
 1

JAWS2011

A preliminary investigation of decentralized

decision making with bounded resources

Daniel Laszlo KOVACS Department of Measurement and Information Systems

 Budapest University of Technology and Economics

 Budapest, Hungary, H-1117
 dkovacs@mit.bme.hu, http://www.mit.bme.hu/~dkovacs

Naoki FUKUTA Department of Computer Science

 Shizuoka University

 Hamamatsu, Japan, 432-8011
 fukuta@cs.inf.shizuoka.ac.jp, http://whitebear.cs.inf.shizuoka.ac.jp

Takashi WATANABE Department of Computer Science

 Shizuoka University

 Hamamatsu, Japan, 432-8011
 watanabe@inf.shizuoka.ac.jp, http://aurum.cs.inf.shizuoka.ac.jp/english

keywords: decentralized, resource-bounded, decision making, rationality, AIXI

Summary

 This paper is a preliminary theoretical investigation of decentralized decision making with bounded resources.

We build upon a feasible rationality concept for single agents to enable the formal investigation of the individual and

group-level rationality of possibly heterogeneous, decentralized decision makers. We conjecture that it is more

realistic than the centralized setting. Compared to other recent decentralized rationality notions (e.g. optimal

decentralized metareasoning) our concept is stronger and not restricted to special cases (e.g. just collaborative

agents). We introduce our model in detail, discuss its merits and limitations, connect it to the single-agent case, show

that it is implicitly a decentralized extension of the recently successful AIXI, and provide a few application examples.

1. Introduction

This paper presents a decentralized extension and

refinement of the original, single-agent concept of bounded-

optimality, which is a rationality criterion for intelligent

agents similarly to perfect, calculative or metalevel

rationality [Russell & Subramanian, 1995]. We decided to

extend it because it “seems to offer the best hope for a

strong theoretical foundation for AI” [Russell & Norvig,

2010, Ch. 27, pp. 1050]. To our knowledge currently there

are no general means for designing such bounded-optimal

agents. We hope to advance in this direction by introducing

our model, which is the main contribution of this paper.

A decentralized extension is necessary – although other

agents may as well be modeled implicitly as (hidden) parts

of a dynamic environment in the single-agent case –

because it allows explicit representation and reasoning

about other, possibly heterogeneous agents’ structure (e.g.

architecture, sensors, effectors, resources, goals, beliefs,

utilities, properties) and behavior (e.g. program, strategy,

rationality, faultiness, competition, coordination,

cooperation, interaction, selfishness, altruism), which can

be more effective. It enables examination of rationality of

agents both at an individual and group level in connection.

When using the proposed model one must be careful with

the definition of agents’ utility. Every agent may have a

different (or even the same) user/Designer-defined utility. If

the utility of an agent is ill defined, then the interpretation

of its rationality may be inappropriate. For example if there

is a zero-sum situation (e.g. a Poker game), then if we

define an agent’s utility as the sum of all the agents’

individual payoff (which is by definition zero), then the

value of this agent’s utility will be zero for every possible

outcome, which either means that we are indifferent toward

its behavior (everything it does is considered rational), or

we defined its utility function inappropriately.1 Eventually

in this paper we try to answer the following question: given

several, possibly heterogeneous decentralized, utility-driven

agents with bounded resources, when are they rational?

1 For zero-sum situations there is no point of defining a social

welfare utility [Pattanaik, 2008] summing up agents’ individual

valuation, since it would make no distinction between outcomes.

JAWS2011

Proceedings of JAWS2011

2

2

The paper is structured as follows. Section 2 reflects on

related work. Section 3 introduces the fundamentals of

bounded-optimality and AIXI 2 [Hutter, 2005], which is

another recently successful concept of rationality. We prove

the convergence of AIXI first to perfect rationality, then (in

case of more realistic assumptions) to bounded-optimality

to stress its importance even further. Section 4 contains our

main contribution: a decentralized extension of bounded-

optimality. Section 5 gives examples of this extension.

Section 6 concludes with a discussion of the results,

limitations and an outline of future research directions.

2. Related work

There are several predecessors of our model [Russell &

Subramanian, 1995]. Perfect rationality, for example, one

of the earliest, classical single-agent rationality concepts,

states that an agent should act so as to maximize its

expected utility at every instant. This concept is not feasible

in general, since it takes no account of the limited

computational resources of the agent and the time needed

for deliberation. Calculative rationality relaxes this

assumption by allowing the agent to eventually return what

would have been a perfectly rational decision at the

beginning of its deliberation. This concept is more

interesting in-principle, but it is of less value in practice,

since the actual behavior of such an agent may be far from

optimal. Metalevel rationality, e.g. optimal metareasoning

[Cox & Raja, 2011] responds to the previous problems by

trying to optimize not only over (ground-level) actions, but

also to find an optimal trade-off between the cost and value

of the (object-level) computation generating these actions.

The drawback of this approach is that such meta-level

decision problems are often more difficult than the original

(object-level) decision problems, thus optimality can only

be guaranteed in special cases, e.g. when the agent’s utility

is a function of the time spent for deliberation and the

decision making procedure is e.g. an anytime algorithm.

Bounded-optimality on the other hand makes no

assumptions about the structure of agents’ program (it is not

required that the agent itself be engaged in any form of

metareasoning). It only requires that “[the agent’s] program

is a solution to the constrained optimization problem

presented by its architecture and the task environment”

[Russell & Subramanian, 1995]. This means that for

instance even a simple reactive agent-program based on

random decisions can be bounded-optimal in a given task

environment iff it yields the highest expected utility among

the programs runnable on the agent’s architecture. “This is a

stronger guarantee than optimal metareasoning, but it is also

2 AIXI stands for “Artificial Intelligence ”, where is

Solomonoff’s universal a priori probability distribution over the

possible true environments [Hutter, 2005] tending to converge to

the initially unknown, true a priori probability distribution .

harder to achieve” [Carlin & Zilberstein, 2011].

This is why asymptotic bounded-optimality was proposed

[Russell & Subramanian, 1995]. It requires only that the

agent’s program is not worse than any other program on its

current architecture provided with a constant-times faster

architecture (or with constant-times more capacity). In this

sense bounded-optimality is similar to AIXI, which is also a

universal rationality measure that is only asymptotically

computable in practice. Nevertheless a computationally

feasible, direct Monte-Carlo approximation [Veness et al.,

2011] was provided for it recently, whose main ideas stem

form POMCP [Silver & Veness, 2010], which is part of

POMDPX_NUS [Ong et al., 2010], the planner winning the

probabilistic Boolean POMDP track of this year’s

International Planning Competition (ICAPS IPC-2011).

An AIXI agent is dual in comparison to a bounded-

optimal agent in that the former first acts and then receives

a percept and a reward as a result (general reinforcement

learning scheme), while the latter first perceives the actual

state of its environment and then acts according to its

current percept history (intelligent/rational agent scheme).

The two schemes can be connected as shown in [Hutter,

2005, Ch. 6], but we can also prove that AIXI converges to

bounded-optimality (c.f. Section 3.2) and thus e.g. the

above mentioned AIXI approximation is effectively an

approximation of bounded-optimality.

