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Abstract: 
This paper presents conversion methods of fully- and partially-observable multi-
agent planning problems described in the Multi-Agent Planning Domain Definition 
Language (MA-PDDL) to extensive-form games. MA-PDDL and extensive-form 
games model essentially the same multi-agent situations, but the former is much 
more detailed. The proposed conversion is fruitful in both directions: 1) extensive 
games can be solved via available game theoretic solution principles providing 
solutions to corresponding MA-PDDL models, and 2) MA-PDDL can be solved 
via multi-agent planning methods providing solutions to the corresponding game. 
Keywords: multi-agent pddl planning game-theory partial-observability 

 
1. Introduction 

 

This paper is about the conversion of formal models of multi-agent planning 
problems [1] described in MA-PDDL (Multi-Agent Planning Domain Definition 
Language) [2] to extensive-form games [3]. MA-PDDL is a multi-agent extension 
of single-agent PDDL [4]. It provides a detailed description of multi-agent 
environments. Extensive-form games on the other hand are abstract game 
theoretic constructs modeling essentially the same multi-agent situations. To our 
knowledge there are currently no other methods for automatically converting 
multi-agent problem descriptions to game theoretic games in the literature. 

 

The proposed connection of MA-PDDL and extensive form games is fruitful in 
both directions: (1) an extensive-form game can be solved via available game 
theoretic solution principles (e.g. by finding its Nash-equilibria [5]) providing 
solutions to the corresponding multi-agent planning problem described in MA-
PDDL or (2) MA-PDDL can provide a much richer description of the same game 
theoretic situation, and solved with available multi-agent planning methods. 

 

The paper is structured as follows: Section 2 introduces the preliminaries of 
PDDL, MA-PDDL and extensive-form games. Section 3 proposes a partial-
observability extension to MA-PDDL, and conversion methods of fully- and 
partially-observable MA-PDDL descriptions to extensive-form games. Finally, 
Section 4 concludes the work and outlines future research directions. 

 



2. Preliminaries 
 

In the following fundamentals of PDDL, MA-PDDL and game theory are provided. 
 

2.1. PDDL 
 

The latest version of PDDL is 3.1 [6,7]. Each new version of the language added 
new, modular features to previous versions. PDDL3.1 has the following features: 
the description of a single-agent planning problem is divided in two parts: a 
domain- and a problem-description. The former holds those model-elements 
which are present in every planning problem of the domain, while the latter 
specifies the concrete planning problem at hand within the domain. Thus the 
input of a domain-independent PDDL-based planner is the domain- and problem-
description, and its output is a plan that solves the specified planning problem. 

 

The domain description consists of a name, a list of requirements (list of used 
features), a type-hierarchy (classifying objects), constants (objects present in 
every problem of the domain), a list of predicates and actions. Actions have input 
parameters, preconditions (that need to be satisfied in a given state of the 
environment for the action to be executable) and effects (describing the change 
to the state where the action is executed). Effects of an action can be conditional 
or continuous. Moreover, actions may have arbitrary, non-unit duration. A domain 
description may also include a list of functions, derived predicates or hard 
constraints. The domain of a function is a Cartesian product of object-types, 
while its range may be either the set of real numbers or any object-type. A 
derived predicate is true, if its preconditions are true. Constraints are statements 
in modal logic about state-trajectories that must be true for valid solution plans. 

 

The problem description consists of a name, a reference to its domain, a list of all 
objects, an initial state and goal states of the environment. It can include a metric 
(a real-valued function for measuring the quality of solutions), timed initial literals 
(facts becoming true at a given time) and constraints similarly to the domain 
description, but they can refer to preferences (soft constraints, which should not 
necessarily be satisfied, but they can be incorporated in the metric). Preferences 
can also be defined in the goal description or in preconditions of actions. 

 
2.2. MA-PDDL 

 

MA-PDDL [2] is a minimalistic extension to PDDL3.1 allowing planning by and for 
multiple agents. It can distinguish between different agents’ possibly different 
actions. Similarly different agents can have different goals or metrics. Actions’ 
preconditions can directly refer to concurrent actions and thus actions with 
interacting effects can be handled in general (e.g. when at least 2 agents need to 

execute the lift action to lift a heavy table, or it will remain on the ground). 

