (WSNs) [1] are used for

decentralized measurement of real-time data. The recent
application of such networks ranges from home automation,
through industry control to outer space monitoring [2]. The
overall efficiency of such networks is important in every
application, yet there is still no general means to optimize it.
The difficulty arises from the limited resources of nodes; the
uncertain, dynamic environment; nodes’ partial and
asymmetric information about the current state of the
environment; the decentralized nature of nodes’ operation;
and the strong inter-connection between different network
layers such as Medium Access Control (MAC) protocols in
data link layer; routing in network layer, topology control

and data aggregation algorithms; power management
schemes; sleep/wake and data generation policies, etc.

Several methods were proposed to cope with the above
issues [3], [4], [5] and [6], but none of them provides a
means to solve them together in general. The proposed
solutions are either too specific (e.g. [3]), or of limited scope
(e.g. [5][7]), or overly simplifying (e.g. [6]), or their
(near)optimality is not guaranteed (e.g. [4]). There is also
research about tradeoff optimization in WSNs [8], however it
takes account of 3 fixed factors currently (delay, energy and
accuracy), and has no guarantee about optimality.

In this paper the above issues are addressed in general.
Well established optimization methods are borrowed from
Artificial Intelligence (AI), and applied to find a multi-layer
policy/program for each WSN node to altogether produce an
approximately optimal joint network behavior according to a
given, user-defined performance metric.

A straightforward choice for this reason is to apply
Partially Observable Markov Decision Processes (POMDPs)
[9][10] which guarantee optimal behavior in uncertain
environments, but because of the complexity of real-world
situations, approximations are needed in practice (currently
optimal solutions of problems with around 1060 states can be
approximated [11]). Beside approximation another approach
is to factorize the problem description. One of the most
recent techniques combining approximation and factorization
is MOMDP (Mixed Observability MDP) [12], which
intuitively divides the problem into a fully and a partially
observable part, which are then vectorized further into
individual inter-related variables. Beyond the convenience of
use of this approach, it also allows a significant speed-up by
reducing the dimensionality of the problem.

Because of the above advantages we chose MOMDPs to
model and optimize WSNs in our work, but MOMDPs
similarly to POMDPs are single agent concepts, while WSNs
incorporate multiple agents (nodes). Decentralized POMDPs
(DEC-POMDPs) [13] could offer a solution, but at the price
of very high computational complexity. So we finally
decided to model the whole network as a single agent with
MOMDP, approximate an optimal MOMDP solution offline
and then distribute this near-optimal solution (which is a
near-optimal policy for the whole network) among the
individual nodes to govern their individual behavior in
runtime. Resulting node-policies are collections of simple
non-numeric if-then rules, which place effectively no

2012 26th IEEE International Conference on Advanced Information Networking and Applications

1550-445X/12 $26.00 © 2012 IEEE

DOI 10.1109/AINA.2012.17

289

additional computational overhead on nod
operating according to near-optimal overall
can be realized in practice. Experiments
approach in detail for a small size WSN, b
method can also be scaled-up to optimize lar

The structure of the paper is as fol
presents the fundamentals of WSNs,
MOMDPs; Section 3 starts the discussion o
the application of MOMDPs for modeling
overall network performance of WSNs; Se
experiments and their evaluation in de
concludes the paper and gives an outline of f

II. PRELIMINARIES
In this section we introduce the fundam

POMDPs and MOMDPs to an extent tha
understanding the later discussion of the pre

A. WSN
WSNs usually consist of a large num

powered sensor nodes which organize int
themselves. Sensor nodes sense environm
generate data about these events. Then they
to a sink node via intermediate sensor no
manner. The sink node usually connects to
nodes (TN) via Internet as shown in
battery/capacitor of a sensor node is exhaus
may collapse. Therefore, network lifetime is
by nodes lifetime. Hence, sensor networks
efficient in light of the limited resources av
On the other hand, nodes’ communication
abilities are also limited. Therefore current r
focuses on energy saving, data freshness, da
control, packet loss, throughput, data
network connectivity and tradeoffs among t
a higher performance, many researchers foc
e.g. MAC protocols, routing protocols, t
algorithms, and data aggregation techniqu
advances in its own subfield, but not
performance optimization problem in its
paper we try to solve this problem by ap
based on Markov Decision Processes (MDP

Figure 1. Typical use of WSNs

B. POMDP
POMDPs model single agents in uncerta

A discrete POMDP with an infinite time-ho
as a tuple ሺܵ, ,ܣ ܱ, ܶ, ܼ, ܴ, ሻߛ , where ܵ de
non-empty set of environmental states; ܣ is
empty set of agent’s actions; ܱ is the fini

des. Thus WSNs
network policies
demonstrate this
but the proposed
rger networks.
llows: Section 2

POMDPs and
f the main result:

g and optimizing
ection 4 presents
etail; Section 5
future research.

mentals of WSNs,
at is needed for
sented results.

mber of battery-
to a network by

mental events and
transmit this data
des in multi-hop
o users’ terminal

Fig. 1. If the
sted, the network
s entirely decided
should be energy
vailable to nodes.
n and computing
research in WSNs
ata security, error
accuracy, QoS,

them. To achieve
cus on improving
topology control

ues, each making
addressing the

entirety. In this
pplying methods
s) as follows.

ain environments.
rizon is specified

enotes the finite,
s the finite, non-
ite set of agent’s

observations; ܶ: ܵ ൈ ܣ ൈ ܵ ՜ ሾ0,1ሿ
function, which associates a ܶሺݏ, ,ݏܽ Ԣݏ א ܵ state and ܽ א action, me ܣ
executed in state ݏ of the environme
the environment will be ݏԢ with aܼ: ܵ ൈ ܣ ൈ ܱ ՜ ሾ0,1ሿ is the obser
agent – it associates a ܼሺݏԢ, ܽ, ሻ pr݋
state, ܽ א ݋ action, and ܣ א ܱ obser
probability that the agent observes
after executing action ܽ is ܼሺݏԢ, ܽ,
real valued reward function of the aܴሺݏ, ܽሻ payoff/reinforcement value ܽ א ܣ action, defining the goodne
state ݏ . The above mentioned m
connections are summarized in Fig.

Figure 2. POMDP

Fig. 2 illustrates POMDPs, whe
the environment at time-period t; ܽ
agent chooses in ݏ௧ ௧݋ ; denotes th
receives in ݏ௧ after taking ܽ௧ିଵ ; a
reward of the agent for taking ܽ௧ in ݏ

The goal of the agent is to plan
maximize its expected total rewa
where ߛ א ሾ0,1ሻ is a discount fa
importance/weight of future actions
are assumed to be chosen by a detܣ, a mapping from the set of beliefs
Eventually ܤ ൌ ∆ሺܵሻ, i.e. the set o
probability distribution above ܵ. G
denotes the probability of state ݏ א ܵ
in a POMDP prescribes an action to

Agents actions are based on
because they can’t fully access st
could model the situation with a M
our case MDPs are not enough, sinc
transitions (e.g. random transmissio
modeled with MDPs, nodes in a WS
to the current state in general (th
nodes’ actions, or detect events wit
availability of a channel withou
POMDPs are needed to describe the

After an action is chosen, a state݋ א ܱ observation is received. B
updates its previous belief b given t
and observation ݋ א ܱ to a new beli߬: ܤ ൈ ܣ ൈ ܱ ՜ ܤ is the belief up
calculated for ݏ׊Ԣ א ܵ as follows.

 is the state transition ܽ, Ԣሻ probability to everyݏ
eaning that if action ܽ is
ent, then the next state of
a probability ܶሺݏ, ܽ, Ԣሻݏ .
rvation function of the
robability to every ݏԢ א ܵ
rvation, meaning that the
s ݋ in a resulting state ݏԢ ݋ሻ . ܴ: ܵ ൈ ܣ ՜ Թ is the
agent, which associates an

to every ݏ א ܵ state and
ess of taking action ܽ in

model-elements and their
2.

scheme

ere ݏ௧ denotes the state of ܽ௧ denotes the action the
he observation the agent
and ܴ௧ ൌ ܴሺݏ௧, ܽ௧ሻ is the ݏ௧.

