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Summary  

 

      This paper is a preliminary theoretical investigation of decentralized decision making with bounded resources. 

We build upon a feasible rationality concept for single agents to enable the formal investigation of the individual and 

group-level rationality of possibly heterogeneous, decentralized decision makers. We conjecture that it is more 

realistic than the centralized setting. Compared to other recent decentralized rationality notions (e.g. optimal 

decentralized metareasoning) our concept is stronger and not restricted to special cases (e.g. just collaborative 

agents). We introduce our model in detail, discuss its merits and limitations, connect it to the single-agent case, show 

that it is implicitly a decentralized extension of the recently successful AIXI, and provide a few application examples. 

 

 

1. Introduction 
 

This paper presents a decentralized extension and 

refinement of the original, single-agent concept of bounded-

optimality, which is a rationality criterion for intelligent 

agents similarly to perfect, calculative or metalevel 

rationality [Russell & Subramanian, 1995]. We decided to 

extend it because it “seems to offer the best hope for a 

strong theoretical foundation for AI” [Russell & Norvig, 

2010, Ch. 27, pp. 1050]. To our knowledge currently there 

are no general means for designing such bounded-optimal 

agents. We hope to advance in this direction by introducing 

our model, which is the main contribution of this paper. 

A decentralized extension is necessary – although other 

agents may as well be modeled implicitly as (hidden) parts 

of a dynamic environment in the single-agent case – 

because it allows explicit representation and reasoning 

about other, possibly heterogeneous agents’ structure (e.g. 

architecture, sensors, effectors, resources, goals, beliefs, 

utilities, properties) and behavior (e.g. program, strategy, 

rationality, faultiness, competition, coordination, 

cooperation, interaction, selfishness, altruism), which can 

be more effective. It enables examination of rationality of 

agents both at an individual and group level in connection. 

When using the proposed model one must be careful with 

the definition of agents’ utility. Every agent may have a 

different (or even the same) user/Designer-defined utility. If 

the utility of an agent is ill defined, then the interpretation 

of its rationality may be inappropriate. For example if there 

is a zero-sum situation (e.g. a Poker game), then if we 

define an agent’s utility as the sum of all the agents’ 

individual payoff (which is by definition zero), then the 

value of this agent’s utility will be zero for every possible 

outcome, which either means that we are indifferent toward 

its behavior (everything it does is considered rational), or 

we defined its utility function inappropriately.1 Eventually 

in this paper we try to answer the following question: given 

several, possibly heterogeneous decentralized, utility-driven 

agents with bounded resources, when are they rational? 
                                                                    

1 For zero-sum situations there is no point of defining a social 

welfare utility [Pattanaik, 2008] summing up agents’ individual 

valuation, since it would make no distinction between outcomes. 
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The paper is structured as follows. Section 2 reflects on 

related work. Section 3 introduces the fundamentals of 

bounded-optimality and AIXI 2  [Hutter, 2005], which is 

another recently successful concept of rationality. We prove 

the convergence of AIXI first to perfect rationality, then (in 

case of more realistic assumptions) to bounded-optimality 

to stress its importance even further. Section 4 contains our 

main contribution: a decentralized extension of bounded-

optimality. Section 5 gives examples of this extension. 

Section 6 concludes with a discussion of the results, 

limitations and an outline of future research directions. 

 

2. Related work 
 

There are several predecessors of our model [Russell & 

Subramanian, 1995]. Perfect rationality, for example, one 

of the earliest, classical single-agent rationality concepts, 

states that an agent should act so as to maximize its 

expected utility at every instant. This concept is not feasible 

in general, since it takes no account of the limited 

computational resources of the agent and the time needed 

for deliberation. Calculative rationality relaxes this 

assumption by allowing the agent to eventually return what 

would have been a perfectly rational decision at the 

beginning of its deliberation. This concept is more 

interesting in-principle, but it is of less value in practice, 

since the actual behavior of such an agent may be far from 

optimal. Metalevel rationality, e.g. optimal metareasoning 

[Cox & Raja, 2011] responds to the previous problems by 

trying to optimize not only over (ground-level) actions, but 

also to find an optimal trade-off between the cost and value 

of the (object-level) computation generating these actions. 

The drawback of this approach is that such meta-level 

decision problems are often more difficult than the original 

(object-level) decision problems, thus optimality can only 

be guaranteed in special cases, e.g. when the agent’s utility 

is a function of the time spent for deliberation and the 

decision making procedure is e.g. an anytime algorithm. 

Bounded-optimality on the other hand makes no 

assumptions about the structure of agents’ program (it is not 

required that the agent itself be engaged in any form of 

metareasoning). It only requires that “[the agent’s] program 

is a solution to the constrained optimization problem 

presented by its architecture and the task environment” 

[Russell & Subramanian, 1995]. This means that for 

instance even a simple reactive agent-program based on 

random decisions can be bounded-optimal in a given task 

environment iff it yields the highest expected utility among 

the programs runnable on the agent’s architecture. “This is a 

stronger guarantee than optimal metareasoning, but it is also 

                                                                 

2  AIXI stands for “Artificial Intelligence  ”, where   is 

Solomonoff’s universal a priori probability distribution over the 

possible true environments [Hutter, 2005] tending to converge to 

the initially unknown, true a priori probability distribution  . 

harder to achieve” [Carlin & Zilberstein, 2011]. 

This is why asymptotic bounded-optimality was proposed 

[Russell & Subramanian, 1995]. It requires only that the 

agent’s program is not worse than any other program on its 

current architecture provided with a constant-times faster 

architecture (or with constant-times more capacity). In this 

sense bounded-optimality is similar to AIXI, which is also a 

universal rationality measure that is only asymptotically 

computable in practice. Nevertheless a computationally 

feasible, direct Monte-Carlo approximation [Veness et al., 

2011] was provided for it recently, whose main ideas stem 

form POMCP [Silver & Veness, 2010], which is part of 

POMDPX_NUS [Ong et al., 2010], the planner winning the 

probabilistic Boolean POMDP track of this year’s 

International Planning Competition (ICAPS IPC-2011). 

An AIXI agent is dual in comparison to a bounded-

optimal agent in that the former first acts and then receives 

a percept and a reward as a result (general reinforcement 

learning scheme), while the latter first perceives the actual 

state of its environment and then acts according to its 

current percept history (intelligent/rational agent scheme). 

The two schemes can be connected as shown in [Hutter, 

2005, Ch. 6], but we can also prove that AIXI converges to 

bounded-optimality (c.f. Section 3.2) and thus e.g. the 

above mentioned AIXI approximation is effectively an 

approximation of bounded-optimality. 

All of the previous concepts are important measures of 

agents’ intelligence, but all of them rely on the simplifying 

assumption of a single agent. Extending them “to multi-

agent settings is hard” [Carlin & Zilberstein, 2011], but it 

became a current topic of research. For example such an 

extension of optimal metareasoning was given in [Carlin & 

Zilberstein, 2011], but it actually works only for two 

collaborative agents, and in general has the same drawbacks 

as single-agent metareasoning. Moreover it should give rise 

to the problem of infinite regress in reciprocal (higher 

order) beliefs of agents as they start to reason about each 

other’s reasoning (which may be necessary for optimality). 