All of the previous concepts are important measures of

agents’ intelligence, but all of them rely on the simplifying

assumption of a single agent. Extending them “to multi-

agent settings is hard” [Carlin & Zilberstein, 2011], but it

became a current topic of research. For example such an

extension of optimal metareasoning was given in [Carlin &

Zilberstein, 2011], but it actually works only for two

collaborative agents, and in general has the same drawbacks

as single-agent metareasoning. Moreover it should give rise

to the problem of infinite regress in reciprocal (higher

order) beliefs of agents as they start to reason about each

other’s reasoning (which may be necessary for optimality).

In case of perfect rationality Game Theory [Neumann &

Morgenstern, 1944] is an appropriate extension to

decentralized decision making, but it inherently has the

same problems as perfect rationality. Nonetheless it

overcomes the issue of infinite regress of reciprocal

expectations by assuming common knowledge of the game

(and – in case of incomplete information – common priors).

AIXI has no direct extension to the decentralized setting

yet, and it is not trivial, since it would require consideration

of several agents’ deliberation and actions, of which there is

currently no trace (or place for) in the model. But since

AIXI converges to bounded-optimality, our extension of it

can be seen as an indirect decentralized extension of AIXI.

3. Preliminaries

As we have already mentioned in the introduction, the

definition of agents’ utility is central to their definition of

 3

rationality. A perfectly rational agent according to [Russell

& Subramanian, 1995] corresponds to an agent function

𝑓opt such that

𝑓opt = argmax𝑓(𝑉(𝑓, 𝐄)) (1)

An agent function, 𝑓: 𝐎𝑡 → 𝐀 , is a mapping from the

finite set of percept history prefixes 𝐎𝑡 = *𝑂𝑡|𝑡 ∈ 𝐓, 𝑂𝐓 ∈
𝐎𝐓+ to the finite set 𝐀 of actions; 𝐓 is the finite, totally

ordered set of time instants (with a unique least element, 0);

𝐎 is the finite set of the agent’s possible percepts; and

𝐎𝐓 = *𝑂𝐓: 𝐓 → 𝐎+ is the set of all possible percept

histories, where 𝑂𝐓 is a particular percept history. Thus a

perfectly rational agent corresponds to a function that

maximizes 𝑉(𝑓, 𝐄) , where 𝐄 is a finite set of possible

environments with a probability distribution 𝑝 over them.

An environment, 𝐸 ∈ 𝐄, consists of a set 𝐗 of states with a

distinguished initial state 𝑋0, a transition function 𝑓𝑒 and a

perceptual filter function 𝑓𝑝 such that 𝑋𝐓(0) = 𝑋0, 𝑂
𝐓(𝑡) =

𝑓𝑝(𝑋
𝐓(𝑡)), 𝐴𝐓(𝑡) = 𝑓(𝑂𝑡) and 𝑋𝐓(𝑡 + 1) = 𝑓𝑒(𝐴

𝐓(𝑡), 𝑋𝐓(𝑡))

holds for ∀𝑡 ∈ 𝐓, where 𝑋𝐓: 𝐓 → 𝐗 is the state trajectory,

and 𝐴𝐓: 𝐓 → 𝐀 is the action history produced by the agent.

Now 𝑉(𝑓, 𝐄) can be defined as the expected utility of 𝑓 in

𝐄 with a probability distribution 𝑝 over 𝐄 as follows.

𝑉(𝑓, 𝐄) = ∑ 𝑝(𝐸) ∙ 𝑉(𝑓, 𝐸)𝐸∈𝐄 (2)

Here 𝑉(𝑓, 𝐸) denotes the utility of 𝑓 in 𝐸 ∈ 𝐄.

𝑉(𝑓, 𝐸) = 𝑈(effects(𝑓, 𝐸)) (3)

In Eq. 3 effects(𝑓, 𝐸) ∈ 𝐗𝐓 stands for the state

trajectory generated by 𝑓 in 𝐸; and so 𝑈: 𝐗𝐓 → ℝ denotes

the utility function of the agent, a mapping from the set

of state trajectories, 𝐗𝐓, to real numbers.

3.1 Convergence of AIXI to perfect rationality
One of our results is in showing that Hutter’s AIXI

converges to a special case of perfect rationality based on

the claim in [Hutter, 2005, p146] that AI converges to AI

as defined in [Hutter, 2005, p130, Def. 4.4], and showing

that AI corresponds to a special case of perfect rationality.

Definition 1 (The AI model). The AI model is the

agent with policy 𝑝𝜇 that maximizes the -expected total

reward 𝑟1 +⋯+ 𝑟𝑚, i.e. 𝑝∗ ≡ 𝑝𝜇 ≔ 𝑎𝑟𝑔𝑚𝑎𝑥𝑝𝑉𝜇
𝑝
. Its value

is 𝑉𝜇
∗ ≔ 𝑉𝜇

𝑝𝜇
. [Hutter, 2005, p130]

Policy 𝑝∗ corresponds to agent function 𝑓opt in Eq. 1, and

generally a policy 𝑝 corresponds to an agent function 𝑓 .

The expected utility (called value function in AIXI) defined

as 𝑉𝜇
𝑝
≡ 𝑉1𝑚

𝑝𝜇
≔ ∑ (𝑞)𝑞 𝑉1𝑚

𝑝𝑞
 [Hutter, 2005, p130]

corresponds to Eq. 2 with 𝑉𝜇
𝑝
≡ 𝑉1𝑚

𝑝𝜇
 corresponding to

𝑉(𝑓, 𝐄) ; environment 𝑞 corresponds to environment 𝐸 ;

probability (𝑞) corresponds to 𝑝(𝐸) in Eq. 2; and total

utility 𝑉1𝑚
𝑝𝑞

 corresponds to utility 𝑉(𝑓, 𝐸) as given in Eq. 3.

𝑉1𝑚
𝑝𝑞

 is defined as 𝑉1𝑚
𝑝𝑞
≔ ∑ 𝑟(𝑥𝑖

𝑝𝑞
)𝑚

𝑖=1 in [Hutter, 2005,

p129], where m denotes the lifetime of the agent, and

corresponds to |𝐓|; 𝑟(𝑥𝑖
𝑝𝑞
) = 𝑟𝑖 is the reinforcement of an

AIXI agent in cycle i (𝑖 = 1,2, . . . , 𝑚) as seen in Def. 1; and

𝑥𝑖
𝑝𝑞
∈ 𝒳 is the perception (input) of the AIXI agent in cycle

i (in case of p and q) corresponding to 𝑂𝐓(𝑖) ∈ 𝐎, so 𝒳

corresponds to 𝐎 . According to Eq. 3 this means that

∑ 𝑟(𝑥𝑖
𝑝𝑞
)𝑚

𝑖=1 corresponds to 𝑈(effects(𝑓, 𝐸)) , i.e. AI

corresponds to a special case of perfect rationality, where

the utility 𝑈 of the state trajectory effects(𝑓, 𝐸) – which

corresponds to the unique I/O sequence 𝜔𝑝𝑞 ≔
𝑦1
𝑝𝑞
𝑥1
𝑝𝑞
…𝑦𝑚

𝑝𝑞
𝑥𝑚
𝑝𝑞

 in AIXI – is calculated as the sum of

rewards 𝑟𝑖 extracted from percepts at every time instant.

Moreover, cycle i in AIXI can be considered to correspond

to time-interval ,𝑖 − 1, 𝑖- , so 𝑦𝑖
𝑝𝑞
∈ 𝒴 corresponds to

𝐴𝐓(𝑖 − 1) ∈ 𝐀, 𝒴 corresponds to 𝐀, and 𝑂𝐓(0) = 𝑓𝑝(𝑋0) is

an empty perception/string, 𝜖.
From the above we see that AI in Def. 1 corresponds to

a special case of perfect rationality defined in Eq. 1 (with a

simple linear utility 3 , an empty initial percept, and a

computable environment4), implying that if AI converges

to AI , then AI eventually converges to this special case.