However, since PDDL3.1 assumes that the environment is fully-observable (i.e. 
every agent can access the value of every state-fluent at every instant and 
observe every action), thus by default this is assumed in MA-PDDL too. The 

PDDL-requirement for the multi-agent extension of PDDL is :multi-agent. 



2.3. Game theoretic fundamentals 
 

An incomplete information game [8] (the most general non-cooperative game) is 

described by a 5-tuple   (  {  }    {  }    {  }     ). This is the normal form 
of game  , where   {       } denotes the set of agents;    is the set of pure 
strategies of     and    is the set of its types;           is the real-valued 
utility function of agent  , where   ∏   

 
    is the set of all strategy-combinations. 

 

The goal of an agent is to choose its strategy so as to maximize its own expected 
utility. The difficulty is that agents choose their strategies simultaneously and 

independently. Moreover each agent   plays with an active type,      , which is 
revealed only to  , and chosen randomly by Nature (or Chance) at the beginning 
of each play.   is the a priori probability distribution above all type-combinations 
    ∏   

 
    according to which Nature chooses active types for agents. A 

type-combination     is thus realized with probability  ( ). If there is only 1 
type-combination, i.e. when | |   , then   is of complete information. Otherwise, 
when | |   ,   is of incomplete information. In any case   is common knowledge 

among the agents (every agent knows, that every agent knows, that ... knows  ). 
 

The extensive form of   adds the notion of choice nodes    , where   is the 
finite set of all choice nodes with a distinguished initial choice node,     , from 
where each play of   begins. A function       { } can indicate which agent 
   ( ) chooses an elementary move (or action) in     from the finite, non-
empty set of its moves,    (one and only one agent is associated to each    ). 

Similarly function         
 
    { } may indicate the set of those moves, 

 ( )    ( ), which agent  ( ) can choose in   (one and only one move can be 

chosen in each  ). Thus in an incomplete information game  (  )    and 
 (  )    holds. Agent 0 represents Nature (or Chance). 

 

In any given     node, where  ( )    holds, agent 0 chooses its respective 
moves randomly according to a probability distribution   ( ), where      
 (  ) denotes the stochastic strategy of agent 0, and  (  ) is the set of all 
probability distributions above   . It follows that   (  )    holds for   . 
Eventually each choice node corresponds to a unique sequence of moves of 

length between 0 and      (a given maximum), with    corresponding to the 
empty sequence   of length 0. So a play begins initially in   . Then, after agent 
 (  ) choses a move   (  )    (  ), the play continues in    corresponding to 

the sequence 〈  (  )〉. This continues until the play reaches a sequence 

〈  (  )   (  )     (    )〉. Thus choice nodes can be connected in a tree-graph 

  of maximal depth   with    being the root-node. 
 

Agents can’t necessarily observe all the previous moves of other agents during a 

play. For this reason information functions         { } are introduced for 
each          . The information function of agent i associates a non-empty 

information set,   ( )   , to each choice node  , where    ( ). An 
information set   ( ) denotes the set of those choice nodes that agent   thinks 
possible in  . It is assumed that     ( ) holds for every     and     and 



that           ( )  (  )   (   ). Thus the choice nodes inside an information 
set are indistinguishable for the respective agent. Information sets of agent   are 
disjoint, forming an information partition       ( )     ( )   . Now the set of 

pure strategies    of agent           in   is the set of all          functions, 

where for    ( )       (  ( ))   ( ) holds. Eventually an incomplete 

information extensive-form game is thus a 15-tuple: 

  (  {  }    {  }    {  }              {  }    {  }    {  }    { }        ). 

 

3. Conversion of MA-PDDL to extensive form games 
 

Now the main results of this paper are presented: algorithms for converting fully- 
and partially-observable MA-PDDL descriptions to extensive-form games. 