its actions in advance to
ard, ۳ሾ∑ ,௧ݏ௧ܴሺߛ ܽ௧ሻஶ௧ୀ଴ ሿ ,
ctor, which defines the
. The actions of the agent
terministic policy ߨ: ܤ ՜

s ܤ to the set of actions ܣ.
f beliefs is the set of all
iven a ܾ א ሻ ܵ. Thus an agent’s policyݏbelief, ܾሺ ܤ
its every possible belief.
their beliefs ܾ א ∆ሺܵሻ ,

tate ݏ א ܵ , otherwise we
MDP [14]. Nonetheless in

ce beyond uncertain state
on failure), which can be
SN don’t have full access

hey can’t observe farther
thout noise, or check the
ut possible error), thus
em.
e transition occurs, and an

Based on this the agent
the executed action ܽ א ܣ
ief, ܾԢ ൌ ߬ሺܾ, ܽ, ሻ, where݋
pdate function, which is

290

 ܾԢሺݏԢሻ ൌ ߬ሺܾ, ܽ, Ԣሻݏሻሺ݋ ൌ ,Ԣݏሻܼሺ݋ሺߟ ܽ, ሻ݋ ∑ ܶሺݏ, ܽ, ௌאሻ௦ݏԢሻܾሺݏ (1)

Equation (1) calculates the probability that after
executing a, given b, we arrive to state s’, and then weights
this with the probability of receiving observation o in s’ after
executing a. ߟሺ݋ሻ ൌ 1 ሾ∑ ܼሺݏԢ, ܽ, ሻ݋ ∑ ܶሺݏ, ܽ, ௌאௌ௦ᇲאሻ௦ݏԢሻܾሺݏ ሿ⁄ is a
normalizing constant.

Now based on b’ the agent chooses its new action
according to ߨ . After executing ߨሺܾԢሻ a transition occurs,
and a new observation is received again. The agent updates
its belief accordingly and the whole process repeats again.
The initial belief ܾ଴ is assumed to be given at the beginning.

The above concept can be used for online decision
making when actions are chosen and observations are
received in runtime accompanied with the appropriate ܴሺݏ, ܽሻ rewards, or it can be used offline by calculating
contingencies in advance. In the latter case the agent receives
only an expected reward, ݎሺܾ, ܽሻ ൌ ∑ ܾሺݏሻܴሺݏ, ܽሻ௦אௌ .

The online approach does less calculations overall than
the offline approach and also it can be used in case when the
reward function is initially not known, but the agent needs to
update the probability of every ݏԢ א ܵ state at every step, so
it may not be feasible for large state spaces in runtime with
bounded resources. In this case it may be more suitable to
use the offline approach. Either way the choice of actions is
of central importance. What action should we choose at a
given time period? Are there optimal actions and/or
policies? To answer this we need to define optimality first.
In case of POMDPs a policy כߨ is optimal if it maximizes
the expected total reward discussed earlier. This optimal
reward value is defined recursively as follows. ܸכሺܾ଴ሻ ൌ maxܽݎൣܣאሺܾ଴, ܽሻ ൅ ߛ ∑ ,ሺܾ଴ݖ ܽ, ,൫߬ሺܾ଴כሻܸ݋ ܽ, ைאሻ൯௢݋ ൧ (2)

Equation (2) is the maximal expected total reward that is
achievable starting from ܾ଴; ܸכ is the optimal value function;
and a policy כߨ that achieves ܸכሺܾ଴ሻ from ܾ଴ , i.e. which
produces the appropriate actions in Eq. (2), is an optimal
policy. ݖሺܾ, ܽ, ሻ݋ ൌ ∑ ܾሺݏሻܼሺݏ, ܽ, ௌאሻ௦݋ for any ܾ א .ܤ

Finding an optimal policy is intractable in practice for
realistic problems with large state spaces, but it is known that ܸכ can be approximated arbitrarily closely by a convex,
piecewise-linear function

ሺܾሻכܸ ൎ ܸሺܾሻ ൌ maxఈא୻ሺߙ · ܾሻ ሺܾ׊ א ሻ, (3)ܤ

where Γ is a finite set of ߙ-vectors, and ߙ · ܾ is the scalar
product of ߙ, a vector of size 1 ൈ |ܵ|, and ܾ , the discrete
vector representation of a belief of size |ܵ| ൈ 1. An action ܽሺߙሻ א ܣ is associated with each ߙ א Γ vector, which is
optimal for the given belief b, if ߙ solves Eq. (3).

Several approximation methods exist to construct Γ in
tractable time (e.g. [15]), so it can be a base of a near-
optimal policy ߨ෤ ሺܾሻכ ൌ ܽሺarg maxఈא୻ሺߙ · ܾሻሻ א .ܣ

C. MOMDP
MOMDP [12] is a recent approach trying to reduce the

complexity of POMDP by dividing its representation of

states into fully and partially observable parts, and then focus
on solving the partially observable sub-problems of reduced
dimensionality, i.e. in MOMDP the set of states is a
Cartesian product ܵ ൌ ܺ ൈ ܻ, where X is the set of values of
fully observable state-variables, and Y is the set of values of
partially observable state-variables. Thus ݏ א ܵ in MOMDP
is a pair ݏ ൌ ሺݔ, ሻݕ , where ݔ א ܺ and ݕ א ܻ . As a
consequence the state transition function T is also divided in
two: ௑ܶ: ܺ ൈ ܻ ൈ ܣ ൈ ܺ ՜ ሾ0,1ሿ and ௒ܶ: ܺ ൈ ܻ ൈ ܣ ൈ ܺ ൈ ܻ ՜ሾ0,1ሿ , where ௑ܶሺݔ, ,ݕ ܽ, Ԣሻݔ and ௒ܶሺݔ, ,ݕ ܽ, ,Ԣݔ Ԣሻݕ denote
transition probabilities of fully and partially observable
variables respectively. The observation function Z and the
reward function R are also modified accordingly. The former
is ܼ: ܺ ൈ ܻ ൈ ܣ ൈ ܱ ՜ ሾ0,1ሿ , where ܼሺݔᇱ, ,ᇱݕ ܽ, ሻ݋ is the
probability of observing ݋ א ܱ in resulting state ሺݔԢ, Ԣሻݕ א ܵ
after executing action ܽ א :ܴ while the latter is ,ܣ ܺ ൈ ܻ ൈܣ ՜ Թ , where ܴሺݔ, ,ݕ ܽሻ denotes the reward for taking
action ܽ א ,ݔin state ሺ ܣ ሻݕ א ܵ. The listed relations among
variables are summarized in the following figure.

Figure 3. MOMDP scheme [12]

As hinted before an MOMDP model is solved for every
possible ݔ א ܺ value of the fully observable state-variables
by solving the respective POMDP sub-problem. Given ݔ א ܺ, the set of possible beliefs is ܤ௒ሺݔሻ ൌ ሼሺݔ, ܾ௒ሻ|ܾ௒ ௒ܤ ௒ሽ, whereܤא ൌ ∆ሺܻሻ, the set of all possible beliefs above
the values of partially observed variables Y. That means that
there is no probability distribution given above X, since ݔ א ܺ is always observable. Thus approximation of the
optimal value function ܸכ produces a separate set of ߙ -
vectors for each ݔ א ܺ, which is denoted by Γ௒ሺݔሻ.

MOMDPs are more effective, when most of the variables
are fully observable, which is exactly the case in WSNs
(where there is mostly always a node that can observe the
actual value of any variable except for e.g. environmental
event occurrence, or the activity of far nodes). Given a belief ሺݔ, ܾ௒ሻ the near-optimal policy ߨ෤ כ should now produce an
action ߨ෤ ,ݔሺכ ܾ௒ሻ ൌ ܽ൫arg maxఈא୻ೊሺ௫ሻሺߙ · ܾ௒ሻ൯ א ܽ i.e. an ,ܣ א ܣ
action which is associated with the ߙ -vector ߙ ൌ arg maxఈא୻ೊሺ௫ሻሺߙ · ܾ௒ሻ.