The problem with this is only that perfect rationality is not

feasible, which implies that in general AIXI is not feasible.

To overcome this resource bounds need to be introduced.

3.2 Convergence of AIXI to bounded-optimality
In general resource bounded computation can be modeled

with time- and/or space-bounded Turing machines. So from

now on we model agents’ resource bounded architectures

that interpret and run their programs with Turing machines.

Let 𝑀:ℒ𝑀 × 𝐈 × 𝐎 → 𝐈 × 𝐀 denote an agent’s architecture

[Russell & Subramanian, 1995], a fixed interpreter for

programs, where 〈𝐼𝐓(𝑡 + 1), 𝐴𝐓(𝑡)〉 = 𝑀(ℓ, 𝐼𝐓(𝑡), 𝑂𝐓(𝑡)) .

𝑀 has 3 inputs and 2 outputs. The inputs are: (1) the agent’s

program ℓ ∈ ℒ𝑀, where ℒ𝑀 denotes the finite programming

language of 𝑀; (2) the current inner state of the agent at

time t, 𝐼𝐓(𝑡) ∈ 𝐈, drawn from the set of possible inner states

𝐈 (with initial state i0), where 𝐼𝐓: 𝐓 → 𝐈 denotes the internal

state history of the agent; and (3) the current percept of the

agent at time t, 𝑂𝐓(𝑡) ∈ 𝐎. The outputs of 𝑀 are: (1) the

next inner state of the agent at time t+1, 𝐼𝐓(𝑡 + 1) ∈ 𝐈; and

(2) the current action of the agent at time t, 𝐴𝐓(𝑡).
We can now define the subset of agent functions, that can

be implemented on a given architecture 𝑀 as follows:

𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑀) = *𝑓|∃ℓ ∈ ℒ𝑀, 𝑓 = 𝐴𝑔𝑒𝑛𝑡(ℓ,𝑀)+ , where

3 Though simple, this utility function can be used for on-line

reinforcement learning by maximizing expected future reward.

4 The computability of the environment q is a requirement in

AIXI, but it is not mentioned in [Russell & Subramanian, 1995].

Proceedings of JAWS2011

4

4

𝐴𝑔𝑒𝑛𝑡(ℓ,𝑀) denotes the agent-function implemented by ℓ

running on 𝑀, if for any 𝐸, 𝑀 generates an action history

𝐴𝐓 for which 𝑓(𝑂𝑡) = 𝐴𝐓(𝑡) holds. It would be pointless to

discuss feasibility if 𝑀 wasn’t time- and/or space-bounded.

Now a bounded-optimal agent with an architecture 𝑀 for

a finite set 𝐄 of environments has a program ℓopt such that

ℓopt = 𝑎𝑟𝑔𝑚𝑎𝑥ℓ∈ℒ𝑀(𝑉(ℓ,𝑀, 𝐄)) (4)

We can calculate 𝑉(ℓ,𝑀, 𝐄) , the expected utility of a

program ℓ running on 𝑀 in case of 𝐄 similarly to Eq. 2.

𝑉(ℓ,𝑀, 𝐄) = ∑ 𝑝(𝐸) ∙ 𝑉(ℓ,𝑀, 𝐸)𝐸∈𝐄 (5)

Finally, by instantiating 𝑓 = 𝐴𝑔𝑒𝑛𝑡(ℓ,𝑀) in Eq. 3 we

get 𝑉(ℓ,𝑀, 𝐸), the utility of ℓ running on 𝑀 in 𝐸.

𝑉(ℓ,𝑀, 𝐸) = 𝑉(𝐴𝑔𝑒𝑛𝑡(ℓ,𝑀), 𝐸) (6)

The proposed correspondence with AIXI (if not as

obvious as before5) is mainly the same as in Section 3.1

except the following differences: policy 𝑝∗ (c.f. Def. 1) now

corresponds to the bounded-optimal agent-program ℓopt ,

which codes a Turing machine 𝑀ℓopt that is simulated by 𝑀

on input 〈𝐼𝐓(𝑡), 𝑂𝐓(𝑡)〉 for ∀𝑡 ∈ 𝐓 , thus 𝑀 is a universal

Turing machine (in accordance with [Hutter, 2005, Ch.

1.7.1, p21]), and generally every AIXI policy 𝑝 should

correspond to a program ℓ in a similar fashion. Expected

utility 𝑉𝜇
𝑝
≡ 𝑉1𝑚

𝑝𝜇
≔ ∑ (𝑞)𝑞 𝑉1𝑚

𝑝𝑞
 corresponds to Eq. 5, and

total utility 𝑉1𝑚
𝑝𝑞

 corresponds to 𝑉(ℓ,𝑀, 𝐸) in Eq. 6.

Now it would be too early to claim that AIXI converges

to bounded-optimality, since we need to take limited

resources into account. In AIXI both p and q are modeled

with Turing machines which can be time- and/or space-

bounded, but we will focus only on policies and programs,

since bounded-optimality assumes no bounds on E. An

AIXI policy p is time-bounded if it calculates its output in

time ≤ 𝑡 per cycle and space-bounded if its length6 is ≤ 𝑙.
This approach is labeled AIXItl in [Hutter, 2005, Ch. 7.2]

and it is not conventional since usually space-bounds apply

to the capacity of 𝑀𝑝, the machine corresponding to p, and

not to the universal Turing machine running p. So if in

bounded-optimality a program ℓ corresponds to a t time-

and/or l space-bounded AIXI policy p, then 𝑀ℓ should be t

time-bounded and/or ℓ should be ≤ 𝑙 bit long. This will be

further refined in frames of our model (c.f. Section 4), but

before that we need to address one more topic: semantics of

time, which wasn’t a problem in Section 3.1, but now after

5 An AIXI policy 𝑝 could also correspond e.g. to an agent-function

𝐴𝑔𝑒𝑛𝑡(ℓ,𝑀) implemented by a program ℓ on an architecture 𝑀,

or just to an 〈ℓ,𝑀〉 pair, but it wouldn’t be as clear as above (c.f.

bounded resources), yet it wouldn’t change the overall result.

6 Policy p is an input of a universal Turing machine in AIXI.

the introduction of architectures it shall be considered.

AIXI measures time in cycles, while bounded-optimality

in time steps. These two can correspond to each other as

shown in Section 3.1, but then neither is a measure of

computation time, just an indicator of I/O cycles. In AIXI

this is made explicit: cycles are different than the

computation time of policies. Section 4 in [Russell &

Subramanian, 1995] on the other hand suggests that time

steps should correspond to computation time, while they

permit also our cycle-based interpretation. This ambiguity

is also clarified in our model (c.f. next section).

For now we should conclude that bounded-optimality

corresponds to AI with resource bounded policies, and that

it is the limit to which AIXI with resource bounded policies

converges. So eventually since every real implementation is

resource bounded, any approximation of AIXI (e.g. [Veness

et al., 2011]) is an approximation of bounded-optimality.