 
3.1. Case of full-observability 

 

The idea of the conversion method is to generate successor states from the initial 
state of an MA-PDDL problem,     , in every possible way (i.e. via every 

applicable action-combination of agents, including no-op actions, with every 

agent executing one action at a time), and then recursively apply the same 

process to the resulting states altogether  -times, and convert this graph into an 
extensive-form game. Algorithm 1 forms the backbone of this method. 

 

Algorithm 1: Convert a fully-observable MA-PDDL description to an extensive form game 

1:  CONVERT(      ) 

2:      
3:     AGENT_OBJECTS(    ) 
4:    | |,         
5:  foreach     

6:  |    {           ( )},      

7:  |     ALL_GROUNDED_ACTIONS(      )  {  -  } 
8:  end-foreach 

9:      NEW_CHOICE_NODE( ),  (  )   ,    {  (          )},  (  )     

10:  (  (          ))   ,    (  )    
11:     CHOICE_NODE_FROM_INITIAL_STATE(    ) 
12:  (  )   ,  (  )    ,   (  )  {  },         {   (  )} 
13:   {     },   (  {(       )}),              {  } 
14: while (   ) 
15: |       
16: | 〈    {  }    {  }                〉    
17: |     ADD_NEXT_LEVEL(            {  }    {  }                   {  }     ) 
18: end-while 

19: {  }     ENUMERATE_STRATEGIES(  {  }      {  }   ) 
20: {  }     GET_METRIC_VALUES(       {  }    {  }                          ) 

21: return   (  {  }    {  }    {  }              {  }    {  }    {  }    { }        ) 

 

The CONVERT method has 2 inputs (#1):      is a fully-observable, discrete, 

deterministic MA-PDDL domain- and problem-description, and     is a positive 
integer specifies the number of levels of successor states generated. In case of 

  | | agents the resulting extensive-form game   (#21) has a tree-graph   of 
depth         (#4), where   is the set of agent-objects in      (#3). 

 



The algorithm first sets a level-counter   to zero (#2), then for every agent it 
initializes the set of types to a one-element set (since a deterministic MA-PDDL 

description is converted to a complete information game). Information partition    
is set to the empty-set for every    , and all grounded actions of agent   are 

extracted from      into respective sets of moves,   , including the always 

executable   -   action, standing for no-operation and having no preconditions 

or effects (#5-8). Next (#9) the root node of the game-tree,   , is created, and its 
actor is set to agent  , the actions of agent   are set to    (having only one 
element, the only type-combination,  ), and    is allowed in   . Then (#10) the 

probability of “action”  ,  ( ), is set to 1, so this degenerate probability distribution 
will govern the stochastic strategy of agent   in   , i.e.   (  ) is set to  . 

 

Next (#11) the CHOICE_NODE_FROM_INITIAL_STATE method creates a new 

choice node,   , which corresponds to the initial state of     . Agent   is set to 
act in    (#12), allowing any move from   . Line (#12) initializes also the 

information set   (  ) and information partition     of agent   to {  }, a one-
element set (because of full-observability). Line (#13) initializes the set of choice 
nodes,  , to include only    and   ; and the game-graph   to have these nodes 
as vertices with only one edge – labeled with move   –, (       ), and then also 
the 0th state-level is initialized to a set having only a single element,   . 

 

State-levels are a central importance. They consist of those choice nodes in  , 
which correspond directly to states of the multi-agent environment. The following 
5 lines (#14-18) create new state-levels via intermediate action-levels by calling 

the ADD_NEXT_LEVEL method iteratively in a while-loop. This method extends 

the game-graph, the set of choice-nodes, the information functions and partitions 
of agents, and also creates the next state-level. The detailed pseudo-code of the 

method is shown in Algorithm 2. After   iterations the while-loop exits, and the 

finalized information partitions of agents, {  }   , are used to enumerate (#19) all 

the possible          functions (for every    ) to form the sets of pure 
strategies, {  }   . This is done by the ENUMERATE_STRATEGIES method. However 
{  }    is implied implicitly by the game-graph and information partitions. 

