
Converting multi-agent PDDL to extensive form
games

D. L. Kovacs
1

) and T. P. Dobrowiecki
1

)

1

) Budapest University of Technology and Economics, Faculty of Electrical
Engineering and Informatics, Department of Measurement and Information
Systems, Hungary
dkovacs@mit.bme.hu, tade@mit.bme.hu

Abstract:
This paper presents conversion methods of fully- and partially-observable multi-
agent planning problems described in the Multi-Agent Planning Domain Definition
Language (MA-PDDL) to extensive-form games. MA-PDDL and extensive-form
games model essentially the same multi-agent situations, but the former is much
more detailed. The proposed conversion is fruitful in both directions: 1) extensive
games can be solved via available game theoretic solution principles providing
solutions to corresponding MA-PDDL models, and 2) MA-PDDL can be solved
via multi-agent planning methods providing solutions to the corresponding game.
Keywords: multi-agent pddl planning game-theory partial-observability

1. Introduction

This paper is about the conversion of formal models of multi-agent planning
problems [1] described in MA-PDDL (Multi-Agent Planning Domain Definition
Language) [2] to extensive-form games [3]. MA-PDDL is a multi-agent extension
of single-agent PDDL [4]. It provides a detailed description of multi-agent
environments. Extensive-form games on the other hand are abstract game
theoretic constructs modeling essentially the same multi-agent situations. To our
knowledge there are currently no other methods for automatically converting
multi-agent problem descriptions to game theoretic games in the literature.

The proposed connection of MA-PDDL and extensive form games is fruitful in
both directions: (1) an extensive-form game can be solved via available game
theoretic solution principles (e.g. by finding its Nash-equilibria [5]) providing
solutions to the corresponding multi-agent planning problem described in MA-
PDDL or (2) MA-PDDL can provide a much richer description of the same game
theoretic situation, and solved with available multi-agent planning methods.

The paper is structured as follows: Section 2 introduces the preliminaries of
PDDL, MA-PDDL and extensive-form games. Section 3 proposes a partial-
observability extension to MA-PDDL, and conversion methods of fully- and
partially-observable MA-PDDL descriptions to extensive-form games. Finally,
Section 4 concludes the work and outlines future research directions.

2. Preliminaries

In the following fundamentals of PDDL, MA-PDDL and game theory are provided.

2.1. PDDL

The latest version of PDDL is 3.1 [6,7]. Each new version of the language added
new, modular features to previous versions. PDDL3.1 has the following features:
the description of a single-agent planning problem is divided in two parts: a
domain- and a problem-description. The former holds those model-elements
which are present in every planning problem of the domain, while the latter
specifies the concrete planning problem at hand within the domain. Thus the
input of a domain-independent PDDL-based planner is the domain- and problem-
description, and its output is a plan that solves the specified planning problem.

The domain description consists of a name, a list of requirements (list of used
features), a type-hierarchy (classifying objects), constants (objects present in
every problem of the domain), a list of predicates and actions. Actions have input
parameters, preconditions (that need to be satisfied in a given state of the
environment for the action to be executable) and effects (describing the change
to the state where the action is executed). Effects of an action can be conditional
or continuous. Moreover, actions may have arbitrary, non-unit duration. A domain
description may also include a list of functions, derived predicates or hard
constraints. The domain of a function is a Cartesian product of object-types,
while its range may be either the set of real numbers or any object-type. A
derived predicate is true, if its preconditions are true. Constraints are statements
in modal logic about state-trajectories that must be true for valid solution plans.

The problem description consists of a name, a reference to its domain, a list of all
objects, an initial state and goal states of the environment. It can include a metric
(a real-valued function for measuring the quality of solutions), timed initial literals
(facts becoming true at a given time) and constraints similarly to the domain
description, but they can refer to preferences (soft constraints, which should not
necessarily be satisfied, but they can be incorporated in the metric). Preferences
can also be defined in the goal description or in preconditions of actions.