4. Decentralized extension of bounded-optimality

Now our main contribution, the decentralized extension

of bounded-optimality is presented. Let 𝐍 = *0,1,2, . . . , 𝑛+
be the set of agents in the environment, and let Ai be the

finite set of possible actions of agent 𝑖 ∈ 𝐍. Similarly to

Section 3 we introduce a set of time instants, T, a totally-

ordered, finite set of non-negative integers (including 0). In

our model 𝛀 denotes the states of an environment, so the set

of possible state trajectories is defined as 𝛀𝐓 = *𝛺𝐓: 𝐓 →
𝛀+ , where 𝛺𝐓 is a state trajectory, a mapping from time

instants to states. The prefix of a state trajectory 𝛺𝐓 ∈ 𝛀𝐓

till time t is 𝛺𝑡 = *𝛺𝐓(𝑢)|𝑢 ∈ 𝐓, 0 ≤ 𝑢 ≤ 𝑡+ and so the set of

possible state trajectory prefixes is 𝛀∗ = *𝛺𝑡|𝑡 ∈ 𝐓, 𝛺𝐓 ∈
𝛀𝐓+. We can also define the set of action histories of agent i,

𝐀𝑖
𝐓 = *𝐴𝑖

𝐓: 𝐓 → 𝐀𝑖+, where 𝐴𝑖
𝐓 is an action history of agent i.

The prefix of an action history 𝐴𝑖
𝐓 ∈ 𝐀𝑖

𝐓 of agent i till time t

is 𝐴𝑖
𝑡 = *𝐴𝑖

𝐓(𝑢)|𝑢 ∈ 𝐓, 0 ≤ 𝑢 ≤ 𝑡+ and 𝐀𝑖
∗ = *𝐴𝑖

𝑡|𝑡 ∈ 𝐓, 𝐴𝑖
𝐓 ∈

𝐀𝑖
𝐓+ is the set of possible action history prefixes of agent i.

4.1 Specification of agents and environments
An agent is typically described as an abstract mapping

(the agent function) from percept sequences to actions, but

eventually those percept sequences arise from state

sequences perceived by the agent, and this perception

mechanism should also be part of the agent function, i.e.

𝑓𝑖: 𝛀
∗ → 𝐀𝑖 (𝑖 ∈ 𝐍), mapping directly from state sequences

to actions in order to capture the “complete physical

functionality” of the agent. Moreover 𝐴𝑖
𝐓(𝑡) = 𝑓𝑖(𝛺

𝑡) must

also hold for ∀𝑡 ∈ 𝐓.

To model non-deterministic environments without loss of

generality we assume (in accordance with extensive-form

games) that an agent 0 represents chance, having an agent-

function 𝑓0: 𝛀
∗ → 𝐀0 , where 𝑓0(𝛺

𝑡) is chosen randomly

according to probability distribution 𝜋0(𝛺
𝑡) , where

𝜋0: 𝛀
∗ → ∆(𝐀0) denotes a random action policy, a function

that maps from the set of state trajectory prefixes to the set

 5

of probability distributions over 𝐀0, ∆(𝐀0). The effects of

agent 0 are incorporated in the following definition of a

state transition relation, 𝐑 ⊆ 𝛀× (×𝑖=0
𝑛 𝑨𝑖) × 𝛀, which is

similar to Def. 1 in [Bowling et al., 2002]. The set of

actions that agent i can perform in 𝜔 ∈ 𝛀 are implied by 𝐑,

and are denoted with ACT𝑖(𝜔) ⊆ 𝐀𝑖 (the do-nothing action

should be part of ACT𝑖(𝜔) for every agent and state), and 𝐑

should satisfy the following two conditions:

1. For ∀𝜔 ∈ 𝛀 state and ∀𝑎 ∈×𝑖=0
𝑛 ACT𝑖(𝜔) action-

combination ∃ 𝜔 ∈ 𝛀 that (𝜔, 𝑎, 𝜔) ∈ 𝐑.

2. If for a given 𝜔 ∈ 𝛀 and 𝑎 ∈×𝑖=0
𝑛 𝐀𝑖 𝑎

×𝑖=0
𝑛 ACT𝑖(𝜔) holds, then ∃𝜔 ∈ 𝛀: (𝜔, 𝑎, 𝜔) ∈ 𝐑.

The first condition is about completeness and

determinism (for every state and executable action-

combination there should be just one resulting state defined

by 𝐑), and the second condition is about consistency (if an

action-combination can’t be executed in a given state, then

𝐑 should not define any state resulting from its execution).

Definition 2 (Environment). An environment7 is a 6-tuple,

𝐸 = (𝐍,𝛀, 𝜔0, 𝐓, *𝐀𝑖+𝑖∈𝐍, 𝐑) , such that 𝛺𝐓(0) = 𝜔0 ,

𝐴𝑖
𝐓(𝑡) = 𝑓𝑖(𝛺

𝑡), and (𝛺𝐓(𝑡), .×𝑖=0
𝑛 𝐴𝑖

𝐓(𝑡)/ , 𝛺𝐓(𝑡 + 1)) ∈ 𝐑.

State history 𝛺𝐓 is determined by 𝐸 and agent functions

𝑓𝑖 (𝑖 ∈ 𝐍) which altogether are denoted by 𝑓:𝛀∗ →×𝑖∈𝐍 𝐀𝑖 ,
the collective agent function, where

𝑓(𝛺𝑡) = (𝑓0(𝛺
𝑡), 𝑓1(𝛺

𝑡), . . . , 𝑓𝑛(𝛺
𝑡)) for ∀𝑡 ∈ 𝐓 . We can

also define the functionality of all agents except agent i as

𝑓−𝑖(𝛺
𝑡) = (𝑓0(𝛺

𝑡), . . . , 𝑓𝑖−1(𝛺
𝑡), 𝑓𝑖+1(𝛺

𝑡), . . . , 𝑓𝑛(𝛺
𝑡)), and

for short we can write 𝑓 = (𝑓𝑖 , 𝑓−𝑖). Similarly 𝐴𝑡 denotes

the collective prefix of action histories 𝐴𝑖
𝐓 ∈ 𝐀𝑖

𝐓 till time t,

𝐴𝑡 = 2.𝐴𝑖
𝐓(𝑢)/

𝑖∈𝐍
|𝑢 ∈ 𝐓, 0 ≤ 𝑢 ≤ 𝑡3 , and 𝐴−𝑖

𝑡 denotes the

collective prefix of action histories 𝐴𝑗
𝐓 ∈ 𝐀𝑗

𝐓 till time t

except agent i similarly to 𝑓−𝑖 . For short: 𝐴𝑡 = (𝐴𝑖
𝑡 , 𝐴−𝑖

𝑡).
Based on this effects(𝑓, 𝐸) denotes the state history

generated by a collective agent function 𝑓 operating in E.

4.2 Implementation of agents in environments
We will consider an agent (except agent 0) to consist of

an architecture and a program (like hardware and software).

The main difference between the original concept and our

approach is that we model agents’ sensors and actuators as a

part of their architecture, not the environment. Let Oj

denote the set of percepts of agent j (𝑗 = 1. . 𝑛), so 𝐎𝑗
𝐓 =

{𝑂𝑗
𝐓: 𝐓 → 𝐎𝑗} is the set of percept histories of agent j, where

𝑂𝑗
𝐓 is a percept history of agent j. The prefix of a percept

history 𝑂𝑗
𝐓 ∈ 𝐎𝑗

𝐓 of agent j till time t is denoted with

𝑂𝑗
𝑡 = {𝑂𝑗

𝐓(𝑢)|𝑢 ∈ 𝐓, 0 ≤ 𝑢 ≤ 𝑡} , and the set of possible

7 This definition of the environment is discrete and could be made

continuous, but that would introduce unnecessary complexity

and it is not essential for our results, so we omit its discussion.

percept history prefixes of j is 𝐎𝑗
∗ = {𝑂𝑗

𝑡|𝑡 ∈ 𝐓, 𝑂𝑗
𝐓 ∈ 𝐎𝑗

𝐓}.