 

The utility of agents is defined explicitly for every possible outcome (i.e. for every 
respective strategy-combination). These outcomes are represented in the game-
tree with choice-nodes of the last state-level. Each of them corresponds to 
exactly one  -step state/action-trajectory, thus the idea is to simply get the MA-
PDDL metric-value of these state/action-trajectories from      for every agent-
object, and associate them to the respective choice-nodes. This way each 

choice-node in the last state-level will have an  -long utility-vector. This is what 
the GET_METRIC_VALUES method does (#20). Finally we can summarize  , 

having a graph   of depth  , abstractly encoding the MA-PDDL problem,     , 
up to a finite horizon  . The algorithm returns   (#21). 
The heart of the above presented CONVERT method is the iterative call of the 

ADD_NEXT_LEVEL method, which effectively builds the game-tree, level-by-level 

(#16-17). This method is presented in Algorithm 2. 
 



Algorithm 2: Add a level to the extensive game-tree of a fully-observable MA-PDDL desc. 

1:  ADD_NEXT_LEVEL(       (   )      {  }    {  }                     {  }     ) 

2:                     
3:  foreach                    
4:  |               { },                   
5:  | TRACE( )   ,     CLONE( ),     {  } 
6:  |  (  )   ,  (  )     ,    (  )  {  },         {   (  )} 
7:  | for    ,    ,     
8:  | | if     then         {             } end-if 
9:  | | if     then                   end-if 
10: | | foreach                 
11: | | | if     then    ( )                end-if 
12: | | | foreach     ( ) 
13: | | | | if     then 
14: | | | | |    NEW_CHOICE_NODE( ) 
15: | | | | | TRACE( )  (     ( )   ) 
16: | | | | |  ( )     ,  ( )        

17: | | | | else 

18: | | | | | if HAS_CONSISTENT_EXECUTABLE_SUBSET((     ( )   )            ) then 
19: | | | | | |    CHOICE_NODE_FROM_SUCCESSOR_STATE(  (     ( )   )          ) 
20: | | | | | |  ( )   ,  ( )     ,    ( )  { },         {   ( )} 
21: | | | | | else 

22: | | | | | |      
23: | | | | | end-if 

24: | | | | end-if 

25: | | | |                                 { } 
26: | | | |     { },     {(      )},     { } 
27: | | | end-foreach 

28: | | end-foreach 

29: | end-for 

30: |                                                   

31: end-foreach 

32: return 〈    {  }    {  }                    〉 

 

The ADD_NEXT_LEVEL method has 9 inputs (#1):      is the fully-observable, 

discrete, deterministic MA-PDDL description;   is the actual game-graph (a set of 
vertices,  , and a set of labeled edges,  );    is the root node of  ;   is the 
actual set of choice-nodes; {  }    and {  }    are the actual information partitions 

and functions of agents;                  is the latest state-level; {  }    is the set 

of sets of all the possible moves of agents; and   is the number of agents. First 
(#2) the next state-level is initialized to an empty-set, and then it is gradually built 

in a foreach-loop (#3-31), which goes through every                    node, 

and grows a sub-tree of moves from it, one move for each agent, starting from 

agent   until agent   (#7-29), in every possible way. 
 

The levels of sub-trees are called action-levels, and the choice nodes of an 
action-level belong to the same information set (of the respective actor agent), 
since agents act simultaneously in every instant and thus they cannot observe 

each other’s moves. However each information set at state-levels (where agent   
acts) consists of one choice node because of full-observability. The sub-tree built 

from   in the for-loop (#7-29) has     levels, level   being part of 

                 and level     being part of the                 . The latter 
consists of choice nodes that correspond to successor states of the environment, 



produced in every possible way from the state corresponding to  . So the for-

loop (#7-29) creates action-levels             of the sub-tree. Inside it a 

foreach-loop (#10-28) goes through every choice node   of action-level  , and a 

further foreach-loop inside it (#12-27) goes through every possible move 

    ( ) of agent   supposing that the previous     agents chose action-
combination      ( ).      ( ) is initially empty. Further choice nodes of the 
game-tree are updated with the move-path (trace) which leads to them from  . 

