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Abstract 

Despite a recent increase of research activity in the field of 
multi-agent planning there is still no de-facto standard for 
the description of multi-agent planning problems similarly 
to the Planning Domain Definition Language (PDDL) in 
case of deterministic single-agent planning. For this reason, 
in this paper a multi-agent extension of the currently latest 
official version of PDDL (3.1) is proposed together with a 
corresponding multi-agent planning track for the 
International Planning Competition (IPC). Our aim is to 
allow for a more direct comparison of planning systems and 
approaches, a greater reuse of research, and a more 
coordinated development in the field. Multi-agent planning 
is fundamentally different from the single-agent case with a 
broad range of applications (e.g. multi-robot domains). Not 
only is it inherently harder because of an exponential 
increase of the number of actions in general, but among 
others also constructive/destructive synergies of concurrent 
actions, and agents’ different abilities and goals may need to 
be considered. The proposed multi-agent extension copes 
with these issues and allows planning both for and by agents 
even in temporal, numeric domains. It implies minimal 
changes to the syntax of PDDL3.1 and the related parsers. 

1. Introduction 

Multi-agent planning (de Weerdt and Clement 2009) is 

about planning by N planning agents for M executing 

agents (or actors, actuators, bodies) situated in a multi-

agent environment, with a broad range of applications. 

Planning and executing agents may be the same or separate 

entities. Executing agents are always situated in the 

environment, while planning agents may be external to it. 

However the most typical scenario is either when an 

external agent is planning for a group of situated agents 

(       ), or when there is a group of autonomous, 

situated planning-and-executing agents (     ). In 

general four cases can be distinguished (cf. Table 1). 

 In cases where     the control of multiple executing 

agents may be centralized or decentralized. A typical case 

of distributed planning is when     agents plan for 

 

 

Table 1: a general categorization of multi-agent planning 

 

    agent. Planning can be done on-line or off-line, and 

agents and environments can correspond to types 

mentioned in Chapter 2 in (Russell and Norvig 2010). 

 Multi-agent planning is inherently harder than single-

agent planning because agents may act independently and 

thus the number of possible actions in general is 

exponential (combinations of individual actions need to be 

considered). Moreover agents may be heterogeneous; they 

may have different abilities, contradicting goals or 

asymmetric beliefs; they may require coordination of plan 

execution, communication or synchronization of 

concurrent actions; constructive/destructive interference of 

joint actions may arise (joint actions may produce different 

effects from the union of effects of their parts); cooperation 

and self-interest, goals of teams and individuals may need 

to be conciliated; and the level of coupling between agents 

is also important. Thus single-agent planning can’t be 

directly applied to multi-agent planning problems. 

 Research in the field of multi-agent planning was 

focusing recently mainly on the following topics. 

 scaling up the performance of planners, e.g. (Shah, 

Conrad, and Williams 2009; Stefanovitch et al. 2011; 

Jonsson and Rovatsos 2011; Kumar, Zilberstein, and 

Toussaint 2011; Spaan, Oliehoek, and Amato 2011); 

 coping with more realistic domains, e.g. (Beaudry, 

Kabanza, and Michaud 2010; Pajarinen and Peltonen 

2011; Zhuo and Li 2011; Wang and Botea 2011; Fox, 

Long, and Magazzeni 2011); 



 improving solution quality, e.g. (Yabu, Yokoo, and 

Iwasaki 2009; Marecki and Tambe 2009); 

 exploiting problem structure (Brafman and Domshlak 

2008; Nissim, Brafman, and Domshlak 2010); 

 utilizing learning, e.g. (Martins and Demiris 2010; 

Zhuo, Muñoz-Avila, and Yang 2011); 

 reasoning about agents’ knowledge, e.g. (Baral et al. 

2010; Baral and Gelfond 2011); 

 and addressing agents’ self-interest, e.g. (Brafman et al. 

2009; Crosby and Rovatsos 2011). 

The problem is that despite all this progress there is still no 

standard description language for multi-agent planning 

problems allowing a more direct comparison of systems 

and approaches and a greater reuse of research similarly to 

the Planning Domain Definition Language (PDDL) 

(McDermott et al. 1998) in single-agent planning, a base 

language of the International Planning Competition (IPC). 

 Naturally there were some previous approaches (cf. 

Section 2.2), but none of these languages became de-facto 

standards probably partly because of their limitations. On 

the other hand PDDL is not enough to describe multi-agent 

planning problems in general (e.g. possibly different goals 

and utilities of different agents, synergy of joint-actions). 

 To address these issues, in this paper a multi-agent 

extension of PDDL3.1 is proposed, which is currently the 

latest official version of PDDL (Helmert 2008), and based 

on this extension, ideas for a corresponding multi-agent 

planning track are also proposed for the upcoming IPCs. 