In case of perfect rationality Game Theory [Neumann & 

Morgenstern, 1944] is an appropriate extension to 

decentralized decision making, but it inherently has the 

same problems as perfect rationality. Nonetheless it 

overcomes the issue of infinite regress of reciprocal 

expectations by assuming common knowledge of the game 

(and – in case of incomplete information – common priors). 

AIXI has no direct extension to the decentralized setting 

yet, and it is not trivial, since it would require consideration 

of several agents’ deliberation and actions, of which there is 

currently no trace (or place for) in the model. But since 

AIXI converges to bounded-optimality, our extension of it 

can be seen as an indirect decentralized extension of AIXI. 

 

3. Preliminaries 
 

As we have already mentioned in the introduction, the 

definition of agents’ utility is central to their definition of 
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rationality. A perfectly rational agent according to [Russell 

& Subramanian, 1995] corresponds to an agent function 

𝑓opt such that 

𝑓opt = argmax𝑓(𝑉(𝑓, 𝐄))  (1) 

 

An agent function, 𝑓: 𝐎𝑡 → 𝐀 , is a mapping from the 

finite set of percept history prefixes 𝐎𝑡 = *𝑂𝑡|𝑡 ∈ 𝐓, 𝑂𝐓 ∈
𝐎𝐓+  to the finite set 𝐀  of actions; 𝐓  is the finite, totally 

ordered set of time instants (with a unique least element, 0); 

𝐎  is the finite set of the agent’s possible percepts; and 

𝐎𝐓 = *𝑂𝐓: 𝐓 → 𝐎+  is the set of all possible percept 

histories, where 𝑂𝐓 is a particular percept history. Thus a 

perfectly rational agent corresponds to a function that 

maximizes 𝑉(𝑓, 𝐄) , where 𝐄  is a finite set of possible 

environments with a probability distribution 𝑝 over them. 

An environment, 𝐸 ∈ 𝐄, consists of a set 𝐗 of states with a 

distinguished initial state 𝑋0, a transition function 𝑓𝑒 and a 

perceptual filter function 𝑓𝑝 such that 𝑋𝐓(0) = 𝑋0, 𝑂
𝐓(𝑡) =

𝑓𝑝(𝑋
𝐓(𝑡)), 𝐴𝐓(𝑡) = 𝑓(𝑂𝑡) and 𝑋𝐓(𝑡 + 1) = 𝑓𝑒(𝐴

𝐓(𝑡), 𝑋𝐓(𝑡)) 

holds for ∀𝑡 ∈ 𝐓, where 𝑋𝐓: 𝐓 → 𝐗 is the state trajectory, 

and 𝐴𝐓: 𝐓 → 𝐀 is the action history produced by the agent. 

Now 𝑉(𝑓, 𝐄) can be defined as the expected utility of 𝑓 in 

𝐄 with a probability distribution 𝑝 over 𝐄 as follows. 

 

𝑉(𝑓, 𝐄) = ∑ 𝑝(𝐸) ∙ 𝑉(𝑓, 𝐸)𝐸∈𝐄   (2) 

 

Here 𝑉(𝑓, 𝐸) denotes the utility of 𝑓 in 𝐸 ∈ 𝐄. 

 

𝑉(𝑓, 𝐸) = 𝑈(effects(𝑓, 𝐸))  (3) 

 

In Eq. 3 effects(𝑓, 𝐸) ∈ 𝐗𝐓  stands for the state 

trajectory generated by 𝑓 in 𝐸; and so 𝑈: 𝐗𝐓 → ℝ denotes 

the utility function of the agent, a mapping from the set 

of state trajectories, 𝐗𝐓, to real numbers. 
 

3.1 Convergence of AIXI to perfect rationality 
One of our results is in showing that Hutter’s AIXI 

converges to a special case of perfect rationality based on 

the claim in [Hutter, 2005, p146] that AI  converges to AI  

as defined in [Hutter, 2005, p130, Def. 4.4], and showing 

that AI  corresponds to a special case of perfect rationality. 

 

Definition 1 (The AI  model). The AI  model is the 

agent with policy 𝑝𝜇  that maximizes the  -expected total 

reward 𝑟1 +⋯+ 𝑟𝑚, i.e. 𝑝∗ ≡ 𝑝𝜇 ≔ 𝑎𝑟𝑔𝑚𝑎𝑥𝑝𝑉𝜇
𝑝
. Its value 

is 𝑉𝜇
∗ ≔ 𝑉𝜇

𝑝𝜇
. [Hutter, 2005, p130] 

 

Policy 𝑝∗ corresponds to agent function 𝑓opt in Eq. 1, and 

generally a policy 𝑝  corresponds to an agent function 𝑓 . 

The expected utility (called value function in AIXI) defined 

as 𝑉𝜇
𝑝
≡ 𝑉1𝑚

𝑝𝜇
≔ ∑  (𝑞)𝑞 𝑉1𝑚

𝑝𝑞
 [Hutter, 2005, p130] 

corresponds to Eq. 2 with 𝑉𝜇
𝑝
≡ 𝑉1𝑚

𝑝𝜇
 corresponding to 

𝑉(𝑓, 𝐄) ; environment 𝑞  corresponds to environment 𝐸 ; 

probability  (𝑞)  corresponds to 𝑝(𝐸)  in Eq. 2; and total 

utility 𝑉1𝑚
𝑝𝑞

 corresponds to utility 𝑉(𝑓, 𝐸) as given in Eq. 3. 

𝑉1𝑚
𝑝𝑞

 is defined as 𝑉1𝑚
𝑝𝑞
≔ ∑ 𝑟(𝑥𝑖

𝑝𝑞
)𝑚

𝑖=1  in [Hutter, 2005, 

p129], where m denotes the lifetime of the agent, and 

corresponds to |𝐓|; 𝑟(𝑥𝑖
𝑝𝑞
) = 𝑟𝑖  is the reinforcement of an 

AIXI agent in cycle i (𝑖 = 1,2, . . . , 𝑚) as seen in Def. 1; and 

𝑥𝑖
𝑝𝑞
∈ 𝒳 is the perception (input) of the AIXI agent in cycle 

i (in case of p and q) corresponding to 𝑂𝐓(𝑖) ∈ 𝐎, so 𝒳 

corresponds to 𝐎 . According to Eq. 3 this means that 

∑ 𝑟(𝑥𝑖
𝑝𝑞
)𝑚

𝑖=1  corresponds to 𝑈(effects(𝑓, 𝐸)) , i.e. AI   

corresponds to a special case of perfect rationality, where 

the utility 𝑈 of the state trajectory effects(𝑓, 𝐸) – which 

corresponds to the unique I/O sequence 𝜔𝑝𝑞 ≔
𝑦1
𝑝𝑞
𝑥1
𝑝𝑞
…𝑦𝑚

𝑝𝑞
𝑥𝑚
𝑝𝑞

 in AIXI – is calculated as the sum of 

rewards 𝑟𝑖  extracted from percepts at every time instant. 