Beyond sets of ߙ-vectors an MOMDP policy ߨ can also
be represented with a directed policy graph (c.f. Fig. 4)
where vertices are ۃሺݔ, ܾ௒ሻ, ,ݔሺߨ ܾ௒ሻۄ pairs, whose outgoing
edges lead to vertices ۃሺݔᇱ, ܾ௒ᇱ ሻ, ,ᇱݔሺߨ ܾ௒ᇱ ሻۄ for every ݔᇱ א ܺ and ݋ א ܱ , where the next belief ܾ௒ᇱ ൌ ߬ሺݔ, ܾ௒, ,ݔሺߨ ܾ௒ሻ, ,ᇱݔ ሻ can݋
be calculated according to Eq. (6) in [12] as a consequence
of (1). Edges are labeled with 4-tuples

291

,ᇱݔۃ ௑ܶሺݔ, ,ݕ ܽ, ,ᇱሻݔ ,݋ ,ᇱݔሺݖ ܾ௒ᇱ , ܽ, ۄሻ݋ , where ݖሺݔᇱ, ܾ௒ᇱ , ܽ, ሻ݋ ൌ∑ ܾ௒ᇱ ሺݕᇱሻܼሺݔᇱ, ,ᇱݕ ܽ, ௒אሻ௬ᇱ݋ . These labels fix “observation” ሺݔᇱ, ሻ according to which the belief is updated. The policy݋
graph is constructed starting from the initial belief ሺݔ଴, ܾ௒଴ሻ.
The following figure illustrates MOMDP policy graphs.

Figure 4. Illustration of MOMDP policy graphs

III. PROPOSED APPROACH
In this section we present an approach that uses MOMDP

to model WSNs and optimize their overall network
performance (time delay, energy usage, data accuracy, etc.).
In Section III/A the modeled WSNs are presented, in Section
III/B their MOMDP model is given, and in Section III/C the
application of the solution of such a model is discussed.

A. Properties of modeled WSNs
The properties of the considered WSNs are common. We

assume that one communication channel is available to
nodes. The MAC protocol governing channel access is
CSMA/CA. All nodes have the same type of sensor. Events
occur according to Poisson distribution, which is a priori
known. Sensor nodes can listen to events, but the detection
may be false-positive (i.e. if there is no event, the node can
still falsely detect it), or false negative with a given
probability. Otherwise event detection is correct.

This is followed by data generation, which can also go
wrong with a given a probability (so no data is generated).
The same happens, when there is no event occurring. The
goal of the network is eventually that every generated data is
relayed to the sink node (maybe via multiple hops).

Sensor nodes can listen to events; generate, aggregate,
send or receive data, or just be idle (but respond to incoming
transmissions). They can execute only one of these actions at
a given time. The sink node on the other hand can process
and receive data simultaneously. The processed data
disappears from the sink node. Processing always succeeds.

There is a non-zero probability of data loss during
transmission. Sending a message drains energy from the
sender, but reception may drain even more from the receiver.
Energy usage is proportional to the size of transmitted data.
Similarly listening and data generation also drain energy.
The energy consumed by the network to generate and deliver

all data to the sink is called total energy. The time needed for
listening, data generation, aggregation and data transmission
is assumed to take one period of time. The time of generating
and delivering all data to the sink is called total delay.

Aggregation aims to save energy by integrating all
individual data which is present at a given sensor node at a
given time into one message of size of a generated data.
There is no redundant data at nodes (only the most recent
version is stored). Energy usage of aggregation is negligible.

Data accuracy is the proportion of data generated in the
network and the data size of messages received by the sink.
The sink’s energy is not considered in the model, since it is
much less limited that the energy of sensor nodes.

B. An MOMDP model of WSNs
In this subsection we model the above informal

specification of WSNs formally with MOMDPs. Such a
model can then be solved via existing MOMDP/POMDP
solvers, and the obtained near-optimal solution (joint
network policy) can be applied to WSN optimization.

There are many possible ways to use MOMDP to model
WSNs. Our approach takes into account that the solution of
the model needs to be distributed among individual nodes to
be implementable in practice (see. Section III/C).

Let us start by first defining the set of states, ܵ ൌ ܺ ൈ ܻ,
as discussed in Section II/C. To model the position of every
generated data in the network (as a part of the state) we
introduce the following Boolean variables representing the
truth about data of node i being at node j: ݀ܽܽݐ௜,௝ ,݁ݏሼ݂݈ܽא ݅ ሽ for every݁ݑݎݐ א 2ே\ሼ௦௜௡௞ሽ\ሼ׎ሽ and ݆ א ܰ , where
N is the non-empty set of network nodes (including the sink
node, which isn’t generating data), so data i can be any non-
empty element of the power-set of set ܰ\ሼ݇݊݅ݏሽ . This is
because of aggregation, which can produce any combination
(subset) of data generated at sensor nodes. So for example
variable ݀ܽܽݐሼଵሽ,ଶ represents the fact about data generated at
node 1 being at node 2; ݀ܽܽݐሼଵ,ଶሽ,ଵ on the other hand denotes
the fact that data ሼ1,2ሽ , which is an aggregation of data
generated at node 1 and 2, is at node 1.

We assume, that on a network level all these variables are
fully observable, because there is always a node that can
observe the exact value of any of these variables (node j can
observe the ever actual value of any ݀ܽכܽݐ,௝ variable). Thus
the set of fully observable state-variables, X is the Cartesian
product of the domain of any possible ݀ܽܽݐ௜,௝ variable.

 ܺ ൌ ∏ Dom൫݀ܽܽݐ௜,௝൯௜אଶಿ\ሼೞ೔೙ೖሽ\ሼ׎ሽ,௝אே . (4)

In case of two sensor nodes and a sink there would be |ܺ| ൌ 2ଽ ൌ 512 possible fully observable states of the
environment. Thus, since the number of different data is
exponential in the number of nodes, and the set of fully
observable states is exponential in the number of different ݀ܽܽݐ௜,௝ variables, the number of fully observable states is |ܺ| ൌ 2|ே|൫ଶ|ಿ|షభିଵ൯ in case of only Boolean variables, which
means that it is super-exponential in the number of nodes (a
hint on the complexity of the problem). But this is the case
with any environment, whose state-space is a Cartesian

292

product of state-variables’ enumerable domains, and the
number of state-variables is exponential (a quite typical
scenario for realistic models of environments). In our
approach it is the duty of the solver to overcome this
complexity (e.g. by approximation), although the model
could also be simplified.

The partially observable part of the environment, Y, in
accordance with Section III/A, consists only of variables
describing local event occurrence at sensor nodes: ݁ݐ݊݁ݒ௜ ,݁ݏሼ݂݈ܽא ሽ represents the fact, if an event is occurring at݁ݑݎݐ
sensor node ݅ א ܰ\ሼ݇݊݅ݏሽ. Thus the set of states, S, is the
Cartesian product of sets X and Y. In case of our previous
example with two sensor nodes and a sink node, the size of
this space would be |ܵ| ൌ |ܺ||ܻ| ൌ 2ଽ · 2ଶ ൌ 2048 , which
would be divided by MOMDP into 512 partially observable
subspaces each having 4 possible states (representing joint
event occurrence at the two sensor nodes).

Initially ݀ܽܽݐ௜,௝ ൌ ݁ݏ݈݂ܽ should hold for every ݅ ݆ ሽ and׎2ே\ሼ௦௜௡௞ሽ\ሼא א ܰ, since there is no generated data in the
network. The a priori probability of event occurrence at
sensor nodes ݅ א ܰ\ሼ݇݊݅ݏሽ, ݌ሺ݁ݐ݊݁ݒ௜ ൌ .ሻ should be given݁ݑݎݐ

The joint set of observations is ܱ ൌ ∏ ܱ௜௜אே\ሼ௦௜௡௞ሽ , where ܱ௜ ൌ ሼ݂݈ܽ݁ݏ, ሽ, whose values represent the fact, if sensor݁ݑݎݐ
node i detects an event. The probability of an observation is
defined by observation function Z, and depends on the state
and nodes’ actions - only nodes listening are able to detect
events. Beside listening, sensor nodes are also able to
generate data, to send data to neighboring nodes (this
includes the reception of data by the receiver), and to
aggregate all their data into one message, or just stay idle
(do_nothing). Thus a sensor node ݅ א ܰ\ሼ݇݊݅ݏሽ has a set of
actions ܣ௜ ൌ ሼ݄݀݃݊݅ݐ݋݊_݋, ,݊݁ݐݏ݈݅ ,݁ݐܽݎ݁݊݁݃ ሽ݁ݐܽ݃݁ݎ݃݃ܽ ڂ … … ௣,௤ means sending݀݊݁ݏ ேሺ௜ሻ, whereאሽ,௤׎ଶಿ\ሼೞ೔೙ೖሽ\ሼא௣,௤ൟ௣݀݊݁ݏ൛ڂ
data p to node q, and ܰሺ݅ሻ denotes the set of neighbors of i.
The sink node’s actions are: ܣ௦௜௡௞ ൌ ሼ݄݀݃݊݅ݐ݋݊_݋, .ሽݏݏ݁ܿ݋ݎ݌
The set of joint network-actions is thus ܣ ൌ ∏ ேא௜௜ܣ .