2.2. MA-PDDL

MA-PDDL [2] is a minimalistic extension to PDDL3.1 allowing planning by and for
multiple agents. It can distinguish between different agents’ possibly different
actions. Similarly different agents can have different goals or metrics. Actions’
preconditions can directly refer to concurrent actions and thus actions with
interacting effects can be handled in general (e.g. when at least 2 agents need to

execute the lift action to lift a heavy table, or it will remain on the ground).

However, since PDDL3.1 assumes that the environment is fully-observable (i.e.
every agent can access the value of every state-fluent at every instant and
observe every action), thus by default this is assumed in MA-PDDL too. The

PDDL-requirement for the multi-agent extension of PDDL is :multi-agent.

2.3. Game theoretic fundamentals

An incomplete information game [8] (the most general non-cooperative game) is

described by a 5-tuple ({ } { } { }). This is the normal form
of game , where { } denotes the set of agents; is the set of pure
strategies of and is the set of its types; is the real-valued
utility function of agent , where ∏

 is the set of all strategy-combinations.

The goal of an agent is to choose its strategy so as to maximize its own expected
utility. The difficulty is that agents choose their strategies simultaneously and

independently. Moreover each agent plays with an active type, , which is
revealed only to , and chosen randomly by Nature (or Chance) at the beginning
of each play. is the a priori probability distribution above all type-combinations
 ∏

 according to which Nature chooses active types for agents. A

type-combination is thus realized with probability (). If there is only 1
type-combination, i.e. when | | , then is of complete information. Otherwise,
when | | , is of incomplete information. In any case is common knowledge

among the agents (every agent knows, that every agent knows, that ... knows).

The extensive form of adds the notion of choice nodes , where is the
finite set of all choice nodes with a distinguished initial choice node, , from
where each play of begins. A function { } can indicate which agent
 () chooses an elementary move (or action) in from the finite, non-
empty set of its moves, (one and only one agent is associated to each).

Similarly function

 { } may indicate the set of those moves,

 () (), which agent () can choose in (one and only one move can be

chosen in each). Thus in an incomplete information game () and
 () holds. Agent 0 represents Nature (or Chance).

In any given node, where () holds, agent 0 chooses its respective
moves randomly according to a probability distribution (), where
 () denotes the stochastic strategy of agent 0, and () is the set of all
probability distributions above . It follows that () holds for .
Eventually each choice node corresponds to a unique sequence of moves of

length between 0 and (a given maximum), with corresponding to the
empty sequence of length 0. So a play begins initially in . Then, after agent
 () choses a move () (), the play continues in corresponding to

the sequence 〈 ()〉. This continues until the play reaches a sequence

〈 () () ()〉. Thus choice nodes can be connected in a tree-graph

 of maximal depth with being the root-node.

Agents can’t necessarily observe all the previous moves of other agents during a

play. For this reason information functions { } are introduced for
each . The information function of agent i associates a non-empty

information set, () , to each choice node , where (). An
information set () denotes the set of those choice nodes that agent thinks
possible in . It is assumed that () holds for every and and

that () () (). Thus the choice nodes inside an information
set are indistinguishable for the respective agent. Information sets of agent are
disjoint, forming an information partition () () . Now the set of

pure strategies of agent in is the set of all functions,

where for () (()) () holds. Eventually an incomplete

information extensive-form game is thus a 15-tuple:

 ({ } { } { } { } { } { } { }).

3. Conversion of MA-PDDL to extensive form games

Now the main results of this paper are presented: algorithms for converting fully-
and partially-observable MA-PDDL descriptions to extensive-form games.

3.1. Case of full-observability

The idea of the conversion method is to generate successor states from the initial
state of an MA-PDDL problem, , in every possible way (i.e. via every

applicable action-combination of agents, including no-op actions, with every

agent executing one action at a time), and then recursively apply the same

process to the resulting states altogether -times, and convert this graph into an
extensive-form game. Algorithm 1 forms the backbone of this method.