Moreover, cycle i in AIXI can be considered to correspond 

to time-interval ,𝑖 − 1, 𝑖- , so 𝑦𝑖
𝑝𝑞
∈ 𝒴  corresponds to 

𝐴𝐓(𝑖 − 1) ∈ 𝐀, 𝒴 corresponds to 𝐀, and 𝑂𝐓(0) = 𝑓𝑝(𝑋0) is 

an empty perception/string, 𝜖. 
From the above we see that AI  in Def. 1 corresponds to 

a special case of perfect rationality defined in Eq. 1 (with a 

simple linear utility 3 , an empty initial percept, and a 

computable environment4), implying that if AI  converges 

to AI , then AI  eventually converges to this special case. 

The problem with this is only that perfect rationality is not 

feasible, which implies that in general AIXI is not feasible. 

To overcome this resource bounds need to be introduced. 

 

3.2 Convergence of AIXI to bounded-optimality 
In general resource bounded computation can be modeled 

with time- and/or space-bounded Turing machines. So from 

now on we model agents’ resource bounded architectures 

that interpret and run their programs with Turing machines. 

Let 𝑀:ℒ𝑀 × 𝐈 × 𝐎 → 𝐈 × 𝐀 denote an agent’s architecture 

[Russell & Subramanian, 1995], a fixed interpreter for 

programs, where 〈𝐼𝐓(𝑡 + 1), 𝐴𝐓(𝑡)〉 = 𝑀(ℓ, 𝐼𝐓(𝑡), 𝑂𝐓(𝑡)) . 

𝑀 has 3 inputs and 2 outputs. The inputs are: (1) the agent’s 

program ℓ ∈ ℒ𝑀, where ℒ𝑀 denotes the finite programming 

language of 𝑀; (2) the current inner state of the agent at 

time t, 𝐼𝐓(𝑡) ∈ 𝐈, drawn from the set of possible inner states 

𝐈 (with initial state i0), where 𝐼𝐓: 𝐓 → 𝐈 denotes the internal 

state history of the agent; and (3) the current percept of the 

agent at time t, 𝑂𝐓(𝑡) ∈ 𝐎. The outputs of 𝑀 are: (1) the 

next inner state of the agent at time t+1, 𝐼𝐓(𝑡 + 1) ∈ 𝐈; and 

(2) the current action of the agent at time t, 𝐴𝐓(𝑡). 
We can now define the subset of agent functions, that can 

be implemented on a given architecture 𝑀  as follows: 

𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑀) = *𝑓|∃ℓ ∈ ℒ𝑀, 𝑓 = 𝐴𝑔𝑒𝑛𝑡(ℓ,𝑀)+ , where 

                                                                 

3  Though simple, this utility function can be used for on-line 

reinforcement learning by maximizing expected future reward. 

4  The computability of the environment q is a requirement in 

AIXI, but it is not mentioned in [Russell & Subramanian, 1995]. 
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𝐴𝑔𝑒𝑛𝑡(ℓ,𝑀) denotes the agent-function implemented by ℓ 

running on 𝑀, if for any 𝐸, 𝑀 generates an action history 

𝐴𝐓 for which 𝑓(𝑂𝑡) = 𝐴𝐓(𝑡) holds. It would be pointless to 

discuss feasibility if 𝑀 wasn’t time- and/or space-bounded. 

Now a bounded-optimal agent with an architecture 𝑀 for 

a finite set 𝐄 of environments has a program ℓopt such that 

 

ℓopt = 𝑎𝑟𝑔𝑚𝑎𝑥ℓ∈ℒ𝑀(𝑉(ℓ,𝑀, 𝐄))  (4) 

 

We can calculate 𝑉(ℓ,𝑀, 𝐄) , the expected utility of a 

program ℓ running on 𝑀 in case of 𝐄 similarly to Eq. 2. 

 

𝑉(ℓ,𝑀, 𝐄) = ∑ 𝑝(𝐸) ∙ 𝑉(ℓ,𝑀, 𝐸)𝐸∈𝐄   (5) 

 

Finally, by instantiating 𝑓 = 𝐴𝑔𝑒𝑛𝑡(ℓ,𝑀)  in Eq. 3 we 

get 𝑉(ℓ,𝑀, 𝐸), the utility of ℓ running on 𝑀 in 𝐸. 

 

𝑉(ℓ,𝑀, 𝐸) = 𝑉(𝐴𝑔𝑒𝑛𝑡(ℓ,𝑀), 𝐸)  (6) 

 

The proposed correspondence with AIXI (if not as 

obvious as before5) is mainly the same as in Section 3.1 

except the following differences: policy 𝑝∗ (c.f. Def. 1) now 

corresponds to the bounded-optimal agent-program ℓopt , 

which codes a Turing machine 𝑀ℓopt that is simulated by 𝑀 

on input 〈𝐼𝐓(𝑡), 𝑂𝐓(𝑡)〉  for ∀𝑡 ∈ 𝐓 , thus 𝑀  is a universal 

Turing machine (in accordance with [Hutter, 2005, Ch. 

1.7.1, p21]), and generally every AIXI policy 𝑝  should 

correspond to a program ℓ in a similar fashion. Expected 

utility 𝑉𝜇
𝑝
≡ 𝑉1𝑚

𝑝𝜇
≔ ∑  (𝑞)𝑞 𝑉1𝑚

𝑝𝑞
 corresponds to Eq. 5, and 

total utility 𝑉1𝑚
𝑝𝑞

 corresponds to 𝑉(ℓ,𝑀, 𝐸) in Eq. 6. 

Now it would be too early to claim that AIXI converges 

to bounded-optimality, since we need to take limited 

resources into account. In AIXI both p and q are modeled 

with Turing machines which can be time- and/or space-

bounded, but we will focus only on policies and programs, 

since bounded-optimality assumes no bounds on E. An 

AIXI policy p is time-bounded if it calculates its output in 

time ≤ 𝑡 per cycle and space-bounded if its length6 is ≤ 𝑙. 
This approach is labeled AIXItl in [Hutter, 2005, Ch. 7.2] 

and it is not conventional since usually space-bounds apply 

to the capacity of 𝑀𝑝, the machine corresponding to p, and 

not to the universal Turing machine running p. So if in 

bounded-optimality a program ℓ corresponds to a t time- 

and/or l space-bounded AIXI policy p, then 𝑀ℓ should be t 

time-bounded and/or ℓ should be ≤ 𝑙 bit long. This will be 

further refined in frames of our model (c.f. Section 4), but 

before that we need to address one more topic: semantics of 

time, which wasn’t a problem in Section 3.1, but now after 

                                                                 

5 An AIXI policy 𝑝 could also correspond e.g. to an agent-function 

𝐴𝑔𝑒𝑛𝑡(ℓ,𝑀) implemented by a program ℓ on an architecture 𝑀, 

or just to an 〈ℓ,𝑀〉 pair, but it wouldn’t be as clear as above (c.f. 

bounded resources), yet it wouldn’t change the overall result. 

6 Policy p is an input of a universal Turing machine in AIXI. 

the introduction of architectures it shall be considered. 