Now the architecture of an agent can be defined as follows.

Definition 3 (Architecture). Architecture 𝑀𝑗 of agent

𝑗 ∈ *1,2, . . . , 𝑛+ is an 𝑠(∙) space-bounded
8
 and/or 𝑡(∙) time-

bounded 𝑘𝑗 -tape Embedded Universal Turing Machine,

𝑀𝑗 = (𝐈𝑗 , 𝑗 , 𝑗 , 𝑗 , 𝑖0𝑗 , 𝐹𝑗, 𝑗, 𝑓𝑝𝑗 , 𝑓 𝑗) with a dedicated half-

infinite read-only input and half-infinite readable/writeable

output tape (𝑘𝑗 2, 𝑘𝑗 ∈
+), where

 𝐈𝑗 is the finite set of internal states of agent j;

 𝑗 is a finite, non-empty set of the tape symbols;

 𝑗 ∈ 𝑗 is the blank symbol;

 𝑗 ⊆ 𝑗 { 𝑗} is the non-empty set of input symbols;

 𝑖0𝑗 ∈ 𝐈𝑗 is the initial state of the machine;

 𝐹𝑗 ⊆ 𝐈𝑗 is the set of final/accepting states;

 𝑗: 𝐈𝑗 × 𝑗
𝑘
→ 𝐈𝑗 × (𝑗 × * ,→, +)

𝑘
 is the transition

function, where is left shift, → is right shift, and is no

shift of a head over a tape;

 𝑓𝑝𝑗: 𝛀 → 𝑗
∗ is the many-to-one perceptual filter function

of agent j, where 𝑗
∗ is the set of finite, unbounded

sequences of input symbols. The image of 𝑓𝑝𝑗 is

𝐼𝑚(𝑓𝑝𝑗) = 𝐎𝑗 ⊆ 𝑗
∗, thus 𝑓𝑝𝑗 models agent j’s sensors; it

encodes its percepts on the input tape. The inverse of 𝑓𝑝𝑗

is the information function of agent j, 𝑓𝑝𝑗
−1: 𝑗

∗ → 2𝛀;
9

 𝑓 𝑗: 𝑗
∗ → 𝐀𝑗 is the surjective action function of agent j,

where 𝑗
∗ is the set of finite, unbounded sequences of tape

symbols, thus 𝑓 𝑗 models agent j’s actuators; it decodes

the executable actions of agent j from the output tape.

The content of the input and output tape of 𝑀𝑗 at any

𝑡 ∈ 𝐓 is denoted by 𝑖𝑛𝑝𝑢𝑡𝑗(𝑡) and 𝑜𝑢𝑡𝑝𝑢𝑡𝑗(𝑡) respectively,

where 𝑖𝑛𝑝𝑢𝑡𝑗: 𝐓 → 𝑗
∗ and 𝑜𝑢𝑡𝑝𝑢𝑡𝑗: 𝐓 → 𝑗

∗ . Initially (at

𝑡 = 0) the content of the input tape is ℓ𝑗#𝑓𝑝𝑗(𝛺
𝐓(0)), the

output tape is completely blank, and the heads are at the

beginning of the tapes, over the first symbol. Let 𝑕𝑒𝑎𝑑𝑠𝑗(𝑡)

denote the sequence of symbols under the heads at any

𝑡 ∈ 𝐓, where 𝑕𝑒𝑎𝑑𝑠𝑗 : 𝐓 → 𝑗
𝑘

. The language recognized by

𝑀𝑗 is ℒ𝑀 = 2ℓ𝑗#𝑜𝑗|ℓ𝑗 ∈ 𝒫𝑀 ⊆ 𝑗
∗, 𝑜𝑗 ∈ 𝐎𝑗 ⊆ 𝑗

∗3 , where

ℓ𝑗 ∈ 𝒫𝑀 ⊆ 𝑗
∗ is a program and 𝒫𝑀 ⊆ 𝑗

∗ is the

programming language of agent j. ℓ𝑗 is interpreted by 𝑀𝑗 ,

so that there is a corresponding 𝑀ℓ Turing machine, which

is simulated by 𝑀𝑗, i.e. 𝑀𝑗 accepts, rejects or falls into an

infinite loop given the input ℓ𝑗#𝑜𝑗 iff 𝑀ℓ accepts, rejects or

falls into an infinite loop given the input 𝑜𝑗 ∈ 𝑗
∗

8 Space-bound is a limit on the sum of non-empty cells on kj tapes.

9 In accordance with [Aumann, 1976].

Proceedings of JAWS2011

6

6

respectively and 𝑓𝑀 (ℓ𝑗#𝑜𝑗) = 𝑓𝑀ℓ
(𝑜𝑗) for every 𝑜𝑗 ∈ 𝑗

∗ ,

where 𝑓𝑀 : 𝑗
∗ → 𝑗

∗ and 𝑓𝑀ℓ
: 𝑗
∗ → 𝑗

∗ denote the input-

output functions implemented by Turing machines 𝑀𝑗 and

𝑀ℓ respectively. Beyond that 𝑗 .𝐼𝑗
𝐓(𝑡), 𝑕𝑒𝑎𝑑𝑠𝑗(𝑡)/ =

〈𝐼𝑗
𝐓(𝑡 + 1), 〈𝑤𝑟𝑖𝑡𝑒𝑗,𝑘(𝑡),𝑚𝑜𝑣𝑒𝑗,𝑘(𝑡)〉𝑘=1

𝑘 〉 , 𝐼𝑗
𝐓(0) = 𝑖0𝑗 ,

𝑂𝑗
𝐓(𝑡) = 𝑓𝑝𝑗(𝛺

𝐓(𝑡)) , 𝑖𝑛𝑝𝑢𝑡𝑗(𝑡) = ℓ𝑗#𝑓𝑝𝑗(𝛺
𝐓(𝑡)) ,

10
 and

𝐴𝑗
𝐓(𝑡) = 𝑓 𝑗 .𝑜𝑢𝑡𝑝𝑢𝑡𝑗(𝑡)/ should hold

11
, where 𝑤𝑟𝑖𝑡𝑒𝑗,𝑘(𝑡)

denotes the symbol written on tape k of 𝑀𝑗 at time t,

𝑚𝑜𝑣𝑒𝑗,𝑘(𝑡) is the following movement of the head over

tape k, 𝐼𝑗
𝐓 ∈ 𝐈𝑗

𝐓 = {𝐼𝑗
𝐓: 𝐓 → 𝐈𝑗} is the internal state history

with 𝐈𝑗
𝐓 being the set of possible internal state histories of j.