Algorithm 1: Convert a fully-observable MA-PDDL description to an extensive form game

1: CONVERT()

2:
3: AGENT_OBJECTS()
4: | |,
5: foreach

6: | { ()},

7: | ALL_GROUNDED_ACTIONS() { - }
8: end-foreach

9: NEW_CHOICE_NODE(), () , { ()}, ()

10: (()) , ()
11: CHOICE_NODE_FROM_INITIAL_STATE()
12: () , () , () { }, { ()}
13: { }, ({()}), { }
14: while ()
15: |
16: | 〈 { } { } 〉
17: | ADD_NEXT_LEVEL({ } { } { })
18: end-while

19: { } ENUMERATE_STRATEGIES({ } { })
20: { } GET_METRIC_VALUES({ } { })

21: return ({ } { } { } { } { } { } { })

The CONVERT method has 2 inputs (#1): is a fully-observable, discrete,

deterministic MA-PDDL domain- and problem-description, and is a positive
integer specifies the number of levels of successor states generated. In case of

 | | agents the resulting extensive-form game (#21) has a tree-graph of
depth (#4), where is the set of agent-objects in (#3).

The algorithm first sets a level-counter to zero (#2), then for every agent it
initializes the set of types to a one-element set (since a deterministic MA-PDDL

description is converted to a complete information game). Information partition
is set to the empty-set for every , and all grounded actions of agent are

extracted from into respective sets of moves, , including the always

executable - action, standing for no-operation and having no preconditions

or effects (#5-8). Next (#9) the root node of the game-tree, , is created, and its
actor is set to agent , the actions of agent are set to (having only one
element, the only type-combination,), and is allowed in . Then (#10) the

probability of “action” , (), is set to 1, so this degenerate probability distribution
will govern the stochastic strategy of agent in , i.e. () is set to .

Next (#11) the CHOICE_NODE_FROM_INITIAL_STATE method creates a new

choice node, , which corresponds to the initial state of . Agent is set to
act in (#12), allowing any move from . Line (#12) initializes also the

information set () and information partition of agent to { }, a one-
element set (because of full-observability). Line (#13) initializes the set of choice
nodes, , to include only and ; and the game-graph to have these nodes
as vertices with only one edge – labeled with move –, (), and then also
the 0th state-level is initialized to a set having only a single element, .

State-levels are a central importance. They consist of those choice nodes in ,
which correspond directly to states of the multi-agent environment. The following
5 lines (#14-18) create new state-levels via intermediate action-levels by calling

the ADD_NEXT_LEVEL method iteratively in a while-loop. This method extends

the game-graph, the set of choice-nodes, the information functions and partitions
of agents, and also creates the next state-level. The detailed pseudo-code of the

method is shown in Algorithm 2. After iterations the while-loop exits, and the

finalized information partitions of agents, { } , are used to enumerate (#19) all

the possible functions (for every) to form the sets of pure
strategies, { } . This is done by the ENUMERATE_STRATEGIES method. However
{ } is implied implicitly by the game-graph and information partitions.

The utility of agents is defined explicitly for every possible outcome (i.e. for every
respective strategy-combination). These outcomes are represented in the game-
tree with choice-nodes of the last state-level. Each of them corresponds to
exactly one -step state/action-trajectory, thus the idea is to simply get the MA-
PDDL metric-value of these state/action-trajectories from for every agent-
object, and associate them to the respective choice-nodes. This way each

choice-node in the last state-level will have an -long utility-vector. This is what
the GET_METRIC_VALUES method does (#20). Finally we can summarize ,

having a graph of depth , abstractly encoding the MA-PDDL problem, ,
up to a finite horizon . The algorithm returns (#21).
The heart of the above presented CONVERT method is the iterative call of the

ADD_NEXT_LEVEL method, which effectively builds the game-tree, level-by-level

(#16-17). This method is presented in Algorithm 2.