 

If     (#13-16), then the possible action-combination is not yet ready, so a new 
choice node   is created in action-level    , and its trace, actor and move-set is 
set. Otherwise, if     (#18-24), then (     ( )   ) is an  -element action-
combination, which may have an executable subset in the state corresponding to 
  in light of the generated state-trajectory. This is checked by the 
HAS_CONSISTENT_EXECUTABLE_SUBSET method (#18) in 5 steps: (a) first it 

collects those actions from (     ( )   ) which are potentially executable in the 
state corresponding to  . A single-action is considered potentially executable in a 
state if its pre-conditions are satisfied taking Assumption 1 into account. 

 

Assumption 1 (undefined effects). If the executability of a grounded action   in 
a state requires the concurrent execution (or no execution) of some actions, then 

if any of those actions are not executed (or executed) concurrently with  , then 
we assume that   still remains executable, but it has no effects (empty effects). 

 

Assumption 1 covers the case when an MA-PDDL action is defined to refer to an 
action in its pre-conditions, but no effects are specified for the case, when that 

reference is negated. For example if a pick-up action of agent   requires in its 

pre-conditions, that no other agent executes pick-up for the same object at the 

same time, but the Designer did not specify what happens if still at least one 

other agent does so, then if this actually happens, then the pick-up action of 

agent   still remains executable, but has no effects. I.e. in light of Assumption 1 
the executability of actions is independent from concurrently executed actions. 

 

After collecting potentially executable single-actions from (     ( )   ), (b) all 
single- and joint-actions are identified within the collection. A joint-action within 

an action-collection   in   is a subset of  , where all members either refer to at 
least one other member in their pre-conditions or the conditions of their active 
conditional effects, or they are referred to by at least one of the other members. 
Conditional effects are active in   if their conditions are satisfied in the state 

corresponding to   with actions   being executed. This approach produces an 
unambiguous partition of   . Next (c) individually inconsistent or not executable 
elements are removed from the produced partition. A single-action is individually 
consistent in   if its active conditions and effects are both consistent in (the state 
corresponding to)  . A joint-action is individually consistent in   if its joint active 
conditions and joint active effects are both consistent in (the state corresponding 
to)   in case the actions within the joint-action are executed simultaneously. 
Interference of conditions and effects of concurrent discrete actions is not 
considered. Individual executability requires satisfaction of (joint) pre-conditions. 



 

After removing individually inconsistent or not executable elements from the 
partition, (d) elements with pairwise inconsistent joint-effects are removed. 
Finally (e) the remaining elements are checked, whether their joint execution is 

allowed by the hard state-trajectory constraints in     . If yes, then these 
actions are the consistent and executable subset of (     ( )   ), i.e. they can 
be executed, and so the HAS_CONSISTENT_EXECUTABLE_SUBSET method returns 

true. Otherwise, if not, or if the subset is empty, then the return-value is false. 

In case the return-value is true, a new choice node   corresponding to the state 

produced by the consistent and executable subset is created and put into action-

level     (#19,20,25). Otherwise nothing happens, i.e. a choice node      
  is put into action-level     (#5,22,25). In both cases   and   is updated 

appropriately (#26) and action-level     is added to the                  (#30). 
This is repeated for every   in                  (#3-31) before Alg.2 finishes. 

 
3.2. Case of partial-observability 

 

To capture partial-observability the following 6 rules should be added to the BNF 
(Backus-Naur Form) grammar of MA-PDDL (they should be read in conjunction). 

 

 
 

The above extension has essentially the same semantics as events proposed in 
[9] except that observations can be defined for multiple agents (their inheritance 

and polymorphism is the same as of actions in [2]), and they can have a :value 

field instead of :effects. A grounded observation holds in states where its 
conditions are satisfied, but it can’t be referred to in conditions or effects of 
actions or anywhere else. Observations can be used solely by the planners. In 

case the :partial-observability requirement is present, it is assumed, that 
agents modeled with agent-objects can access only their observations (and their 
value), but they can’t access state-fluents (facts, functions’ value, and actions) 
directly. Planners planning for agent-objects should take this into account. 
Moreover, in this case information sets at state-levels of the converted game 
may not be singular, since there may be state/action-trajectories, where the 
observation-history (including observation of actions) is the same for an agent, 
and thus the choice-nodes corresponding to these trajectories should be 
members of the same information set. Based on this remark Alg.1 should be 
extended. First the below 3 lines should be inserted between line #12 and #13. 