AIXI measures time in cycles, while bounded-optimality 

in time steps. These two can correspond to each other as 

shown in Section 3.1, but then neither is a measure of 

computation time, just an indicator of I/O cycles. In AIXI 

this is made explicit: cycles are different than the 

computation time of policies. Section 4 in [Russell & 

Subramanian, 1995] on the other hand suggests that time 

steps should correspond to computation time, while they 

permit also our cycle-based interpretation. This ambiguity 

is also clarified in our model (c.f. next section). 

For now we should conclude that bounded-optimality 

corresponds to AI  with resource bounded policies, and that 

it is the limit to which AIXI with resource bounded policies 

converges. So eventually since every real implementation is 

resource bounded, any approximation of AIXI (e.g. [Veness 

et al., 2011]) is an approximation of bounded-optimality. 

 

4. Decentralized extension of bounded-optimality 
 

Now our main contribution, the decentralized extension 

of bounded-optimality is presented. Let 𝐍 = *0,1,2, . . . , 𝑛+ 
be the set of agents in the environment, and let Ai be the 

finite set of possible actions of agent 𝑖 ∈ 𝐍. Similarly to 

Section 3 we introduce a set of time instants, T, a totally-

ordered, finite set of non-negative integers (including 0). In 

our model 𝛀 denotes the states of an environment, so the set 

of possible state trajectories is defined as 𝛀𝐓 = *𝛺𝐓: 𝐓 →
𝛀+ , where 𝛺𝐓  is a state trajectory, a mapping from time 

instants to states. The prefix of a state trajectory 𝛺𝐓 ∈ 𝛀𝐓 

till time t is 𝛺𝑡 = *𝛺𝐓(𝑢)|𝑢 ∈ 𝐓, 0 ≤ 𝑢 ≤ 𝑡+ and so the set of 

possible state trajectory prefixes is 𝛀∗ = *𝛺𝑡|𝑡 ∈ 𝐓, 𝛺𝐓 ∈
𝛀𝐓+. We can also define the set of action histories of agent i, 

𝐀𝑖
𝐓 = *𝐴𝑖

𝐓: 𝐓 → 𝐀𝑖+, where 𝐴𝑖
𝐓 is an action history of agent i. 

The prefix of an action history 𝐴𝑖
𝐓 ∈ 𝐀𝑖

𝐓 of agent i till time t 

is 𝐴𝑖
𝑡 = *𝐴𝑖

𝐓(𝑢)|𝑢 ∈ 𝐓, 0 ≤ 𝑢 ≤ 𝑡+  and 𝐀𝑖
∗ = *𝐴𝑖

𝑡|𝑡 ∈ 𝐓, 𝐴𝑖
𝐓 ∈

𝐀𝑖
𝐓+ is the set of possible action history prefixes of agent i. 

 

4.1 Specification of agents and environments 
An agent is typically described as an abstract mapping 

(the agent function) from percept sequences to actions, but 

eventually those percept sequences arise from state 

sequences perceived by the agent, and this perception 

mechanism should also be part of the agent function, i.e. 

𝑓𝑖: 𝛀
∗ → 𝐀𝑖  (𝑖 ∈ 𝐍), mapping directly from state sequences 

to actions in order to capture the “complete physical 

functionality” of the agent. Moreover 𝐴𝑖
𝐓(𝑡) = 𝑓𝑖(𝛺

𝑡) must 

also hold for ∀𝑡 ∈ 𝐓. 

To model non-deterministic environments without loss of 

generality we assume (in accordance with extensive-form 

games) that an agent 0 represents chance, having an agent-

function 𝑓0: 𝛀
∗ → 𝐀0 , where 𝑓0(𝛺

𝑡)  is chosen randomly 

according to probability distribution 𝜋0(𝛺
𝑡) , where 

𝜋0: 𝛀
∗ → ∆(𝐀0) denotes a random action policy, a function 

that maps from the set of state trajectory prefixes to the set 



 5 

of probability distributions over 𝐀0, ∆(𝐀0). The effects of 

agent 0 are incorporated in the following definition of a 

state transition relation, 𝐑 ⊆ 𝛀× (×𝑖=0
𝑛 𝑨𝑖) × 𝛀, which is 

similar to Def. 1 in [Bowling et al., 2002]. The set of 

actions that agent i can perform in 𝜔 ∈ 𝛀 are implied by 𝐑, 

and are denoted with ACT𝑖(𝜔) ⊆ 𝐀𝑖  (the do-nothing action 

should be part of ACT𝑖(𝜔) for every agent and state), and 𝐑 

should satisfy the following two conditions: 

1. For ∀𝜔 ∈ 𝛀  state and ∀𝑎 ∈×𝑖=0
𝑛 ACT𝑖(𝜔)  action-

combination ∃ 𝜔 ∈ 𝛀 that (𝜔, 𝑎, 𝜔 ) ∈ 𝐑. 

2. If for a given 𝜔 ∈ 𝛀  and 𝑎 ∈×𝑖=0
𝑛 𝐀𝑖  𝑎  

×𝑖=0
𝑛 ACT𝑖(𝜔) holds, then  ∃𝜔 ∈ 𝛀: (𝜔, 𝑎, 𝜔 ) ∈ 𝐑. 

The first condition is about completeness and 

determinism (for every state and executable action-

combination there should be just one resulting state defined 

by 𝐑), and the second condition is about consistency (if an 

action-combination can’t be executed in a given state, then 

𝐑 should not define any state resulting from its execution). 

 

Definition 2 (Environment). An environment7 is a 6-tuple, 

𝐸 = (𝐍,𝛀, 𝜔0, 𝐓, *𝐀𝑖+𝑖∈𝐍, 𝐑) , such that 𝛺𝐓(0) = 𝜔0 , 

𝐴𝑖
𝐓(𝑡) = 𝑓𝑖(𝛺

𝑡), and (𝛺𝐓(𝑡), .×𝑖=0
𝑛 𝐴𝑖

𝐓(𝑡)/ , 𝛺𝐓(𝑡 + 1)) ∈ 𝐑. 

 

State history 𝛺𝐓 is determined by 𝐸 and agent functions 

𝑓𝑖  (𝑖 ∈ 𝐍) which altogether are denoted by 𝑓:𝛀∗ →×𝑖∈𝐍 𝐀𝑖 , 
the collective agent function, where 

𝑓(𝛺𝑡) = (𝑓0(𝛺
𝑡), 𝑓1(𝛺

𝑡), . . . , 𝑓𝑛(𝛺
𝑡))  for ∀𝑡 ∈ 𝐓 . We can 

also define the functionality of all agents except agent i as 

𝑓−𝑖(𝛺
𝑡) = (𝑓0(𝛺

𝑡), . . . , 𝑓𝑖−1(𝛺
𝑡), 𝑓𝑖+1(𝛺

𝑡), . . . , 𝑓𝑛(𝛺
𝑡)), and 

for short we can write 𝑓 = (𝑓𝑖 , 𝑓−𝑖). Similarly 𝐴𝑡  denotes 

the collective prefix of action histories 𝐴𝑖
𝐓 ∈ 𝐀𝑖

𝐓 till time t, 

𝐴𝑡 = 2.𝐴𝑖
𝐓(𝑢)/

𝑖∈𝐍
|𝑢 ∈ 𝐓, 0 ≤ 𝑢 ≤ 𝑡3 , and 𝐴−𝑖

𝑡  denotes the 

collective prefix of action histories 𝐴𝑗
𝐓 ∈ 𝐀𝑗

𝐓  till time t 

except agent i similarly to 𝑓−𝑖 . For short: 𝐴𝑡 = (𝐴𝑖
𝑡 , 𝐴−𝑖

𝑡 ). 
Based on this effects(𝑓, 𝐸)  denotes the state history 

generated by a collective agent function 𝑓  operating in E. 