Now we can relate agents’ programs to their functions: a

program ℓ𝑗 ∈ 𝒫𝑀 running on 𝑀𝑗 implements an agent

function 𝑓𝑗 = 𝐴𝑔𝑒𝑛𝑡(ℓ𝑗 , 𝑀𝑗 , 𝐸) (𝑗 = 1. . 𝑛) in 𝐸 iff 𝑓𝑗(𝛺
𝑡) =

𝐴𝑗
𝐓(𝑡) , 𝐴𝑗

𝐓(𝑡) = 𝑓 𝑗 .𝑜𝑢𝑡𝑝𝑢𝑡𝑗(𝑡)/ , 𝑗 .𝐼𝑗
𝐓(𝑡), 𝑕𝑒𝑎𝑑𝑠𝑗(𝑡)/ =

〈𝐼𝑗
𝐓(𝑡 + 1), 〈𝑤𝑟𝑖𝑡𝑒𝑗,𝑘(𝑡),𝑚𝑜𝑣𝑒𝑗,𝑘(𝑡)〉𝑘=1

𝑘 〉 , 𝑂𝑗
𝐓(𝑡) = 𝑓𝑝𝑗(𝛺

𝐓(𝑡))

𝑖𝑛𝑝𝑢𝑡𝑗(𝑡) = ℓ𝑗#𝑂𝑗
𝐓(𝑡), (𝛺𝐓(𝑡), .×𝑖=0

𝑛 𝐴𝑖
𝐓(𝑡)/ , 𝛺𝐓(𝑡 + 1)) ∈ 𝐑,

𝛺𝐓(0) = 𝜔0 and 𝐼𝑗
𝐓(0) = 𝑖0𝑗 holds.

Although every program ℓ𝑗 induces a corresponding

agent function 𝐴𝑔𝑒𝑛𝑡(ℓ𝑗 , 𝑀𝑗 , 𝐸) in E,
 12

 not every agent

function has an implementation ℓ𝑗 ∈ 𝒫𝑀 in case of a given

environment E and an architecture 𝑀𝑗 . We can define a

subset of the set of agent functions 𝑓𝑗 that are

implementable on a given architecture 𝑀𝑗 and programming

language 𝒫𝑀 in environment E as follows:

𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑀𝑗 , 𝐸) = 2𝑓𝑗|∃ℓ𝑗 ∈ 𝒫𝑀 , 𝑓𝑗 = 𝐴𝑔𝑒𝑛𝑡(ℓ𝑗 , 𝑀𝑗 , 𝐸)3.
 13

4.3 Utility of decentralized agents
We define a real-valued utility function over state

trajectories for every agent 𝑖 ∈ *1,2, . . . , 𝑛+ to measure their

performance in the environment: 𝑈𝑖 : 𝛀
𝐓 → ℝ.

14
 It implicitly

defines their goal set by their user or Designer. Several (or

all) agents can have the same user or Designer and thus the

same utility function. A combination of an environment and

the utility functions is a decentralized task environment.

10 The actual percept of agent j should be always updated by 𝑓𝑝𝑗 .

11 Effectors of agent j should be driven by 𝑓 𝑗 at every instant.

12 Compared to single-agent bounded-optimality the difference is

that the implemented agent function depends also on E, because

the perceptual filter function is now part of agents’ architecture.

If the environment (e.g. state space) changes then the same

perceptual filter function may not be valid anymore.

13 The set of feasible agent functions also depends on E.

14 Utility of agents may need to be calculated for state trajectory

prefixes instead of whole trajectories (e.g. for on-line decision

making). It may be calculated even for any time-interval [t1, t2],

t2>t1, as the difference between utilities of [0, t2] and [0, t1].

Based on the above we can define the value of an agent

function 𝑓𝑖 in an environment E with other 𝑓−𝑖 agents as the

expected utility 𝔼,𝑈𝑖(∙)- of state histories they generate:
15

𝑉𝑖((𝑓𝑖 , 𝑓−𝑖), 𝐸) = 𝔼 0𝑈𝑖 .effects((𝑓𝑖 , 𝑓−𝑖), 𝐸)/1 (7)

The value of agent i in a set E of environments
16

 with a

probability distribution p over them, and with other 𝑓−𝑖
agents is the expected value of Eq. 7.

17

𝑉𝑖((𝑓𝑖 , 𝑓−𝑖), 𝐄) = ∑ 𝑝(𝐸) ∙ 𝑉𝑖((𝑓𝑖 , 𝑓−𝑖), 𝐸)𝐸∈𝐄 (8)

Similarly the value of ℓ𝑖 executed by 𝑀𝑖 in E with other

𝑓−𝑖 agents can be given simply by looking at the effects of

the collective agent function 𝑓 = (𝐴𝑔𝑒𝑛𝑡(ℓ𝑖 , 𝑀𝑖 , 𝐸), 𝑓−𝑖).

𝑉𝑖(ℓ𝑖 , 𝑀𝑖 , 𝑓−𝑖 , 𝐸) = 𝑉𝑖((𝐴𝑔𝑒𝑛𝑡(ℓ𝑖 , 𝑀𝑖 , 𝐸), 𝑓−𝑖), 𝐸) (9)

The value of ℓ𝑖 run by 𝑀𝑖 in E with other 𝑓−𝑖 agents is:

𝑉𝑖(ℓ𝑖 , 𝑀𝑖 , 𝑓−𝑖 , 𝐄) = ∑ 𝑝(𝐸) ∙ 𝑉𝑖(ℓ𝑖 , 𝑀𝑖 , 𝑓−𝑖 , 𝐸)𝐸∈𝐄 (10)

4.4 Rationality of decentralized agents
A perfectly rational agent i in the above setting has an

agent function 𝑓𝑖 that maximizes 𝑉𝑖((𝑓𝑖 , 𝑓−𝑖), 𝐄) over all

agent functions of i, i.e. it has an agent function 𝑓𝑖
∗ such that

𝑓𝑖
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑓𝑖 .𝑉𝑖((𝑓𝑖, 𝑓−𝑖), 𝐄)/ (11)

As we see, other agents’ 𝑓−𝑖 functionality is explicitly

considered in this decentralized definition of perfect

rationality. It means that this condition must be met by the

agents to be perfectly rational in the decentralized case, but

since 𝑓𝑖
∗ is independent of 𝑀𝑖 , it may be that 𝑓𝑖

∗ is not

feasible, i.e. 𝑓𝑖
∗ 𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑀𝑖 , 𝐸) . For this reason we

impose optimality constraints better on programs rather

than agent functions. Agent i with architecture 𝑀𝑖 is

bounded-optimal for a set E of environments with other 𝑓−𝑖
agents, if it has an agent program ℓ𝑖

∗ ∈ 𝒫𝑀𝑖 such that

ℓ𝑖
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥ℓ𝑖∈𝒫𝑀𝑖

(𝑉𝑖(ℓ𝑖 , 𝑀𝑖 , 𝑓−𝑖, 𝐄)) (12)

We can notice that ℓ𝑖
∗ is a best-response to 𝑀𝑖, 𝑓−𝑖, and 𝐄,

but this does not mean that 𝑓−𝑖 (or any part of it) should be

also a best response like in Nash-equilibrium [Nash, 1951],

so in this sense we are more general than Nash-equilibrium.

15 It is an expected utility since the chance agent is also part of 𝑓−𝑖.
16 All 𝐸 ∈ 𝐄 should have same agents, states, time and actions.

Only the initial state and the state transition relation may differ.

17 Observe that because all the elements of E should have the same

agents, i is present in every 𝐸 ∈ 𝐄. This is a necessary condition.