Algorithm 2: Add a level to the extensive game-tree of a fully-observable MA-PDDL desc.

1: ADD_NEXT_LEVEL(() { } { } { })

2:
3: foreach
4: | { },
5: | TRACE() , CLONE(), { }
6: | () , () , () { }, { ()}
7: | for , ,
8: | | if then { } end-if
9: | | if then end-if
10: | | foreach
11: | | | if then () end-if
12: | | | foreach ()
13: | | | | if then
14: | | | | | NEW_CHOICE_NODE()
15: | | | | | TRACE() (())
16: | | | | | () , ()

17: | | | | else

18: | | | | | if HAS_CONSISTENT_EXECUTABLE_SUBSET((())) then
19: | | | | | | CHOICE_NODE_FROM_SUCCESSOR_STATE((()))
20: | | | | | | () , () , () { }, { ()}
21: | | | | | else

22: | | | | | |
23: | | | | | end-if

24: | | | | end-if

25: | | | | { }
26: | | | | { }, {()}, { }
27: | | | end-foreach

28: | | end-foreach

29: | end-for

30: |

31: end-foreach

32: return 〈 { } { } 〉

The ADD_NEXT_LEVEL method has 9 inputs (#1): is the fully-observable,

discrete, deterministic MA-PDDL description; is the actual game-graph (a set of
vertices, , and a set of labeled edges,); is the root node of ; is the
actual set of choice-nodes; { } and { } are the actual information partitions

and functions of agents; is the latest state-level; { } is the set

of sets of all the possible moves of agents; and is the number of agents. First
(#2) the next state-level is initialized to an empty-set, and then it is gradually built

in a foreach-loop (#3-31), which goes through every node,

and grows a sub-tree of moves from it, one move for each agent, starting from

agent until agent (#7-29), in every possible way.

The levels of sub-trees are called action-levels, and the choice nodes of an
action-level belong to the same information set (of the respective actor agent),
since agents act simultaneously in every instant and thus they cannot observe

each other’s moves. However each information set at state-levels (where agent
acts) consists of one choice node because of full-observability. The sub-tree built

from in the for-loop (#7-29) has levels, level being part of

 and level being part of the . The latter
consists of choice nodes that correspond to successor states of the environment,

produced in every possible way from the state corresponding to . So the for-

loop (#7-29) creates action-levels of the sub-tree. Inside it a

foreach-loop (#10-28) goes through every choice node of action-level , and a

further foreach-loop inside it (#12-27) goes through every possible move

 () of agent supposing that the previous agents chose action-
combination (). () is initially empty. Further choice nodes of the
game-tree are updated with the move-path (trace) which leads to them from .

If (#13-16), then the possible action-combination is not yet ready, so a new
choice node is created in action-level , and its trace, actor and move-set is
set. Otherwise, if (#18-24), then (()) is an -element action-
combination, which may have an executable subset in the state corresponding to
 in light of the generated state-trajectory. This is checked by the
HAS_CONSISTENT_EXECUTABLE_SUBSET method (#18) in 5 steps: (a) first it

collects those actions from (()) which are potentially executable in the
state corresponding to . A single-action is considered potentially executable in a
state if its pre-conditions are satisfied taking Assumption 1 into account.

Assumption 1 (undefined effects). If the executability of a grounded action in
a state requires the concurrent execution (or no execution) of some actions, then

if any of those actions are not executed (or executed) concurrently with , then
we assume that still remains executable, but it has no effects (empty effects).

Assumption 1 covers the case when an MA-PDDL action is defined to refer to an
action in its pre-conditions, but no effects are specified for the case, when that

reference is negated. For example if a pick-up action of agent requires in its

pre-conditions, that no other agent executes pick-up for the same object at the

same time, but the Designer did not specify what happens if still at least one

other agent does so, then if this actually happens, then the pick-up action of

agent still remains executable, but has no effects. I.e. in light of Assumption 1
the executability of actions is independent from concurrently executed actions.