 

4.2 Implementation of agents in environments 
We will consider an agent (except agent 0) to consist of 

an architecture and a program (like hardware and software). 

The main difference between the original concept and our 

approach is that we model agents’ sensors and actuators as a 

part of their architecture, not the environment. Let Oj 

denote the set of percepts of agent j (𝑗 = 1. . 𝑛), so 𝐎𝑗
𝐓 =

{𝑂𝑗
𝐓: 𝐓 → 𝐎𝑗} is the set of percept histories of agent j, where 

𝑂𝑗
𝐓 is a percept history of agent j. The prefix of a percept 

history 𝑂𝑗
𝐓 ∈ 𝐎𝑗

𝐓  of agent j till time t is denoted with 

𝑂𝑗
𝑡 = {𝑂𝑗

𝐓(𝑢)|𝑢 ∈ 𝐓, 0 ≤ 𝑢 ≤ 𝑡} , and the set of possible 

                                                                 

7 This definition of the environment is discrete and could be made 

continuous, but that would introduce unnecessary complexity 

and it is not essential for our results, so we omit its discussion. 

percept history prefixes of j is 𝐎𝑗
∗ = {𝑂𝑗

𝑡|𝑡 ∈ 𝐓, 𝑂𝑗
𝐓 ∈ 𝐎𝑗

𝐓}. 

Now the architecture of an agent can be defined as follows. 

 

Definition 3 (Architecture). Architecture 𝑀𝑗  of agent 

𝑗 ∈ *1,2, . . . , 𝑛+ is an 𝑠(∙) space-bounded
8
 and/or 𝑡(∙) time-

bounded 𝑘𝑗 -tape Embedded Universal Turing Machine, 

𝑀𝑗 = (𝐈𝑗 ,  𝑗 ,  𝑗 ,  𝑗 , 𝑖0𝑗 , 𝐹𝑗,  𝑗, 𝑓𝑝𝑗 , 𝑓 𝑗) with a dedicated half-

infinite read-only input and half-infinite readable/writeable 

output tape (𝑘𝑗  2, 𝑘𝑗 ∈  
+), where 

 𝐈𝑗 is the finite set of internal states of agent j; 

  𝑗  is a finite, non-empty set of the tape symbols; 

  𝑗 ∈  𝑗 is the blank symbol; 

  𝑗 ⊆  𝑗 { 𝑗} is the non-empty set of input symbols; 

 𝑖0𝑗 ∈ 𝐈𝑗 is the initial state of the machine; 

 𝐹𝑗 ⊆ 𝐈𝑗 is the set of final/accepting states; 

  𝑗: 𝐈𝑗 ×  𝑗
𝑘 
→ 𝐈𝑗 × ( 𝑗 × * ,→,  +)

𝑘 
 is the transition 

function, where   is left shift, → is right shift, and   is no 

shift of a head over a tape; 

 𝑓𝑝𝑗: 𝛀 →  𝑗
∗ is the many-to-one perceptual filter function 

of agent j, where  𝑗
∗  is the set of finite, unbounded 

sequences of input symbols. The image of 𝑓𝑝𝑗  is 

𝐼𝑚(𝑓𝑝𝑗) = 𝐎𝑗 ⊆  𝑗
∗, thus 𝑓𝑝𝑗 models agent j’s sensors; it 

encodes its percepts on the input tape. The inverse of 𝑓𝑝𝑗 

is the information function of agent j, 𝑓𝑝𝑗
−1:  𝑗

∗ → 2𝛀;
9
 

 𝑓 𝑗:  𝑗
∗ → 𝐀𝑗  is the surjective action function of agent j, 

where  𝑗
∗ is the set of finite, unbounded sequences of tape 

symbols, thus 𝑓 𝑗  models agent j’s actuators; it decodes 

the executable actions of agent j from the output tape. 

 

The content of the input and output tape of 𝑀𝑗  at any 

𝑡 ∈ 𝐓 is denoted by 𝑖𝑛𝑝𝑢𝑡𝑗(𝑡) and 𝑜𝑢𝑡𝑝𝑢𝑡𝑗(𝑡) respectively, 

where 𝑖𝑛𝑝𝑢𝑡𝑗: 𝐓 →  𝑗
∗  and 𝑜𝑢𝑡𝑝𝑢𝑡𝑗: 𝐓 →  𝑗

∗ . Initially (at 

𝑡 = 0) the content of the input tape is ℓ𝑗#𝑓𝑝𝑗(𝛺
𝐓(0)), the 

output tape is completely blank, and the heads are at the 

beginning of the tapes, over the first symbol. Let 𝑕𝑒𝑎𝑑𝑠𝑗(𝑡) 

denote the sequence of symbols under the heads at any 

𝑡 ∈ 𝐓, where 𝑕𝑒𝑎𝑑𝑠𝑗 : 𝐓 →  𝑗
𝑘 

. The language recognized by 

𝑀𝑗  is ℒ𝑀 = 2ℓ𝑗#𝑜𝑗|ℓ𝑗 ∈ 𝒫𝑀 ⊆  𝑗
∗, 𝑜𝑗 ∈ 𝐎𝑗 ⊆  𝑗

∗3 , where 

ℓ𝑗 ∈ 𝒫𝑀 ⊆  𝑗
∗  is a program and 𝒫𝑀 ⊆  𝑗

∗  is the 

programming language of agent j. ℓ𝑗  is interpreted by 𝑀𝑗 , 

so that there is a corresponding 𝑀ℓ  Turing machine, which 

is simulated by 𝑀𝑗, i.e. 𝑀𝑗  accepts, rejects or falls into an 

infinite loop given the input ℓ𝑗#𝑜𝑗 iff 𝑀ℓ  accepts, rejects or 

falls into an infinite loop given the input 𝑜𝑗 ∈  𝑗
∗ 

                                                                 

8 Space-bound is a limit on the sum of non-empty cells on kj tapes. 

9 In accordance with [Aumann, 1976]. 
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respectively and 𝑓𝑀 (ℓ𝑗#𝑜𝑗) = 𝑓𝑀ℓ 
(𝑜𝑗)  for every 𝑜𝑗 ∈  𝑗