We can now define the state transition function T, which
in MOMDP is divided into ௑ܶ and ௒ܶ. We will further divide
both of these functions by separately defining transition
probabilities for each respective variable. Thus for example
the probability, that given state ݏ ൌ ሺݔ, ሻݕ א ܵ and action ܽ א ܣ the value of fully observable variables will be ݔᇱ ൌ൫݀ܽܽݐ௜,௝ᇱ ൯௜אଶಿ\ሼೞ೔೙ೖሽ\ሼ׎ሽ,௝אே א ܺ after transition is the product ௑ܶሺݔ, ,ݕ ܽ, Ԣሻݔ ൌ ∏ ௑ܶ൫ݔ, ,ݕ ܽ, ௜,௝ᇱܽݐܽ݀ ൯௜אଶಿ\ሼೞ೔೙ೖሽ\ሼ׎ሽ,௝אே .

We need to define transition probabilities for every fully
and partially observable variable. The main principle of this
is the following. Concerning ݀ܽܽݐ௜,௝ , we can distinguish 5
cases depending on the value of i and j.

1) |݅| ൌ 1, ݆ ൌ ݅: in case of non-aggregated data i, if j=i,
the probability that ݀ܽܽݐ௜,௝ᇱ ൌ i.e. that node i will have) ݁ݑݎݐ
its own locally generated data after transition) depends on
whether it or its neighbors have it actually, if it has others’
individual data, what action ܽ௜ א ௜ܣ it takes, and what
actions its neighbors take. It can send its data away (if the
other node is not busy), or receive it from some other node,
or just generate it with a given probability, or aggregate it
into a message with other data (if it has that other data).

2) |݅| ൌ 1, ݆ ് ݅, ݆ ൌ in case 1) j couldn’t be the :݇݊݅ݏ
sink node, since it isn’t generating data (c.f. Section III/A),
but if j is the sink node, the probability that ݀ܽܽݐ௜,௝ᇱ ൌ ݁ݑݎݐ
for data i depends on whether the sink node or its neighbors
have i, what action the sink node takes, and what actions its
neighbors take. It can receive i from a sensor node, or “lose
it” by processing it, or receive a new version while
processing the previous. The transmission probabilities
should be defined accordingly to cover data loss, etc.

3) |݅| ൌ 1, ݆ ് ݅, ݆ ് ݇݊݅ݏ : in case of a single data i
being at another node (not which generated it), but not at the
sink, the probability of ݀ܽܽݐ௜,௝ᇱ ൌ depends on whether j ݁ݑݎݐ
or its neighbors have i, if j is sending i away, or receiving it
from a neighbor (which should have it for that), or if j is just
aggregating i with other data (in case it has that other data).

4) |݅| ൐ 1, ݆ ൌ in case i is an aggregated data, the :݇݊݅ݏ
probability that ݀ܽܽݐ௜,௝ᇱ ൌ holds, depends on if the sink ݁ݑݎݐ
has i, if its neighbors have it, if it is processing it and/or
receiving it, or if it is just idle. The probability of the sink
having i next in case a neighbor is sending it to the sink, and
it is not having i, should be equal for example to the case
when the sink has i, but it is processing it, while a neighbor
is sending it. This is since processing is always successful.

5) |݅| ൐ 1, ݆ ് the probability that a sensor node j :݇݊݅ݏ
will have an aggregated data i after state-transition depends
on whether j or its neighbors have i, whether j is sending i
away, or receiving i from some neighbor, or whether j
creates i by aggregating the necessary single data.

The value of the partially observable variables, ݁ݐ݊݁ݒ௜ ሺ݅ א ܰ\ሼ݇݊݅ݏሽሻ, is not depending on anything – it is
stochastic. This means that the probability p൫݁ݐ݊݁ݒԢ݅ ൌtrue|. . . ሻ is unconditional, and should be equal to the initial
probability ݌ሺ݁ݐ݊݁ݒ௜ ൌ ݅׊ ሻ for݁ݑݎݐ א ܰ\ሼ݇݊݅ݏሽ.

Now let us focus on the observation function Z, and the
reward function R. The probability that node i detects a local
event after nodes take joint action ܽ א Ԣݏ and arrive to a state ܣ ൌ ሺݔԢ, Ԣሻݕ א ܵ is ݌൫݋Ԣ݅ ൌ ,Ԣݔ|݁ݑݎݐ ,Ԣݕ ܽ൯ , which depends only
on whether node i was listening, and if the event in the
resulting state ݏԢ is occurring. Thus we should define only the
following probabilities: ݌൫݋Ԣ݅ ൌכ Ԣ݅ݐ݊݁ݒ݁| ൌכ, ܽ݅ ൌ ൯݊݁ݐݏ݈݅ .
Otherwise ݌൫݋Ԣ݅ ൌ Ԣ݅ݐ݊݁ݒ݁|݁ݏ݈݂ܽ ൌכ, ܽ݅ ൌכ൯ ൌ 1 should hold.
We should allow false-positive and false-negative
observations as discussed in Section III/A.

Concerning the reward function, we propose to divide it
also among the nodes, i.e. ܴሺݔ, ,ݕ ܽሻ ൌ ∑ ܴ௜ሺݔ, ,ݕ ܽሻ௜אே should
hold, where ܴ௜ሺݔ, ,ݕ ܽሻ denotes the individual reward of node ݅ א ܰ in case nodes choose action ܽ א ݏ in state ܣ ൌ ሺݔ, ሻݕ By default the reward should be zero, but in case node i is .ܵא
sending a message (without interfering with other nodes) the
reward should be negative. In case node i is receiving a
message, the reward should be also negative, since sending
and receiving drain energy. Listening, and generating data
should also have a negative reward, but less negative, than
sending/receiving, and it should be independent of success.
In case of the sink node reward shouldn’t depend on other
nodes’ activity, only on its own and the data it has. If it does
nothing (is idle, or receives data), its reward should be zero.
But if it processes data, then it should get a positive reward,

293

which should compensate the cost of relaying that data to the
sink. We suggest that processing a collection of single data
should have a greater reward than processing the same data
in aggregated form, to put an emphasis on data accuracy.

Eventually the MOMDP model of the WSN discussed in
Section III/A is complete this way, except for the definition
of the discount factor ߛ. We suggest to set it around ߛ ൌ 0,95
by default, then run some tests to calibrate it appropriately.

C. Applying the solution of the MOMDP model for WSNs
After solving the MOMDP model constructed in Section

III/B with an existing MOMDP solver, it is not trivial to
apply the solution in practice, since it is a joint policy for the
whole network, which first needs to be distributed among the
individual nodes. The problem is that nodes can’t observe the
observations of other nodes; the local state-variables of other
nodes, which are fully observable only to those nodes; their
actions (if they are out of reach); and consequently others’
beliefs, on which their decisions are based.

To cope with the above mentioned difficulties two
methods for the distribution of joint MOMDP policies are
proposed. The first approach assumes that local information
can be exchanged between nodes to form a consistent global
picture of the true state at every time-period at every node so
they can use the joint policy to decide about actions, while
the second method isn’t assuming this possibility and thus
the joint policy needs to be really divided among the nodes.

1) Every node using the same joint policy for decision:
The following pseudo-code summarizes the program
governing the individual behavior of a WSN node in case of
local information exchange.