 The structure of the paper is as follows: after Section 1 

discusses the motivation behind the proposed approach, 

Section 2 examines its background; Section 3 presents the 

main result of the paper, the formal syntax and informal 

semantics of the proposed multi-agent extension of 

PDDL3.1 and an example; Section 4 discusses ideas for a 

multi-agent planning track at the upcoming IPCs based on 

the proposed extension; finally Section 5 concludes the 

work and outlines some directions for future research. 

2. Background 

This section examines some of the considerations and 

decisions behind the proposed multi-agent extension of 

PDDL3.1. Namely it discusses (1) some minor corrections 

of PDDL3.1’s syntax, (2) previously published multi-agent 

planning problem description languages, and (3) 

requirements of an appropriate multi-agent extension. 

2.1. Corrections of PDDL3.1’s syntax definition 

Since PDDL3.1 was chosen as the basis of the multi-agent 

extension, a complete and correct BNF (Backus-Naur 

Form) definition of its syntax becomes necessary, which 

was made available in (Kovacs 2011). It makes mainly the 

following minor corrections to previously published BNF. 

 The default type (of objects) in PDDL is object, but 

until now this was not made explicit in the grammar. 

Accordingly the next rule should be added to the BNF. 

 <primitive-type> ::= object 

 Similarly the definition of the built-in 2-ary = predicate 

in case of the :equality requirement was also left out 

from previous definitions of PDDL. To correct this, the 

following rule needs to be added to the BNF. 

 <atomic formula(t)> ::=:equality (= t t) 

 Since PDDL2.1 (Fox and Long 2003) function-

expressions in the domain description allowed only 2-

argument numeric operators, although in the problem 

description, in the definition of metric they could be 

also multi-argument. To fix this, the following two 

production rules should be added to the grammar. 

 <f-exp>  ::=
:numeric-fluents

 

     (<multi-op> <f-exp> <f-exp>
+
) 

 <f-exp-da> ::=
:numeric-fluents

 

     (<multi-op> <f-exp-da> <f-exp-da>
+
) 

 The definition of non-terminals <name> and <number> 

was underspecified until now, so it is suggested to 

define them more precisely, for example as shown in 

the Appendix in (Teichteil-Königsbuch 2008). 

 The following rule would allow durative actions to 

have non temporally annotated numeric effects, which 

would contradict the specification of durative actions in 

(Fox and Long 2003). Thus it needs to be deleted. 

 <da-effect> ::=
:numeric-fluents

 

      (<assign-op> <f-head> <f-exp-da>) 

 The following rule is present in the BNF of PDDL2.1 

and PDDL3.0 (Gerevini and Long 2005). The problem 

with it is that <a-effect> is not defined anywhere, so 

<a-effect> should be changed to <cond-effect>. 

Otherwise <p-effect> or <effect> may also be 

considered, but the former would not allow 

conjunctions of propositions, while the latter would 

overly complicate the syntax and allow semantically 

ambiguous constructs (e.g. nested conditional effects). 

 <timed-effect> ::= 

      (at <time-specifier> <a-effect>) 

 Production rules for non-terminals <assign-op-t> 

and <f-exp-t> are referenced, but missing from the 

BNF since PDDL3.0 in the form they were given in the 

BNF of PDDL2.1. They should be included again. 

 The following rule defines the syntax of derived 

predicates since PDDL2.2 (Edelkamp and Hoffmann 

2004a). The problem with it is that there is no mention 

of the name of the derived <predicate>. Thus instead 

of <typed list (variable)> (Edelkamp and 

Hoffmann 2004b) would suggest <atomic 

formula(term)>, which is better, since it includes the 



name of the derived predicate, but then there are no 

argument-types in the head of the derived-rule as one 

might expect in case of :typing. To include both the 

name of the predicate and the type of its arguments 

<atomic formula skeleton> should be used 

instead of <typed list (variable)> below. 

 <derived-def> ::= 

     (:derived <typed list (variable)> <GD>) 

 The following rule is present in the initial conditions 

part of the problem description since PDDL2.1, but it is 

incorrect, since <f-head> may be lifted, although it 

should be grounded. To fix this <basic-function-

term> can be used instead of <f-head> below. 

 <init-el> ::=
:numeric-fluents

 

          (= <f-head> <number>) 

 PDDL3.0 introduced plan constraints via modal 

operators at the 5
th

 IPC in 2006, but they were not 

allowed to be nested at the time of the competition. 

Nonetheless this restriction could be lifted by using 

production rules provided in Section 3 in (Gerevini and 

Long 2005). The problem with those rules, which are 

still part of the BNF, is that they do not allow a normal 

end to the recursive nesting of modal operators. This 

needs to be corrected, e.g. as given in (Kovacs 2011). 