∗ , 

where 𝑓𝑀 :  𝑗
∗ →  𝑗

∗  and 𝑓𝑀ℓ 
:  𝑗
∗ →  𝑗

∗  denote the input-

output functions implemented by Turing machines 𝑀𝑗  and 

𝑀ℓ  respectively. Beyond that  𝑗 .𝐼𝑗
𝐓(𝑡), 𝑕𝑒𝑎𝑑𝑠𝑗(𝑡)/ =

〈𝐼𝑗
𝐓(𝑡 + 1), 〈𝑤𝑟𝑖𝑡𝑒𝑗,𝑘(𝑡),𝑚𝑜𝑣𝑒𝑗,𝑘(𝑡)〉𝑘=1

𝑘 〉 , 𝐼𝑗
𝐓(0) = 𝑖0𝑗 , 

𝑂𝑗
𝐓(𝑡) = 𝑓𝑝𝑗(𝛺

𝐓(𝑡)) , 𝑖𝑛𝑝𝑢𝑡𝑗(𝑡) = ℓ𝑗#𝑓𝑝𝑗(𝛺
𝐓(𝑡)) ,

10
 and 

𝐴𝑗
𝐓(𝑡) = 𝑓 𝑗 .𝑜𝑢𝑡𝑝𝑢𝑡𝑗(𝑡)/ should hold

11
, where 𝑤𝑟𝑖𝑡𝑒𝑗,𝑘(𝑡) 

denotes the symbol written on tape k of 𝑀𝑗  at time t, 

𝑚𝑜𝑣𝑒𝑗,𝑘(𝑡)  is the following movement of the head over 

tape k, 𝐼𝑗
𝐓 ∈ 𝐈𝑗

𝐓 = {𝐼𝑗
𝐓: 𝐓 → 𝐈𝑗}  is the internal state history 

with 𝐈𝑗
𝐓 being the set of possible internal state histories of j. 

Now we can relate agents’ programs to their functions: a 

program ℓ𝑗 ∈ 𝒫𝑀  running on 𝑀𝑗  implements an agent 

function 𝑓𝑗 = 𝐴𝑔𝑒𝑛𝑡(ℓ𝑗 , 𝑀𝑗 , 𝐸)  (𝑗 = 1. . 𝑛)  in 𝐸  iff 𝑓𝑗(𝛺
𝑡) =

𝐴𝑗
𝐓(𝑡) , 𝐴𝑗

𝐓(𝑡) = 𝑓 𝑗 .𝑜𝑢𝑡𝑝𝑢𝑡𝑗(𝑡)/ ,  𝑗 .𝐼𝑗
𝐓(𝑡), 𝑕𝑒𝑎𝑑𝑠𝑗(𝑡)/ =

〈𝐼𝑗
𝐓(𝑡 + 1), 〈𝑤𝑟𝑖𝑡𝑒𝑗,𝑘(𝑡),𝑚𝑜𝑣𝑒𝑗,𝑘(𝑡)〉𝑘=1

𝑘 〉 , 𝑂𝑗
𝐓(𝑡) = 𝑓𝑝𝑗(𝛺

𝐓(𝑡)) 

𝑖𝑛𝑝𝑢𝑡𝑗(𝑡) = ℓ𝑗#𝑂𝑗
𝐓(𝑡), (𝛺𝐓(𝑡), .×𝑖=0

𝑛 𝐴𝑖
𝐓(𝑡)/ , 𝛺𝐓(𝑡 + 1)) ∈ 𝐑, 

𝛺𝐓(0) = 𝜔0 and 𝐼𝑗
𝐓(0) = 𝑖0𝑗 holds. 

Although every program ℓ𝑗  induces a corresponding 

agent function 𝐴𝑔𝑒𝑛𝑡(ℓ𝑗 , 𝑀𝑗 , 𝐸)  in E,
 12

 not every agent 

function has an implementation ℓ𝑗 ∈ 𝒫𝑀  in case of a given 

environment E and an architecture 𝑀𝑗 . We can define a 

subset of the set of agent functions 𝑓𝑗  that are 

implementable on a given architecture 𝑀𝑗 and programming 

language 𝒫𝑀  in environment E as follows: 

𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑀𝑗 , 𝐸) = 2𝑓𝑗|∃ℓ𝑗 ∈ 𝒫𝑀 , 𝑓𝑗 = 𝐴𝑔𝑒𝑛𝑡(ℓ𝑗 , 𝑀𝑗 , 𝐸)3.
 13

 

 

4.3 Utility of decentralized agents 
We define a real-valued utility function over state 

trajectories for every agent 𝑖 ∈ *1,2, . . . , 𝑛+ to measure their 

performance in the environment: 𝑈𝑖 : 𝛀
𝐓 → ℝ.

14
 It implicitly 

defines their goal set by their user or Designer. Several (or 

all) agents can have the same user or Designer and thus the 

same utility function. A combination of an environment and 

the utility functions is a decentralized task environment. 
                                                                 

10 The actual percept of agent j should be always updated by 𝑓𝑝𝑗 . 

11 Effectors of agent j should be driven by 𝑓 𝑗  at every instant. 

12 Compared to single-agent bounded-optimality the difference is 

that the implemented agent function depends also on E, because 

the perceptual filter function is now part of agents’ architecture. 

If the environment (e.g. state space) changes then the same 

perceptual filter function may not be valid anymore. 

13 The set of feasible agent functions also depends on E. 

14 Utility of agents may need to be calculated for state trajectory 

prefixes instead of whole trajectories (e.g. for on-line decision 

making). It may be calculated even for any time-interval [t1, t2], 

t2>t1, as the difference between utilities of [0, t2] and [0, t1]. 

Based on the above we can define the value of an agent 

function 𝑓𝑖 in an environment E with other 𝑓−𝑖 agents as the 

expected utility 𝔼,𝑈𝑖(∙)- of state histories they generate:
15

 

 

𝑉𝑖((𝑓𝑖 , 𝑓−𝑖), 𝐸) = 𝔼 0𝑈𝑖 .effects((𝑓𝑖 , 𝑓−𝑖), 𝐸)/1 (7) 

 

The value of agent i in a set E of environments
16

 with a 

probability distribution p over them, and with other 𝑓−𝑖 
agents is the expected value of Eq. 7.

17
 

 

𝑉𝑖((𝑓𝑖 , 𝑓−𝑖), 𝐄) = ∑ 𝑝(𝐸) ∙ 𝑉𝑖((𝑓𝑖 , 𝑓−𝑖), 𝐸)𝐸∈𝐄  (8) 

 

Similarly the value of ℓ𝑖 executed by 𝑀𝑖 in E with other 

𝑓−𝑖 agents can be given simply by looking at the effects of 

the collective agent function 𝑓 = (𝐴𝑔𝑒𝑛𝑡(ℓ𝑖 , 𝑀𝑖 , 𝐸), 𝑓−𝑖). 
 