Algorithm 1: WSN node program based on joint MOMDP policy ߨ

1: NODEPRGቀ݅, గܩ ൌ ሺܸ, ,ሻܧ ଴ݒ ൌ ൫ሺݔ଴, ܾ௒଴ሻ, ܽ଴൯ቁ
ݐ :2 ՚ 0
3: while ݁ݑݎݐ
4: execute ሾܽ௧ሿ௜
ݐ :5 ՚ ݐ ൅ 1
6: observe ݋௜௧ א ௜ܱ and ሾݔ௧ሿ௜
7a: construct and broadcast ݋݈݈݁ܪ௜௧
7b: wait to receive ݋݈݈݁ܪ௝௧ of every ݆ א ܰ\ሼ݅ሽ
7c: relay selected ݋݈݈݁ܪ௝௧ ሺ݆ א ܰ\ሼ݅ሽሻ
8: construct ሺݔ௧, ,௧ሿ௜ݔே\ሼ௜ሽ and ሺሾא௝௧ൟ௝݋݈݈݁ܪ௧ሻ from ൛݋ ௜௧ሻ݋
9: select ݒ௧ ൌ ൫ሺݔᇱ,כሻ, ܽᇱ൯ from ܸ
 where ݔᇱ ൌ ,௧ିଵݒ௧ and ሺݔ ,כ,௧ݔۃ ,ۄכ,௧݋ ௧ሻݒ א ܧ
10: ܽ௧ ՚ ܽᇱ
11: end-while

Algorithm 1 has 3 inputs (#1): the identifier i of the WSN

node in the MOMDP model; the ܩగ graph of a joint
MOMDP policy ߨ; and the root vertex of the graph, ݒ଴. After
initialization of time-period to t=0 (#2) the algorithm goes
into an infinite loop (#3). Here at first action ሾܽ଴ሿ௜ prescribed
to node i by joint action ܽ଴ at ݒ଴ is executed (#4). After the
execution of ሾܽ଴ሿ௜ time-period t is updated to t=1 (#5), and
observation ݋௜ଵ and the value of node i’s local, fully-
observable variables, ሾݔଵሿ௜ is received (#6). Now all nodes
should exchange their observations and the value of their
local fully-observed state-variables in compact Hello-

messages (#7a-7c). Such a message of node i at the
beginning of time period t can be the following.

௜௧݋݈݈݁ܪ ൌ ,݅ۃ ,ݐ ,௜௧݋ ሼሺ݆, ሼ݉ሽሻሽ௝אN\ሼୱ୧୬୩ሽ:ୢୟ୲ୟ೘,೔ୀ௧௥௨௘ٿ௝א௠(5) ۄ

Here i is the identifier of the node; t is the ID of the new
time period; ݋௜௧ is the ID of the observation node i received
after acting at t-1; this is followed by a set of ሺ݆, ሼ݉ሽሻ pairs,
where j is a sensor node ID, and ሼ݉ሽ is a set of message IDs
which are present at node i at the beginning of period t and
which contain data generated at node j. If a message
contains just the singular data generated at node j, then its
ID should be m=0. What is not mentioned in the Hello-
message of node i, is assumed not to be present at node i.
The exchange of Hello-messages can be done via existing,
efficient protocols, but in case of a larger network this may
lead to a non-negligible time and energy overhead. In this
case Algorithm 2 may be considered instead of Algorithm 1.

After a node received the most recent Hello-messages
from every other node, it can exactly identify the ݒ௧ vertex in
the joint policy graph, in which the network should be (#8-
9). During the selection of ݒ௧ , beliefs and probabilities are
not playing a role, so they can be arbitrary (*), or for
efficiency reasons they could even be omitted from ܩగ. The
node can now drop all the received Hello-messages, and act
according to ܽ଴ in ݒ௧ (#10, #4...). Since every node in the
WSN acts according to Algorithm 1, they jointly realize ߨ.

2) Decentralization of a joint policy for the nodes: If the
mutual exchange of local information is not possible (e.g.
the network is too large; or the real time-interval
corresponding to a time period is so small, that the
additional overhead is significant; or if generated data size is
comparable to the size of Hello-messages), then we should
enable nodes to act based only on their local information.

The problem with this is that if we would try to
decompose the MOMDP model into |ܰ| separate MOMDPs
for every node, and then solve these models separately, then
in case of node i, for example, we couldn’t overcome the
need to specify the probabilities of other nodes’ actions in
node i’s MOMDP model, since those actions can influence
node i’s observations and the value of its resulting local fully
observable state-variables (the latter happens in WSNs
because of data transmission from node to node, and the
former may also happen if we include observation of
neighbors’ actions). Now other nodes’ actions depend on the
solution of their separate MOMDP models, which also need
to incorporate the probabilities of other’ actions, including
those of node i. This would mean that node i’s solution
depends on others’ solutions which depend on its solution,
which is an infinite regress. This is partly the reason why
transition and observation independent DEC-POMDPs were
proposed [13], but that assumption is not holding for WSNs
as stated just before. So we could try to find a single
MOMDP policy for every node, but each one can have
different local fully observable variables, so the domain of

294

that single MOMDP policy may need to differ in case of
different nodes, which is not possible.

Mainly these are the reasons why we chose in case 2) to
solve the MOMDP model just as a POMDP, and then
distribute this POMDP solution among the agents according
to Algorithm 2.

Algorithm 2: Decentralization of a joint factored POMDP policy ߨ
1: DECPOLሺܰ, ሺܵ, ሼ ௜ܵሽ௜אே, ሼܣ௜ሽ௜אே, ሼ ௜ܱሽ௜אே, ܶ, ܼ, ሼܴ௜ሽ௜אே, ,ሻߛ ܾ଴, ,ߨ ௠௔௫ሻݐ
ݐ :2 ՚ 0, ܽ଴ ՚ ሺܾ଴ሻߨ
3: foreach ݅ א ܰ

௜ܤ :4 ՚ ௜଴ܤ ,׎ ՚ ሼܾ଴ሽ, ݒ଴ ՚ ሺܾ଴, ሾܽ଴ሿ௜ሻ, ௜ܸ ՚ ሼݒ଴ሽ, ܧ௜ ՚ ׎
5: foreach ܽ௜ א ሺܽ௜଴݌ ,௜\ሼሾܽ଴ሿ௜ሽܣ ൌ ܽ௜ሻ ՚ 0, end-for
ሺܽ௜଴݌ :6 ൌ ሾܽ଴ሿ௜ሻ ՚ 1
7: end-for

8: while (ݐ ൏ :݅׊ ௠௔௫ and notݐ ௜௧ܤ ك (௜ܤ
ݐ :9 ՚ ݐ ൅ 1
10: foreach ݅ א ܰ

௜௧ܤ :11 ՚ ௜ܤ ,׎ ՚ ௜ܤ ׫ ௜௧ିଵܤ
12: foreach ܽ௜ א ሺܽ௜௧݌ ,௜ܣ ൌ ܽ௜ሻ ՚ 0, end-for
13: foreach ܾ א ௜௧ିଵܤ
14: ܽ௧ିଵ ՚ ௧ିଵݒ ,ሺܾሻߨ ՚ ሺܾ, ሾܽ௧ିଵሿ௜ሻ
15: foreach ݋௜ א ௜ܱ and ݏ௜௧ א ௜ܵ
16: ܾ௜௧ ՚ ߬ሺܾ, ሾܽ௧ିଵሿ௜, ,௜௧ݏ ௜௧ܤ ,௜ሻ݋ ՚ ௜௧ܤ ׫ ሼܾ௜௧ሽ, ܽ௧ ՚ ሺܾ௜௧ሻߨ
ሺܽ௜௧݌ :17 ൌ ሾܽ௧ሿ௜ሻ ՚ ሺܽ௜௧݌ ൌ ሾܽ௧ሿ௜ሻ ൅ ,௜݋ሺ݌ ,ܾ|௜௧ݏ ሾܽ௧ିଵሿ௜ሻ
௧ݒ :18 ՚ ሺܾ௜௧, ሾܽ௧ሿ௜ሻ, ௜ܸ ՚ ௜ܸ ׫ ሼݒ௧ሽ, ܧ௜ ՚ ௜ܧ ׫ ሼሺݒ௧ିଵ, ,௜௧ݏ ,௜݋ ௧ሻሽݒ
19: end-for
20: end-for
21: end-for
22: end-while