After collecting potentially executable single-actions from (()), (b) all
single- and joint-actions are identified within the collection. A joint-action within

an action-collection in is a subset of , where all members either refer to at
least one other member in their pre-conditions or the conditions of their active
conditional effects, or they are referred to by at least one of the other members.
Conditional effects are active in if their conditions are satisfied in the state

corresponding to with actions being executed. This approach produces an
unambiguous partition of . Next (c) individually inconsistent or not executable
elements are removed from the produced partition. A single-action is individually
consistent in if its active conditions and effects are both consistent in (the state
corresponding to) . A joint-action is individually consistent in if its joint active
conditions and joint active effects are both consistent in (the state corresponding
to) in case the actions within the joint-action are executed simultaneously.
Interference of conditions and effects of concurrent discrete actions is not
considered. Individual executability requires satisfaction of (joint) pre-conditions.

After removing individually inconsistent or not executable elements from the
partition, (d) elements with pairwise inconsistent joint-effects are removed.
Finally (e) the remaining elements are checked, whether their joint execution is

allowed by the hard state-trajectory constraints in . If yes, then these
actions are the consistent and executable subset of (()), i.e. they can
be executed, and so the HAS_CONSISTENT_EXECUTABLE_SUBSET method returns

true. Otherwise, if not, or if the subset is empty, then the return-value is false.

In case the return-value is true, a new choice node corresponding to the state

produced by the consistent and executable subset is created and put into action-

level (#19,20,25). Otherwise nothing happens, i.e. a choice node
 is put into action-level (#5,22,25). In both cases and is updated

appropriately (#26) and action-level is added to the (#30).
This is repeated for every in (#3-31) before Alg.2 finishes.

3.2. Case of partial-observability

To capture partial-observability the following 6 rules should be added to the BNF
(Backus-Naur Form) grammar of MA-PDDL (they should be read in conjunction).

The above extension has essentially the same semantics as events proposed in
[9] except that observations can be defined for multiple agents (their inheritance

and polymorphism is the same as of actions in [2]), and they can have a :value

field instead of :effects. A grounded observation holds in states where its
conditions are satisfied, but it can’t be referred to in conditions or effects of
actions or anywhere else. Observations can be used solely by the planners. In

case the :partial-observability requirement is present, it is assumed, that
agents modeled with agent-objects can access only their observations (and their
value), but they can’t access state-fluents (facts, functions’ value, and actions)
directly. Planners planning for agent-objects should take this into account.
Moreover, in this case information sets at state-levels of the converted game
may not be singular, since there may be state/action-trajectories, where the
observation-history (including observation of actions) is the same for an agent,
and thus the choice-nodes corresponding to these trajectories should be
members of the same information set. Based on this remark Alg.1 should be
extended. First the below 3 lines should be inserted between line #12 and #13.

13: foreach ,
14: | OBS_HIST() 〈 ()〉, () { }, { ()}
15: end-foreach

This foreach-loop initializes the observation-history of agent (for) to a

list including only the observation in the state corresponding to , (),
which is a set of grounded observations and their value holding in the state.

 () is the information-set of agent in (even though agent 1 acts in),
and is the information-partition at state-level of agent . The ADD_NEXT_LEVEL

method should now have { }
 and { } among its inputs, and { }

 and

{ } among its outputs. Alg.2 is changed accordingly: first, manipulation of

agent ’s information-partition, , in line #6 and #20 is removed together with
line #8. Second, each reference to any is replaced with

 () to keep track of the sub-tree of each . Line
#11 is deleted, but the following line is added after line #6 to initialize the

observation-history and information-sets () of choice node (clone of).