𝑉𝑖(ℓ𝑖 , 𝑀𝑖 , 𝑓−𝑖 , 𝐸) = 𝑉𝑖((𝐴𝑔𝑒𝑛𝑡(ℓ𝑖 , 𝑀𝑖 , 𝐸), 𝑓−𝑖), 𝐸) (9) 

 

The value of ℓ𝑖 run by 𝑀𝑖 in E with other 𝑓−𝑖 agents is: 

 

𝑉𝑖(ℓ𝑖 , 𝑀𝑖 , 𝑓−𝑖 , 𝐄) = ∑ 𝑝(𝐸) ∙ 𝑉𝑖(ℓ𝑖 , 𝑀𝑖 , 𝑓−𝑖 , 𝐸)𝐸∈𝐄  (10) 

 

4.4 Rationality of decentralized agents 
A perfectly rational agent i in the above setting has an 

agent function 𝑓𝑖  that maximizes 𝑉𝑖((𝑓𝑖 , 𝑓−𝑖), 𝐄)  over all 

agent functions of i, i.e. it has an agent function 𝑓𝑖
∗ such that 

 

𝑓𝑖
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑓𝑖 .𝑉𝑖((𝑓𝑖, 𝑓−𝑖), 𝐄)/  (11) 

 

As we see, other agents’ 𝑓−𝑖  functionality is explicitly 

considered in this decentralized definition of perfect 

rationality. It means that this condition must be met by the 

agents to be perfectly rational in the decentralized case, but 

since 𝑓𝑖
∗  is independent of 𝑀𝑖 , it may be that 𝑓𝑖

∗  is not 

feasible, i.e. 𝑓𝑖
∗  𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑀𝑖 , 𝐸) . For this reason we 

impose optimality constraints better on programs rather 

than agent functions. Agent i with architecture 𝑀𝑖  is 

bounded-optimal for a set E of environments with other 𝑓−𝑖 
agents, if it has an agent program ℓ𝑖

∗ ∈ 𝒫𝑀𝑖  such that 

 

ℓ𝑖
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥ℓ𝑖∈𝒫𝑀𝑖

(𝑉𝑖(ℓ𝑖 , 𝑀𝑖 , 𝑓−𝑖, 𝐄))  (12) 

 

We can notice that ℓ𝑖
∗ is a best-response to 𝑀𝑖, 𝑓−𝑖, and 𝐄, 

but this does not mean that 𝑓−𝑖 (or any part of it) should be 

also a best response like in Nash-equilibrium [Nash, 1951], 

so in this sense we are more general than Nash-equilibrium. 

                                                                 

15 It is an expected utility since the chance agent is also part of 𝑓−𝑖. 
16 All 𝐸 ∈ 𝐄 should have same agents, states, time and actions. 

Only the initial state and the state transition relation may differ. 

17 Observe that because all the elements of E should have the same 

agents, i is present in every 𝐸 ∈ 𝐄. This is a necessary condition. 
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Nonetheless it can be hard to realize such a program. For 

this sake we propose the following relaxation: agent i is 

time- or space-wise average-case asymptotically bounded 

optimal (ABO) in E on 𝑀𝑖 with other 𝑓−𝑖 agents, if it has a 

program ℓ𝑖 ∈ 𝒫𝑀𝑖  such that ∃𝑘  for which for ∀ℓ𝑖
′ 

𝑉𝑖(ℓ𝑖 , 𝑘𝑀𝑖 , 𝑓−𝑖 , 𝐄)  𝑉𝑖(ℓ𝑖
′ , 𝑀𝑖 , 𝑓−𝑖 , 𝐄)  holds. 𝑘𝑀𝑖  denotes a 

variant of 𝑀𝑖, which is 𝑘 times faster (or has 𝑘 times more 

memory), i.e. the program is on the right lines, it only needs 

a better architecture. An initial idea for the realization of 

such programs in general was given in [Kovacs, 2005]. 

According to Def. 13 in [Russell & Subramanian, 1995] 

worst-case ABO could also be defined, but due to limited 

paper extent we omit it now. Still, based on their Def. 15 a 

decentralized notion of universal asymptotic bounded 

optimality (UABO) can be given: agent i is UABO if it has a 

program ℓ𝑖 ∈ 𝒫𝑀𝑖 running on 𝑀𝑖 in E with other 𝑓−𝑖 agents 

for a family of value functions 𝒱𝑖 iff ℓ𝑖 is ABO in E on 𝑀𝑖 
with 𝑓−𝑖 in case of every value function 𝑉𝑖 ∈ 𝒱𝑖. That means 

the program is flexible to (e.g. temporal) variation of the 

utility function, which is important for real-time systems. 

We can extend all of the above decentralized rationality 

concepts (perfect rationality, BO, ABO, UABO) to a non-

empty group of agents 𝐆 ⊆ 𝐍 just by looking at them as one 

collective agent in E. 18  Such a collective agent 𝐆  has a 

collective agent function 𝑓𝐆: 𝛀
∗ →×𝑖∈𝐆 𝐀𝑖 , where 𝑓𝐆(𝛺

𝑡) =

(𝑓𝑖(𝛺
𝑡))

𝑖∈𝐆
 for ∀𝑡 ∈ 𝐓 so that 𝑓𝑖 = 𝐴𝑔𝑒𝑛𝑡(ℓ𝑖 , 𝑀𝑖 , 𝐸)  holds 

for ∀𝑖 ∈ 𝐆 , ∀𝐸 ∈ 𝐄 . The utility 𝑈𝐆  of 𝐆  is an arbitrary 

function of individual utilities, 𝑈𝐆(∙) = 𝑕(〈𝑈𝑖(∙)〉𝑖∈𝐆) , 

where 𝑕:ℝ|𝐆| → ℝ  denotes an arbitrary real-valued 

function. The program, architecture or percept and action at 

time t of the group is a combination of individual programs, 

architectures or percepts and actions at time t of the 

members respectively. This way a group 𝐆 ⊆ 𝐍  can be 

handled just like a single agent, and so the application of 

our above rationality concepts becomes straightforward. 

 

4.5 Connection to the original concept 
The original idea of bounded-optimality is a special case 

of our model if (1) 𝑛 = 1 or (2) 𝐆 = 𝐍. In the first case only 

1 agent is modeled explicitly in a deterministic environment 

either because it is the only one or since other deterministic 

agents’ functionality is integrated into the transition 

function 𝑓𝑒 which corresponds directly to the state transition 

relation 𝐑. In the second case there may be multiple agents, 

but all of them are considered as a single collective agent 

𝐆 = 𝐍 in accordance with the end of Section 4.4. 

In both cases chance agent 0 is either not present or 

deterministic and 𝑓𝑝 = 𝑓𝑝𝐆  holds, so any (even 

implemented) agent function 𝑓  in the original concept 

corresponds to 𝑓  in 𝑓𝐆 = 𝑓 ∘ 𝑓𝑝𝐆 in our model19, i.e. 𝑓 = 𝑓 . 

                                                                 

18 𝐍 𝐆 may include other groups of agents and agent 𝑖 ∈ 𝐍 may 

belong to more groups. 

19 Since in our model agent functions map from state trajectories. 

5. Examples 
 

Now we present a few examples of our model in case of a 

simplified Wireless Sensor Network (WSN) network-layer 

routing scenario [Tanenbaum & Wetherall 2011] (c.f. Fig. 1). 