23: return ሼܩ௜ ൌ ሺ ௜ܸ, ேא௜ሻሽ௜ܧ

Algorithm 2 has 5 inputs (#1): (i) the set N of WSN

nodes; (ii) a factored POMDP having a factored set of
actions ܣ ൌ ∏ ேא௜௜ܣ , a factored set of observations ܱ ൌ∏ ܱ௜௜אே and a factored reward function ܴሺݏ, ܽሻ ൌ ∑ ܴ௜ሺݏ, ܽሻ௜אே
for every ݏ א ܵ and ܽ א -The possible values of those state .ܣ
variables which are fully observable to node i, denoted by ܵ௜,
are also given. It should be noted that ܵ ൌ ∏ ܵ௜௜אே may not
necessarily hold in general, i.e. we don’t assume, that every
state-variable is observable by one and only one agent, i.e. in ܵ ൌ ܵ௜ ൈ ܵି௜, ܵି௜ is not necessarily the set of values of state-
variables fully observable by agents –i (other than i), but in
general it is the set of values of state-variables not fully
observable by agent i; (iii) an initial belief ܾ଴; (iv) a POMDP
policy ߨ; and (v) a maximum number of iterations, ݐ௠௔௫.

Initially the algorithm sets the time-period to t=0, and the
joint action ܽ଴ to the recommendation of joint policy ߨ for
initial belief ܾ଴ (#2). This is followed by further initialization
steps for every node i (#3-7), where the set of all previously
reached beliefs of node i, ܤ௜ is initially empty; the set of i’s
possible beliefs at t=0, ܤ௜଴ contains only ܾ଴ ; the set of
vertices ௜ܸ of node i’s graph ܩ௜ contains only vertex ݒ଴ ൌሺܾ଴, ሾܽ଴ሿ௜ሻ , where ሾܽ଴ሿ௜ is the action recommended by the
joint action ܽ଴ for node i; the set of directed edges ܧ௜ of ܩ௜ is
empty; and the probability ݌൫ܽ௜଴ ൌ ܽ௜൯ that node i will
execute action ܽ௜ at t=0 is set to zero for every ܽ௜ א ௜ exceptܣ
for ܽ௜ ൌ ሾܽ଴ሿ௜, whose probability is set to 1, since it should be
certainly executed at t=0 by i in terms of joint policy ߨ in ܾ଴.

The main part of the algorithm is a while-cycle (#8-22),
where the stop-criteria is that either t should reach ݐ௠௔௫, or
the latest set of possible beliefs of node i, ܤ௜௧ should be

completely contained in the set of previously reached beliefs, ܤ௜, for every i. If the stop-criteria is satisfied, then a directed
graph ܩ௜ ൌ ሺ ௜ܸ, ௜ሻ of node i’s policy is returned for every iܧ
(#23). Otherwise the while-cycle starts by incrementing t
(#9), and then executes a belief and action probability update
and an expansion of ܩ௜ for every i (#10-21). For this first ܤ௜௧
is initialized to be empty, and ܤ௜௧ିଵ is united with ܤ௜ (#11).
This is followed by setting the probability ݌ሺܽ௜௧ ൌ ܽ௜ሻ of node
i executing action ܽ௜ at time-period t initially to zero for
every ܽ௜ א ௜ (#12). Now the algorithm takes every previousܣ
belief ܾ א ௜௧ିଵܤ of node i, and figures out what beliefs are
reachable from b, with what probability, and what action
follows from that according to ߨ (#13-20). So first we
identify the joint action ܽ௧ିଵ which is recommended by ߨ in
b, and which also specifies node i’s action ሾܽ௧ିଵሿ௜. We create
a vertex ݒ௧ିଵ ൌ ሺܾ, ሾܽ௧ିଵሿ௜ሻ from this belief-action pair (#14).
We now calculate all the new beliefs ܾ௜௧ of node i possibly
resulting from executing ሾܽ௧ିଵሿ௜ at time t-1, the
corresponding actions of node i, and the probability of these
actions, which depend on the probability of node i’s
observations and the observed value of its fully observable
variables ܵ௜. Thus between lines (#15-19) we are examining
the case of every possible ݋௜ א ܱ௜ and ݏ௜௧ א ܵ௜, where ݏ௜௧ is a
possible value of node i’s fully observable variables.
Assuming a given ݋௜ א ܱ௜ observation and ݏ௜௧ א ܵ௜ value, first
we calculate the belief ܾ௜௧ ൌ ߬ሺܾ, ሾܽ௧ିଵሿ௜, ,௜௧ݏ ௜ሻ resulting from݋
taking action ሾܽ௧ିଵሿ௜ , at time t-1 in belief b, and then
observing ݋௜ and ݏ௜௧ . This possible new belief, ܾ௜௧ is then
added to the set of possible beliefs of node i at time t, ܤ௜௧, and
also a joint action ܽ௧ is derived from ܾ௜௧ according to (#16) ߨ.
The calculation of belief ܾ௜௧ is omitted due to its complexity.

In line (#17) we continue by incrementing the hitherto
accumulated probability ݌ሺܽ௜௧ ൌ ሾܽ௧ሿ௜ሻ that node i does ሾܽ௧ሿ௜
at time t with the probability of observing ݋௜ and ݏ௜௧ (given b
and ሾܽ௧ିଵሿ௜), since this is a probability that we get belief ܾ௜௧
according to (#16), which then determines ሾܽ௧ሿ௜ ൌ ሾߨሺܾ௜௧ሻሿ௜ .
For complexity reasons we omit the calculation of
probability ݌ሺ݋௜, ,ܾ|௜௧ݏ ሾܽ௧ିଵሿ௜ሻ. It is straightforward to derive.

If the probability ݌ሺ݋௜, ,ܾ|௜௧ݏ ሾܽ௧ିଵሿ௜ሻ is not zero, then we
create a vertex ݒ௧ ൌ ሺܾ௜௧, ሾܽ௧ሿ௜ሻ representing the belief-action
pair we just reached, and add it to the set of vertices ௜ܸ of
graph ܩ௜, and also add an edge from ݒ௧ିଵ to ݒ௧ labeled with ݏ௜௧ and ݋௜ (#18), which means that if i is in ݒ௧ିଵ and does ሾܽ௧ିଵሿ௜ and then observes ݏ௜௧ and ݋௜ , then it should go to ݒ௧
and execute action ሾܽ௧ሿ௜ according to ߨ, and so on.

Algorithm 2 returns a simple mixed-observability policy
graph ܩ௜ for every WSN node i (#23) at a cost of complexity ࣩሺ|ܰ||ܱܵ௠௔௫|௧೘ೌೣሻ , where |ܱܵ௠௔௫| ൌ max௜אே|ܱ௜ ൈ ܵ௜| . The
construction of the policy graphs is done offline, but they are
used by the nodes in runtime. It should be noted, that the
constructed graphs are not equivalent to original joint policy ߨ, rather they are just a joint approximation of it, which is
based on the assumption, that the solution method that
constructed ߨ improved its ܸ value for every belief ܾ א ܤ .
Eventually Algorithm 2 approximates the DEC-POMDP
problem [13] in general sacrificing the guarantee of
optimality for smaller complexity.

295

IV. EXPERIMENTS
In this section we report on our preliminary experiments

with a simple 3-node WSN network (c.f. Fig. 5) with
properties according to Section III/A. Naturally our approach
is not restricted to such simple networks (it can actually work
for larger WSNs with arbitrary topology), but optimization
of larger networks is computationally more intensive, and the
examination of results would also be more complex and thus
less illustrative. The below network is just enough to
demonstrate the concept in a necessary level of detail.

Figure 5. Simple WSN topology with |ܰ| ൌ 3 nodes (B is the sink node)

Experiments were conducted on a single PC with 4 GB
of memory, a quad-core Intel i5 2.8 GHz CPU (but only 1
core was used for tests), and 32-bit Windows 7. We used the
latest version (v0.95) of APPL (Approximate POMDP
PLanning) open-source POMDP/MOMDP solver written in
C++. It does an approximation of the optimal policy by
sampling the optimally reachable beliefs. During this it
maintains a lower ܸ, and upper ܸ bound on the optimal value
function ܸכ. The approximation stops when ܸ െ ܸ is below a
given threshold. In our experiments this threshold was 10-3.