 7

Nonetheless it can be hard to realize such a program. For

this sake we propose the following relaxation: agent i is

time- or space-wise average-case asymptotically bounded

optimal (ABO) in E on 𝑀𝑖 with other 𝑓−𝑖 agents, if it has a

program ℓ𝑖 ∈ 𝒫𝑀𝑖 such that ∃𝑘 for which for ∀ℓ𝑖
′

𝑉𝑖(ℓ𝑖 , 𝑘𝑀𝑖 , 𝑓−𝑖 , 𝐄) 𝑉𝑖(ℓ𝑖
′ , 𝑀𝑖 , 𝑓−𝑖 , 𝐄) holds. 𝑘𝑀𝑖 denotes a

variant of 𝑀𝑖, which is 𝑘 times faster (or has 𝑘 times more

memory), i.e. the program is on the right lines, it only needs

a better architecture. An initial idea for the realization of

such programs in general was given in [Kovacs, 2005].

According to Def. 13 in [Russell & Subramanian, 1995]

worst-case ABO could also be defined, but due to limited

paper extent we omit it now. Still, based on their Def. 15 a

decentralized notion of universal asymptotic bounded

optimality (UABO) can be given: agent i is UABO if it has a

program ℓ𝑖 ∈ 𝒫𝑀𝑖 running on 𝑀𝑖 in E with other 𝑓−𝑖 agents

for a family of value functions 𝒱𝑖 iff ℓ𝑖 is ABO in E on 𝑀𝑖
with 𝑓−𝑖 in case of every value function 𝑉𝑖 ∈ 𝒱𝑖. That means

the program is flexible to (e.g. temporal) variation of the

utility function, which is important for real-time systems.

We can extend all of the above decentralized rationality

concepts (perfect rationality, BO, ABO, UABO) to a non-

empty group of agents 𝐆 ⊆ 𝐍 just by looking at them as one

collective agent in E. 18 Such a collective agent 𝐆 has a

collective agent function 𝑓𝐆: 𝛀
∗ →×𝑖∈𝐆 𝐀𝑖 , where 𝑓𝐆(𝛺

𝑡) =

(𝑓𝑖(𝛺
𝑡))

𝑖∈𝐆
 for ∀𝑡 ∈ 𝐓 so that 𝑓𝑖 = 𝐴𝑔𝑒𝑛𝑡(ℓ𝑖 , 𝑀𝑖 , 𝐸) holds

for ∀𝑖 ∈ 𝐆 , ∀𝐸 ∈ 𝐄 . The utility 𝑈𝐆 of 𝐆 is an arbitrary

function of individual utilities, 𝑈𝐆(∙) = 𝑕(〈𝑈𝑖(∙)〉𝑖∈𝐆) ,

where 𝑕:ℝ|𝐆| → ℝ denotes an arbitrary real-valued

function. The program, architecture or percept and action at

time t of the group is a combination of individual programs,

architectures or percepts and actions at time t of the

members respectively. This way a group 𝐆 ⊆ 𝐍 can be

handled just like a single agent, and so the application of

our above rationality concepts becomes straightforward.

4.5 Connection to the original concept
The original idea of bounded-optimality is a special case

of our model if (1) 𝑛 = 1 or (2) 𝐆 = 𝐍. In the first case only

1 agent is modeled explicitly in a deterministic environment

either because it is the only one or since other deterministic

agents’ functionality is integrated into the transition

function 𝑓𝑒 which corresponds directly to the state transition

relation 𝐑. In the second case there may be multiple agents,

but all of them are considered as a single collective agent

𝐆 = 𝐍 in accordance with the end of Section 4.4.

In both cases chance agent 0 is either not present or

deterministic and 𝑓𝑝 = 𝑓𝑝𝐆 holds, so any (even

implemented) agent function 𝑓 in the original concept

corresponds to 𝑓 in 𝑓𝐆 = 𝑓 ∘ 𝑓𝑝𝐆 in our model19, i.e. 𝑓 = 𝑓 .

18 𝐍 𝐆 may include other groups of agents and agent 𝑖 ∈ 𝐍 may

belong to more groups.

19 Since in our model agent functions map from state trajectories.

5. Examples

Now we present a few examples of our model in case of a

simplified Wireless Sensor Network (WSN) network-layer

routing scenario [Tanenbaum & Wetherall 2011] (c.f. Fig. 1).

Fig.1 Example: geographical (left) and schematic (right) topology of

an earth tremor measuring wireless sensor network (WSN)

Let’s assume we have 5 static nodes for earth tremor

measurement with limited amount of energy and 1 base

station in 6 separate locations connected as in Fig. 1. Our

goal is that the base receives measured data from every

location, i.e. we need to design a protocol for nodes to

realize this. A node can measure, send or aggregate data.

Measurement takes 0.1 units of time and 1 unit of energy;

sending takes 1 unit of time and energy. The cost of

aggregation is negligible. Measurement produces data about

the location of a node, which can then be either sent to

another node or aggregated with received data. In case of

aggregation the accuracy of aggregated data is reduced

proportionally. Our question is: how should the nodes

behave to accomplish our goal in the shortest time, with

minimal overall energy usage and data inaccuracy?

To answer this question let’s model the situation. Let

𝐍 = *1,2,3,4,5, B+ be the set of nodes (agents), and let
𝐀𝑖 = *𝑑𝑜_𝑛𝑜𝑡𝑕𝑖𝑛𝑔,𝑚𝑒𝑎𝑠𝑢𝑟𝑒+ ∪ ({ , 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝐼, 𝐽)𝐼⊂𝐍,𝐼≠∅,𝐽⊆𝐍 𝐼} ×

*𝑠𝑒𝑛𝑑(𝑖, 𝐽, 𝑘)+𝑘∈𝐍:(𝑖,𝑘)∈𝐋,𝐽⊆𝐍) be the set of possible actions of

agent 𝑖 = 1. .5, where 𝐋 ⊆ 𝐍 × 𝐍 is the set of directed links

between nodes as in Fig. 1. 𝐀B = *𝑑𝑜_𝑛𝑜𝑡𝑕𝑖𝑛𝑔+, and set 𝛀

of states is a special case of Section 4, where 𝛀 = 2𝐏, and

𝐏 = *𝑑𝑎𝑡𝑎_𝑎𝑡(𝑖, 𝑗)+𝑖,𝑗∈𝐍⋃*𝑒𝑛𝑒𝑟𝑔𝑦_𝑜𝑓(𝑖, 𝑗)+𝑖∈𝐍 *B+,𝑗∈*0..4+ is

the set of propositions, i.e. states have a logical description.

The state transition relation R should be according to the

above informal description, with goal states being 𝛀𝑔 =
*𝜔 ∈ 𝛀|*𝑑𝑎𝑡𝑎_𝑎𝑡(𝑖, B)+𝑖=1..5 ⊆ 𝜔+ ⊆ 𝛀 . Let the utility of

agents be the same, 𝑈𝑖 = 𝑈 for ∀𝑖 ∈ 𝐍, as follows.