 

 
Fig.1 Example: geographical (left) and schematic (right) topology of 

an earth tremor measuring wireless sensor network (WSN) 

 

Let’s assume we have 5 static nodes for earth tremor 

measurement with limited amount of energy and 1 base 

station in 6 separate locations connected as in Fig. 1. Our 

goal is that the base receives measured data from every 

location, i.e. we need to design a protocol for nodes to 

realize this. A node can measure, send or aggregate data. 

Measurement takes 0.1 units of time and 1 unit of energy; 

sending takes 1 unit of time and energy. The cost of 

aggregation is negligible. Measurement produces data about 

the location of a node, which can then be either sent to 

another node or aggregated with received data. In case of 

aggregation the accuracy of aggregated data is reduced 

proportionally. Our question is: how should the nodes 

behave to accomplish our goal in the shortest time, with 

minimal overall energy usage and data inaccuracy? 

To answer this question let’s model the situation. Let 

𝐍 = *1,2,3,4,5, B+  be the set of nodes (agents), and let 
𝐀𝑖 = *𝑑𝑜_𝑛𝑜𝑡𝑕𝑖𝑛𝑔,𝑚𝑒𝑎𝑠𝑢𝑟𝑒+ ∪ ({ , 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝐼, 𝐽)𝐼⊂𝐍,𝐼≠∅,𝐽⊆𝐍 𝐼} ×

*𝑠𝑒𝑛𝑑(𝑖, 𝐽, 𝑘)+𝑘∈𝐍:(𝑖,𝑘)∈𝐋,𝐽⊆𝐍)  be the set of possible actions of 

agent 𝑖 = 1. .5, where 𝐋 ⊆ 𝐍 × 𝐍 is the set of directed links 

between nodes as in Fig. 1. 𝐀B = *𝑑𝑜_𝑛𝑜𝑡𝑕𝑖𝑛𝑔+, and set 𝛀 

of states is a special case of Section 4, where 𝛀 = 2𝐏, and 

𝐏 = *𝑑𝑎𝑡𝑎_𝑎𝑡(𝑖, 𝑗)+𝑖,𝑗∈𝐍⋃*𝑒𝑛𝑒𝑟𝑔𝑦_𝑜𝑓(𝑖, 𝑗)+𝑖∈𝐍 *B+,𝑗∈*0..4+  is 

the set of propositions, i.e. states have a logical description. 

The state transition relation R should be according to the 

above informal description, with goal states being 𝛀𝑔 =
*𝜔 ∈ 𝛀|*𝑑𝑎𝑡𝑎_𝑎𝑡(𝑖, B)+𝑖=1..5 ⊆ 𝜔+ ⊆ 𝛀 . Let the utility of 

agents be the same, 𝑈𝑖 = 𝑈 for ∀𝑖 ∈ 𝐍, as follows. 

 

𝑈(𝛺𝐓) = {
0 if 𝛺𝐓(𝑡𝑚 𝑥)   𝛀𝑔

1 𝑇𝑂𝐼(𝛺𝐓)⁄ 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
 (∀𝛺𝐓 ∈ 𝛀𝐓) (13) 

 

Here 𝑇𝑂𝐼(∙) = 𝛼𝑡𝑡(∙) + 𝛼𝑒𝑒(∙) + 𝛼𝑑𝑑(∙)  denotes the 

Trade-off Index [Li et al., 2010] which we seek to minimize, 

and 𝛼𝑡 , 𝛼𝑒, 𝛼𝑑 ∈ ,0,1-  are coefficients of timespan 𝑡(∙) , 

overall energy usage 𝑒(∙) and data inaccuracy 𝑑(∙) of a state 

trajectory. 𝑑(∙) = 𝐷𝑔𝑒𝑛(∙) 𝐷𝑏 𝑠𝑒(∙)⁄  is the proportion of the 

number of data measured in the network, 𝐷𝑔𝑒𝑛(∙), and the 
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number of separate messages received by the base, 𝐷𝑏 𝑠𝑒(∙). 
𝑡𝑚 𝑥 = 𝑚𝑎𝑥(𝐓)  denotes the latest time instant. We could 

extend this model to a probabilistic setting (e.g. packet loss, 

data generation rate, failure) by introducing a chance agent 

0, but for now we decided not to complicate things further. 

Example 1: first let’s assume that initially node 1-5 has 2 

units of energy as in Fig.1, i.e. 𝜔0 = *𝑒𝑛𝑒𝑟𝑔𝑦_𝑜𝑓(𝑖, 2)+𝑖∈𝐍 *B+, 

and say 𝛼𝑡 = 𝛼𝑒 = 𝛼𝑑 = 1. Since every agent has the same 

utility, they should aim for the same goal, i.e. it is rational 

to cooperate. It is easy to see what actions bounded-optimal 

programs *ℓ𝑖+𝑖∈𝐍  should choose by identifying optimal 

collective behaviors, which now are fully aggregating 

(every node should do a measurement at the very beginning 

simultaneously, then wait for farther nodes’ data to arrive, 

aggregate it with its own data, and then send the package 

toward the base along the shortest path as soon as possible). 

That is so because initially every node has only 2 units of 

energy, while measurement and sending both take 1-1 unit. 

So after a measurement a node can send only 1 message. 

Example 2: now if node 4 would have 3 units of energy 

initially, then it would be worth for it to send not only 1, but 

2 messages (e.g. its own data separately), i.e. to do partial 

aggregation to reduce data inaccuracy (from 5 to 2.5). I.e. a 

change of node 4’s resources modifies its bounded-optimal 

program while other BO agents remain fully aggregating. 

Example 3: suppose that 𝛼𝑡 = 𝛼𝑑 = 0 , but 𝛼𝑒 = 1  in 

Example 1. In this case any collective behavior reaching the 

goal would have the same constant 𝑇𝑂𝐼(∙) = 5 ∙ 2 = 10 , 

which makes it impossible to distinguish among them. All 

of them would be bounded-optimal even if they wait for 

arbitrarily long with measurement or sending data. This is a 

limitation of our model: a strong dependence on the 

definition of utility (beside being discrete and allowing only 

finite sets of environments, agents, actions and percepts). 

 

6. Conclusions and future work 
 

In this paper we introduced a decentralized notion of 

bounded-optimality (DBO), compared it with other 

rationality concepts, showed that it is an implicit multi-

agent extension of AIXI, because AIXI converges to BO, 

and connected DBO to the original notion of BO. A few 

examples were given to show the use and limitations of our 

approach, which is globally optimal if other agents’ 𝑓−𝑖 
functionality is given (c.f. Eq. 12), otherwise it is difficult 

to achieve global optimality. There is no central mechanism 

posed upon the collective of agents, i.e. DBO agents can be 

analyzed in pre-existing environments with other users’ 

non-controllable agents (e.g. for assessing the performance 

of our Internet poker agent in a room filled with arbitrary 

competitors). We have also shown that DBO allows direct 

connection of feasible individual and group-level rationality 

in a straightforward way, which wasn’t possible until now. 

In the future we wish to give a formal analysis of the 

asymptotic realization of DBO programs in general; extend 

our model to the continuous case, infinite sets of states, 

agents, actions and percepts; and to conduct a deeper 

investigation of individual and group-level rationality. 
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