APPL accepts factored POMDPs/MOMDPs described in
XML (eXtensible Markup Language), and produces solution
policies consisting of Γ௒ሺݔሻ sets of ߙ-vectors for each ݔ א ܺ
and also policy graphs as described in Section II/C.

The MOMDP model of the WSN shown in Fig. 5 was
created according to Section III/B. We defined 9 fully-
observable ݀ܽܽݐ௜,௝ variables (for representing the position of
data generated at node 1, 2 and their aggregation 1+2 being
at nodes 1, 2 and B), which are initially all false with a
probability ݌൫݀ܽܽݐ௜,௝ ൌ ൯݁ݏ݈݂ܽ ൌ 1, and 2 partially observable ݁ݐ݊݁ݒ௜ variables (representing event occurrence at sensors),
which are true with a probability ݌ሺ݁ݐ݊݁ݒ௜ ൌ ሻ݁ݑݎݐ ൌ 0.1 .
Since events are assumed to occur according to Poisson
distribution, 0.1 is eventually the probability that ݇ ൒ 1
events occur during a time-period with ߣ ൎ 0.10536052
events occurring expectedly per period. Correspondingly 2
observation variables ܱ௜ were defined for the 2 sensor nodes
(to model their possible detection of event occurrence).

This was followed by 3 action variables ܣ௜ for each node
with possible values according to Section III/B. The
transition probabilities of state-variables (݀ܽܽݐ௜,௝ and ݁ݐ݊݁ݒ௜)
were set in principle also according to Section III/B. Their
concrete numerical values were mainly the following:
probability p=1.0 was assigned by default to ݀ܽܽݐ௜,௝
variables’ value not changing except when sending,
receiving, generating or aggregating. Successful sending had
a probability of p=0.99. Receiving side could fail with
p=0.01. Thus the probability of successful transmission was
p=0.992=0.9801. The probability of the other 3 cases can be
calculated similarly. The probability of successfully
generating data in case of event occurrence was p=0.98.

Processing and aggregation were successful with probability
p=1.0 in case data was present at the node.

Observation function Z was as follows: the probability of
not detecting an event when doing anything but listening was
set to p=1.0. In case of listening the probability of detection
was set to p=0.97 in case the event was occurring, and to
p=0.05 in case it was not occurring (false-positive detection).
The probabilities of the other 2 cases of not detecting the
event can be calculated from these values.

Every node had its own reward function ܴ௜ as discussed
in Section III/B. In particular for the sake of simplicity
sending was assumed to draw 10 mA of energy, while
receiving a bit more, 15 mA for a message of 512 bytes (we
experimented with more realistic values also, e.g. 17.4 and
19.7 mA, but that didn’t change the end results essentially).
We assumed that the time needed for sending/receiving is
proportionate with energy usage, and thus set the reward for
successfully sending a 512 byte message to –10 and for
receiving it, to –15. In case of the sink node we didn’t
consider the cost of receiving (c.f. Section III/B). The
(negative) reward for listening and generating data was set
relative to previous rewards, to –1 and –5 respectively.
Aggregation had no cost, and thus no reward.

The reward of the sink node was zero except when it
processed data (a motivation for the MOMDP solver to
construct policies that eventually relay data to the sink). We
experimented with several values for processing data. For
example, when the reward for processing a single data at the
sink was Rሺ1ሻ ൌ 15.9 , a surprisingly simple policy graph
emerged (with 1 vertex and 1 edge) suggesting to always be
idle for all the nodes. The cause for this is that even in the
best case the cost of node 1 getting its data to the sink would
be (–1)+(–5)+(–10) = –16 (listening+generating+sending),
while the reward for processing it would be 15.9, which
would produce a negative total expected reward overall,
which is worse than a reward of zero for being idle. This
emphasizes that setting the reward values in the MOMDP
model appropriately is of crucial importance. These rewards
must reflect real investment and gain in the real WSN, and
only then can the generated joint policy be considered really
optimal. As a reference for finding these rewards we can e.g.
approximate the investment of getting the data of the farthest
sensor node in network to the sink on the least hops route.

On the other hand, a significantly more complex joint
policy graph (with 36 vertices and 190 edges) emerged with Rሺ1ሻ ൌ 100 and Rሺ2ሻ ൌ 1.5 · Rሺ1ሻ ൌ 150, where Rሺ2ሻ denotes
the reward for processing aggregated data at the sink. This
policy realized non-aggregating network behavior generating
and routing data of node 1 and 2 to the sink nearly optimally.

With given reward configuration the near-optimal
behavior of the network may include data aggregation. For
this the reward for processing aggregated data must be above
a given level. In our WSN scenario, if 2 · Rሺ1ሻ ൐ Rሺ2ሻ holds,
that means that data accuracy is rewarded, while 2 · Rሺ1ሻ ൑Rሺ2ሻ means that we neglect data accuracy. We did several
test runs with the latter setting (Rሺ1ሻ ൌ 100 and Rሺ2ሻ ൌ 200).
The result was that the generated joint policy now included
aggregation (but only conditionally).

296

Fig. 6 shows a near-optimal solution of a scenario, where Rሺ1ሻ ൌ 47 and Rሺ2ሻ ൌ 1.5 · Rሺ1ሻ ൌ 70.5 , which is enough to
motivate the network to manifest node 1’s data at the sink
(for a best case reward of –16+47=31), but it is not enough to
compensate for also manifesting node 2’s data at the sink in
any way (and thus node 2 is idle, reserving overall energy).
If Rሺ1ሻ is set below a given level, then it becomes not worth
for given nodes even to generate their data (or to listen), not
speaking of routing it toward the sink. In our case node 1
goes idle around Rሺ1ሻ ൎ 16 as discussed before.

Figure 6. Policy graph ܩగ (| గܸ| ൌ 6, |గܧ| ൌ 16) of a near-optimal joint

policy ߨ in case of Rሺ1ሻ ൌ 47 and Rሺ2ሻ ൌ 70,5.

The near-optimal joint policy shown in Fig. 6 has the
following logic: it starts in vertex 0, where the fully observed
state is x=(), meaning that no generated data is anywhere,
while the belief over the partially observed state associates a
probability of p=0.92=0.81 to y=(), which means that neither
sensors’ event is occurring with this probability. That is just
according to the initial state of our MOMDP model. In this
belief-state the joint policy prescribes joint action a=(listen,
do_nothing, do_nothing) to node 1, 2 and B respectively.
After the joint execution of a the new belief-state may be
either vertex 1 or vertex 2 depending on which observation
did node 1 receive after listening: F=False (with probability
p=0.858) or T=True (with probability p=0. 142). The fully
observable state does not change by executing joint action a.

If the observation of node 1 is F, then we should continue
in vertex 1, where the same joint action is recommended
again (and again in case of failure). In case of success (if
node 1 finally detects the an event while listening) we go to
vertex 2, where the state is still x=(), but the probability of
the occurrence of an event at node 1 (while not occurring at
node 2) has a probability of p=0.615, which is the highest

achievable value. So in this case of this belief the policy
recommends to node 1 to generate data while other nodes
should still be idle (do_nothing). Data generation may fail
with a probability p=0.331, so we would be routed back to
vertex 0 from vertex 2. Otherwise it is successful (the data
appears at node 1), and so we go to vertex 3, where node 1
should try to send its generated data to the sink node
according to the policy. Four outcomes of sending this data
are possible: (i) the transmission is successful with
probability p=0.9801 [go to vertex 5]; (ii) data is really lost
with probability p=0.0001 [stay in vertex 3]; (iii) data is not
lost, but node 1 doesn’t receive the ACK from node B, and
so it isn’t dropping the data, with probability p=0.0099 [go
to vertex 4]; or (iv) data is lost because of some failure at
node B about which node 1 is not notified, with probability
p=0.0099 [go to vertex 0]. Staying in vertex 3 means a
necessary re-transmission of data. Going to vertex 4 implies
an unnecessary re-transmission of data (while the sink should
already process the received data). Going to vertex 5 is the
normal case with probability p=0.98: here node 1 should
start to listen again, while the sink should process its
received data. Overall this joint policy in Fig. 6 nearly
maximizes the total expected reward of the WSN in Fig. 5.