𝑈(𝛺𝐓) = {
0 if 𝛺𝐓(𝑡𝑚 𝑥) 𝛀𝑔

1 𝑇𝑂𝐼(𝛺𝐓)⁄ 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
 (∀𝛺𝐓 ∈ 𝛀𝐓) (13)

Here 𝑇𝑂𝐼(∙) = 𝛼𝑡𝑡(∙) + 𝛼𝑒𝑒(∙) + 𝛼𝑑𝑑(∙) denotes the

Trade-off Index [Li et al., 2010] which we seek to minimize,

and 𝛼𝑡 , 𝛼𝑒, 𝛼𝑑 ∈ ,0,1- are coefficients of timespan 𝑡(∙) ,

overall energy usage 𝑒(∙) and data inaccuracy 𝑑(∙) of a state

trajectory. 𝑑(∙) = 𝐷𝑔𝑒𝑛(∙) 𝐷𝑏 𝑠𝑒(∙)⁄ is the proportion of the

number of data measured in the network, 𝐷𝑔𝑒𝑛(∙), and the

Proceedings of JAWS2011

8

8

number of separate messages received by the base, 𝐷𝑏 𝑠𝑒(∙).
𝑡𝑚 𝑥 = 𝑚𝑎𝑥(𝐓) denotes the latest time instant. We could

extend this model to a probabilistic setting (e.g. packet loss,

data generation rate, failure) by introducing a chance agent

0, but for now we decided not to complicate things further.

Example 1: first let’s assume that initially node 1-5 has 2

units of energy as in Fig.1, i.e. 𝜔0 = *𝑒𝑛𝑒𝑟𝑔𝑦_𝑜𝑓(𝑖, 2)+𝑖∈𝐍 *B+,

and say 𝛼𝑡 = 𝛼𝑒 = 𝛼𝑑 = 1. Since every agent has the same

utility, they should aim for the same goal, i.e. it is rational

to cooperate. It is easy to see what actions bounded-optimal

programs *ℓ𝑖+𝑖∈𝐍 should choose by identifying optimal

collective behaviors, which now are fully aggregating

(every node should do a measurement at the very beginning

simultaneously, then wait for farther nodes’ data to arrive,

aggregate it with its own data, and then send the package

toward the base along the shortest path as soon as possible).

That is so because initially every node has only 2 units of

energy, while measurement and sending both take 1-1 unit.

So after a measurement a node can send only 1 message.

Example 2: now if node 4 would have 3 units of energy

initially, then it would be worth for it to send not only 1, but

2 messages (e.g. its own data separately), i.e. to do partial

aggregation to reduce data inaccuracy (from 5 to 2.5). I.e. a

change of node 4’s resources modifies its bounded-optimal

program while other BO agents remain fully aggregating.

Example 3: suppose that 𝛼𝑡 = 𝛼𝑑 = 0 , but 𝛼𝑒 = 1 in

Example 1. In this case any collective behavior reaching the

goal would have the same constant 𝑇𝑂𝐼(∙) = 5 ∙ 2 = 10 ,

which makes it impossible to distinguish among them. All

of them would be bounded-optimal even if they wait for

arbitrarily long with measurement or sending data. This is a

limitation of our model: a strong dependence on the

definition of utility (beside being discrete and allowing only

finite sets of environments, agents, actions and percepts).

6. Conclusions and future work

In this paper we introduced a decentralized notion of

bounded-optimality (DBO), compared it with other

rationality concepts, showed that it is an implicit multi-

agent extension of AIXI, because AIXI converges to BO,

and connected DBO to the original notion of BO. A few

examples were given to show the use and limitations of our

approach, which is globally optimal if other agents’ 𝑓−𝑖
functionality is given (c.f. Eq. 12), otherwise it is difficult

to achieve global optimality. There is no central mechanism

posed upon the collective of agents, i.e. DBO agents can be

analyzed in pre-existing environments with other users’

non-controllable agents (e.g. for assessing the performance

of our Internet poker agent in a room filled with arbitrary

competitors). We have also shown that DBO allows direct

connection of feasible individual and group-level rationality

in a straightforward way, which wasn’t possible until now.

In the future we wish to give a formal analysis of the

asymptotic realization of DBO programs in general; extend

our model to the continuous case, infinite sets of states,

agents, actions and percepts; and to conduct a deeper

investigation of individual and group-level rationality.

Acknowledgements

 We wish to thank SUZUKI Foundation for sponsoring this

research, to Dr. Stuart Russell for invaluable insights and to

Dr. Tadeusz Dobrowiecki for his helpful critical suggestions.

 References 

[Aumann 1976] Aumann, R. J.: Agreeing to Disagree. The Annals

of Statistics, Vol. 4(6), pp. 1236–1239 (1976)

[Bowling et al. 2002] Bowling, M., Jensen, R., Veloso, M.: A

formalization of equilibria for multiagent planning. AAAI

Workshop on Planning with and for Multiagent Systems, pp.

1236–1239 (2002)

[Carlin & Zilberstein 2011] Carlin, A., Zilberstein, S.:

Decentralized Monitoring of Anytime Decision Making, Proc.

of 10th Int. Conf. on Autonomous Agents and Multiagent

Systems (AAMAS), pp. 157-164 (2011)

[Cox & Raja 2011] Cox, M. T., Raja, A.: Metareasoning: Thinking

about thinking, MIT Press (2011)

[Hutter 2005] Hutter, M.: Universal Artificial Intelligence:

Sequential Decisions Based on Algorithmic Probability,

Springer (2005)

[Kovacs 2005] Kovacs, D. L.: Virtual Games: A New Approach to

Implementation of Social Choice Rules, In Proc. of 4th

International Central and Eastern European Conference on

Multi-Agent Systems (CEEMAS), Lecture Notes in Computer

Science (LNCS), Vol. 3690, pp. 266-275, Springer (2005)

[Li et al. 2010] Li, W., Bandai, M., Watanabe, T.: Tradeoffs among

Delay, Energy and Accuracy of Partial Data Aggregation in

Wireless Sensor Networks, In Proc. of IEEE International

Conference on Advanced Information Networking and

Applications (AINA), pp. 917-924 (2010)

[Nash 1951] Nash, J. F.: Non-cooperative Games, Annals of

Mathematics, Vol. 54, pp. 286-95 (1951)

[Neumann & Morgenstern 1944] Neumann, J., Morgenstern, O.:

Theory of games and economic behavior, Princeton (1944)

[Ong et al. 2010] Ong, S. C. W., Png, S. W., Hsu, D., Lee, W. S.:

Planning under Uncertainty for Robotic Tasks with Mixed

Observability, International Journal of Robotics Research, Vol.

29:8, pp. 1053-1068 (2010)

[Pattanaik 2008] Pattanaik, P. K.: Social welfare function, in S.

Durlauf and L. Blume (eds.), The New Palgrave Dictionary of

Economics, 2nd edition, Palgrave Macmillan Ltd. (2008)

[Russell & Subramanian 1995] Russell, S. J., Subramanian, D.:

Provably bounded-optimal agents, Journal of Artificial

Intelligence Research, Vol. 2, pp. 575-609 (1995)

[Russell & Norvig 2010] Russell, S. J., Norvig, P.: Artificial

Intelligence: A Modern Approach. 3rd Ed., Prentice Hall (2010)

[Silver & Veness 2010] Silver, D., Veness, J.: Monte-Carlo

Planning in Large POMDPs, In Proc. of Advances of Neural

Information Processing Systems (NIPS), pp. 2164-2172 (2010)

[Tanenbaum & Wetherall 2011] Tanenbaum, A. S., Wetherall, D.

J.: Computer Networks, 5th ed., Prentice Hall (2011)

[Veness et al. 2011] Veness, J., Ng, K. S., Hutter, M., Uther, W.,

Silver, D.: A Monte-Carlo AIXI Approximation, Journal of

Artificial Intelligence Research, Vol. 40, pp. 95-142 (2011)