7: | foreach , OBS_HIST() (), () { } end-foreach

To update the observation-histories of agents and to initialize their information

sets for a new choice node corresponding to a successor state, the next 5 lines
should be added after line #16 in the original code of Alg.2.

20: | | | | | | foreach ,

21: | | | | | | | OBS_HIST() ⟨ () …

22: | | | | | | | OBS(((()))), …

23: | | | | | | | ()⟩, () { }
24: | | | | | | end-foreach

In line #22 the call produces a choice node that corresponds

to a state, where the progressive facts about consistent and executable actions

of (()) are added to the state corresponding to . These actions are
identified in the same way as in the HAS_CONSISTENT_EXECUTABLE_SUBSET method.

Finally, line #32 in the original Alg.2 should be replaced with the following lines.

36: foreach
37: | if
38: | | foreach

39: | | |
 ()

40: | | | foreach
 , ()

 end-foreach

41: | | | {
}

42: | | end-foreach

43: | end-if

44: | foreach where
45: | | if OBS_HIST() OBS_HIST() then
46: | | | if then () () { }, () () { } end-if
47: | | | () () { }, () () { }
48: | | end-if

49: | end-foreach

50: |
51: | foreach
52: | | if then { ()} end-if
53: | | { ()}

54: | end-foreach

55: end-foreach

56: return 〈 { } { } { } { } 〉

In the foreach-loop (#36-55), if (#37-43), then those th action-levels are

unified into an information-set of agent , where the root nodes belong to the
same information-set. is updated accordingly. in line #38 is received as

an input of the ADD_NEXT_LEVEL method. In lines (#44-49) choice nodes in the next
state-level corresponding to states with same observation-history are put in the
same information-set. Finally the information-partitions of all agents are finalized
in the next state-level (#50-54), and it is returned by the method (#55).

4. Conclusions

This paper provides algorithms for converting fully- and partially-observable MA-
PDDL descriptions to extensive-form games. Partial-observability is introduced
as a separate extension to MA-PDDL. Limitations include the discrete (or fixed-
length durative), deterministic nature of converted descriptions, and that each

agent needs to execute exactly one action at a time (even no-op). In the future

this should be extended to allow probabilistic and non-deterministic descriptions
with durative actions and without the limit on the number of concurrent actions.

Acknowledgments

This work was partially supported by the ARTEMIS JU and the Hungarian
National Development Agency (NFÜ) in frame of the R3-COP (Robust & Safe
Mobile Co-operative Systems) project.

References

[1] M. de Weerdt, B. Clement, Introduction to planning in multiagent systems.
Multiagent Grid Systems. 5(4) (2009), 345-355.
[2] D. L. Kovacs, A Multi-Agent Extension of PDDL3.1, Proc. of: 3rd Workshop on
the Int. Planning Comp. (IPC), ICAPS-2012, (25–29 June 2012, Atibaia, Brazil).
[3] J. von Neumann, O. Morgenstern, “Theory of games and economic behavior”,
Princeton, 1944.
[4] D. McDermott et al., PDDL---The Planning Domain Definition Language,
Tech. Rep., TR­98­003/DCS TR­1165, Yale Center for CVC, NH, CT, (1998).
[5] J. F. Nash, Non-cooperative Games. Annals of Maths. 54 (1951), 286-295.
[6] M. Helmert, Changes in PDDL 3.1, Unpublished summary from the IPC-2008
website, (2008).
[7] D. L. Kovacs, BNF Definition of PDDL3.1, Unpublished manuscript from the
IPC-2011 website, (2011).
[8] J. C. Harsanyi, Games with incomplete information played by Bayesian
players, Part I-III. Manag. Sc. 14(3,5,7) (1967-1968), 159-182, 320-334, 486-502.
[9] M. Fox, D. Long, Modelling Mixed Discrete-Continuous Domains for Planning.
Journal of Artificial Intelligence Research. 27 (2006), 235-297.