To evaluate the effectiveness of the MOMDP policies
generated e.g. for the above 3 highlighted cases, we made a
comparison with Dynamic Source Routing (DSR) [16],
which is equivalent to optimal static routing (best
benchmark) in case of the simple WSN in Fig. 5, since there
is only one acyclic route from each sensor to the sink. At
MAC level nodes used CSMA/CA. They listened until event
detection, and then tried to generate data. In case of no
aggregation they tried to relay available (successfully
received/generated) data instantly toward the sink according
to CSMA/CA. In case of full aggregation node 1 waited for
node 2’s data to arrive, aggregated it with its own (if it was
available, otherwise it listened and generated it), and then the
aggregated data was sent to the sink, which processed it
instantly. Table I summarizes the results of this evaluation.

TABLE I. QUANTITATIVE COMPARISON OF NETWORK PERFORMANCE

297

Table I shows the average of total energy use (∑E [mA]),
throughput (Bytes per period: Bpp, e.g. Bps) and total
reward (∑R, corresponding to network performance metric)
of different policies in different cases, each value gained
from 100 runs each 10000 time-periods long. Mainly DSR
with no/full-aggregation was compared against near-optimal
MOMDP policies generated for the 3 above highlighted
cases, in each case with a data size of 0.5 and 2 KB (in the 2
KB case energy for sending/receiving and thus reward R(1)
and R(2) were 4-times higher proportionally). This means
3*3*2=18 cases, each with 3 numeric values (∑E, Bpp, ∑R).
The standard deviation of each value is also included in the
table (as a result of the stochastic environment). Simulations
were implemented in MATLAB R2011a, and show that
MOMDP performed best in 5 out of 6 cases (3*2=6 rows) in
terms of performance metric (∑R) which we were seeking to
maximize. The best value for every case in each category is
underlined. The only case, where MOMDP’s ∑R was worse
than optimal routing (by 0.7%: effectively equivalent) was
due to local information exchange overhead (Hello
messages). Without overhead it would be better even then.
This overhead becomes less significant for larger data (e.g. 2
KB) and in larger networks the near-optimality of MOMDP
should compensate this even more compared to e.g. DSR.

The time for generating MOMDP policies can be divided
in 3 parts: (i) parsing the MOMDP model took around 14s in
average; (ii) the initialization of the algorithm took 30
minutes in average; and finally (iii) the approximation took
only around 1-1.5 seconds. Thus the initialization phase of
the algorithm consumed most of the time. Nonetheless these
results are currently state-of-the-art considering that the
problem solved has 211 states, indicating that with further
optimization, by exploiting the parallelization/distribution
possibilities of MOMDP solution algorithms (e.g. even by
taking advantage of special hardware), by specializing the
algorithm for the WSN domain, by allowing longer runtimes
(on stronger, dedicated hardware) and/or by integrating
recently successful online solution principles [11] WSNs
larger by orders of magnitude can be optimized in practice.

V. CONCLUSIONS
A generic framework was presented for overall network

performance optimization in WSNs based on offline
approximation of optimal joint MOMDP policies. A realistic
MOMDP model of WSNs was given, and two algorithms to
distribute its solution among individual nodes depending on
whether local information exchange is allowed. Resulting
node-policies optimize overall WSN behavior according to a
user-defined performance metric (e.g. finding the best
tradeoff between total energy usage, time delay and data
accuracy). The framework was demonstrated in case of a
smaller WSN in detail by generating and evaluating its near-
optimal joint policies in several cases and comparing them
against CSMA/CA with optimal routing (DSR). MOMDP
performed best in 5 out of 6 cases by increasing network
performance with more than 20% in average.

Further research should focus mainly on scaling up the
method to cope with larger networks e.g. by exploiting
parallelization/distribution; by specializing the method for

the WSN domain; and/or by integrating it with online
MOMDP solution principles. The overhead of information
exchange could be reduced by narrowing its horizon from
the whole network to nodes’ relevant neighborhood. The
WSN model could be improved by allowing action duration;
by adding observations of neighboring nodes’ actions; or by
merging listening and data generation into one action. Clock
synchronization issues and a possible change of model-level
assumptions in runtime could be considered. Also a deeper
investigation of decentralization of joint policies could be
performed and the approach should be tested in real WSNs.

REFERENCES
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,

“Wireless sensor networks: a survey,” Computer Networks, vol. 38,
Mar. 2002, pp. 393-422.

[2] S. D. Glaser, “Some real-world applications of wireless sensor
nodes,” Proc. SPIE Symposium on Smart Structures & Materials
(NDE 2004), SPIE Press, Mar. 2004, pp. 14-18, doi:10.1.1.129.2109.

[3] P. Sun, X. Zhang, Z. Dong, and Y. Zhang, “A novel energy efficient
wireless sensor MAC protocol,” Proc. Fourth International
Conference on Networked Computing and Advanced Information
Management, NCM, Sep. 2008, pp. 68-72.

[4] B. Yin, H. Shi and Y. Shang, “A two-level strategy for topology
control in wireless sensor networks,” Int. Journal of Wireless and
Mobile Computing, vol. 4, no. 1, 2010, pp. 41-49.

[5] A. Sharif, V. M. Potdar, and A. J. D. Rathnayaka, “LCART:
Lightweight Congestion Aware Reliable Transport protocol for WSN
targeting heterogeneous traffic,” Australian Journal of Intelligent
Information Processing Systems, vol. 12, Nov. 2010, pp. 1-9.

[6] T. Anker, D. Bickson, D. Dolev and B. Hod, “Efficient clustering for
improving network performance in wireless sensor networks,” Proc.
5th European Conference on Wireless sensor networks (EWSN'08),
Springer-Verlag, 2008, pp. 221-236.

[7] R. Srivastava and C. E. Koksal, “Energy optimal transmission
scheduling in wireless sensor networks,” IEEE Transactions on
Wireless Communications, vol. 9, May. 2010, pp. 1550-1560.

[8] W. Li, M. Bandai, and T. Watanabe, “Tradeoffs among delay, energy
and accuracy of partial data aggregation in wireless sensor networks,”
Proc. International Conference on Advanced Information Networking
and Applications (AINA2010), IEEE Press, Apr. 2010, pp. 917-924.

[9] X. Fei, A. Boukerche and F.R. Yu, “A POMDP based K-coverage
dynamic scheduling protocol for wireless sensor networks,” Proc.
IEEE Global Telecommunications Conf., IEEE, Dec. 2010, pp. 1-5.

[10] S. Chobsri, W. Sumalai, and W. Usaha, “A parametric POMDP
framework for efficient data acquisition in error prone wireless sensor
networks,” Proc. 4th International Symposium on Wireless Pervasive
Computing (ISWPC 2009), IEEE Press, Feb. 2009, pp. 1-5.

[11] J. Veness, K. S. Ng, M. Hutter, W. Uther and D. Silver, “A Monte-
Carlo AIXI approximation,” Journal of Artificial Intelligence
Research, vol. 40, Jan. 2011, pp. 95-142.

[12] S. C. W. Ong, S. W. Png, D. Hsu, and W. S. Lee, “Planning under
uncertainty for robotic tasks with mixed observability,” Int. Journal of
Robotics Research, vol. 29, Jul. 2010, pp. 1053-1068.

[13] D. S. Bernstein, R. Givan, N. Immerman and S. Zilberstein, “The
complexity of decentralized control of Markov decision processes,”
Mathematics of Operations Research, vol. 27, 2002, pp. 819-840.

[14] M. L. Puterman, Markov decision processes. John Wiley, 1994.
[15] J. Pineau, G. Gordon and S. Thrun, “Anytime point-based

approximations for large POMDPs,” Journal of Artificial Intelligence
Research, vol. 27, Nov. 2006, pp. 335-380.

[16] D. B. Johnson and D. A. Maltz, "Dynamic Source Routing in Ad Hoc
Wireless Networks," in Mobile Computing, T. Imielinski and H.
Korth, Eds. Kluwer Academic Publishers, 1996, pp. 153–181.

298