13: foreach    , 
14: | OBS_HIST(    )  〈   (    )〉,   (  )  {  },       {  (  )} 
15: end-foreach 

 

This foreach-loop initializes the observation-history of agent   (for     ) to a 

list including only the observation in the state corresponding to   ,    (    ), 
which is a set of grounded observations and their value holding in the state. 

  (  ) is the information-set of agent   in    (even though agent 1 acts in   ), 
and       is the information-partition at state-level   of agent  . The ADD_NEXT_LEVEL 

method should now have {      }   
 and {  }    among its inputs, and {    }   

 and 

{  }    among its outputs. Alg.2 is changed accordingly: first, manipulation of 

agent  ’s information-partition,   , in line #6 and #20 is removed together with 
line #8. Second, each reference to any               is replaced with 

             ( ) to keep track of the sub-tree of each                   . Line 
#11 is deleted, but the following line is added after line #6 to initialize the 

observation-history and information-sets   (  ) of choice node    (clone of  ). 
 

7:  | foreach    , OBS_HIST(    )          (   ),   (  )  {  } end-foreach 
 

To update the observation-histories of agents and to initialize their information 

sets for a new choice node   corresponding to a successor state, the next 5 lines 
should be added after line #16 in the original code of Alg.2. 

 

20: | | | | | | foreach    , 

21: | | | | | | | OBS_HIST(   )   ⟨        (   )  … 

22: | | | | | | |         OBS(                  (  (     ( )   )          )), … 

23: | | | | | | |            (   )⟩,   ( )  { } 
24: | | | | | | end-foreach 

 

In line #22 the                  call produces a choice node that corresponds 

to a state, where the progressive facts about consistent and executable actions 

of (     ( )   ) are added to the state corresponding to  . These actions are 
identified in the same way as in the HAS_CONSISTENT_EXECUTABLE_SUBSET method. 

Finally, line #32 in the original Alg.2 should be replaced with the following lines. 
 

36: foreach     
37: | if      
38: | | foreach        

39: | | |                 
               ( )     

  

40: | | | foreach                   
 ,    ( )                  

 end-foreach 

41: | | |         {                
} 

42: | | end-foreach 

43: | end-if 

44: | foreach                        where      
45: | | if OBS_HIST(   )    OBS_HIST(    ) then 
46: | | | if      then   ( )    ( )  {  },   (  )    (  )  { } end-if 
47: | | |   ( )    ( )  {  },   (  )    (  )  { } 
48: | | end-if 

49: | end-foreach 

50: |      
51: | foreach                     
52: | | if      then         {  ( )} end-if 
53: | |         {  ( )} 



54: | end-foreach 

55: end-foreach 

56: return 〈    {  }    {  }    {  }    {  }                    〉 

 

In the foreach-loop (#36-55), if     (#37-43), then those  th action-levels are 

unified into an information-set     of agent  , where the root nodes belong to the 
same information-set.     is updated accordingly.    in line #38 is      received as 

an input of the ADD_NEXT_LEVEL method. In lines (#44-49) choice nodes in the next 
state-level corresponding to states with same observation-history are put in the 
same information-set. Finally the information-partitions of all agents are finalized 
in the next state-level (#50-54), and it is returned by the method (#55). 

 

4. Conclusions 
 

This paper provides algorithms for converting fully- and partially-observable MA-
PDDL descriptions to extensive-form games. Partial-observability is introduced 
as a separate extension to MA-PDDL. Limitations include the discrete (or fixed-
length durative), deterministic nature of converted descriptions, and that each 

agent needs to execute exactly one action at a time (even no-op). In the future 

this should be extended to allow probabilistic and non-deterministic descriptions 
with durative actions and without the limit on the number of concurrent actions. 
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