2.2. Previous approaches 

Previous multi-agent planning problem description 

languages provided valuable experience and ideas for the 

design of the proposed multi-agent extension of PDDL3.1. 

In the following an overview of these languages is given. 

2.2.1. Non-deterministic Agent Domain Language 

The Non-deterministic Agent Domain Language (NADL) 

introduced in (Jensen and Veloso 2000) is suitable for 

describing multi-agent planning domains to a limited 

extent. It could be seen a predecessor of numeric fluents of 

PDDL2.1, but its syntax differs significantly from PDDL. 

 In NADL each explicitly given agent is a collection of 

actions that have preconditions and effects (numeric and/or 

propositional formulas). Actions can also refer to state 

variables they constrain. These constraints are then used in 

planning time to avoid joint actions that have destructive 

synergetic effects, i.e. which constrain an overlapping set 

of state variables (e.g. actions that assign different values 

to a numeric fluent). Constructive interferences on the 

other hand are not modeled. This makes for a relatively 

simple model of interactions among concurrent actions. 

 However NADL allows a distinction between system 

and environment agents, the latter being non-controllable 

and thus responsible for possible non-deterministic effects. 

 NADL’s model of time is discrete. Actions have equal 

duration and each agent can execute only one action at a 

time. All agents share the same goal. Later in (Bowling, 

Jensen, and Veloso 2002) this was extended to multiple 

agents having possibly different goals, but no 

accompanying description language was provided, and the 

model was applicable only to propositional domains. 

2.2.2. Concurrent interacting actions in STRIPS 

This multi-agent extension of STRIPS (Boutilier and 

Brafman 2001) provides a more elaborate way to model 

interactions of concurrent actions than NADL based on the 

idea of concurrent action lists. Essentially the same (but a 

bit simplified) idea is presented in Section 11.4.1 in 

(Russell and Norvig 2010). Concurrent action lists refer to 

state variables and concurrently executed actions in form 

of separate lists attached to actions’ preconditions or to 

conditional effects’ conditions. In Section 2.2 in (Boutilier 

and Brafman 2001) they are described precisely as follows. 

If an action schemata A’ appears in the concurrent 
action list of an action A then an instance of schema 
A’ must be performed concurrently with action A in 
order to have the intended effect. If an action schema 
A’ appears negated in the concurrent action list of an 
action A then no instance of schema A’ can be 
performed concurrently with action A if A is to have 
the prescribed effect. 

This is a generic and intuitive way to model interference of 

concurrent actions, however the implicit quantifiers over 

actions are a bit restrictive and the scope of quantification 

(the whole list) is also a bit broad. This could be improved 

by having explicit quantification, and including reference 

to concurrent actions directly in (pre)conditions. 

 Agents responsible for the execution of actions are 

referred to in form of variables (always the first parameter 

of an action). The only issue with this is that there is no 

typing, and thus no distinction between agents and objects. 

Effectively every object can be considered an agent (e.g. a 

planner may try to instantiate a table object in the first 

variable of a pickup action, which wouldn’t make much 

sense). Otherwise the language is just like STRIPS: time is 

discrete, states are propositional. Moreover, each agent can 

execute only one action at a time (no parallel or partially 

ordered actions are allowed for one agent), and all share 

the same goal, i.e. only cooperative agents are modeled. 

 Despite all these limitations this language shows that a 

proper multi-agent extension can be achieved with minimal 

changes to a single-agent base language (STRIPS), and 

that the changes implied to planners may also be limited. 

2.2.3. Multiagent Planning Language 

Multiagent Planning Language (MAPL) was presented in 

(Brenner 2003a; 2003b) after interest in such an extension 

was coined in the Call for Contributions of the Workshop 

on PDDL at the ICAPS-03 conference. However there was 

no multi-agent planning track at any IPC ever since or 

before. Understanding all the reasons is beyond our scope, 

but some observations can still be made regarding MAPL. 



 MAPL builds upon PDDL2.1 and thus it includes 

PDDL2.1’s main features (typing, numeric fluents, and 

durative actions), but at the same time it also makes quite 

drastic changes to the base language, which may be partly 

responsible for MAPL’s limited success. Among others it 

abandons the closed-world assumption and instead of 

predicates it introduces n-ary state variables (which may be 

even unknown). This is done partly to cope with partial 

observability arising from multiple agents operating in the 

environment, but it also gives rise to the question, if e.g. 

actions’ preconditions reflect an agent’s knowledge 

necessary to execute the action, or states of the “physical” 

environment in which the action can be executed? In our 

interpretation the latter is closer to the design philosophy 

of PDDL, since “PDDL is intended to express the ‘physics’ 

of a domain” (McDermott et al. 1998). Moreover object-

fluents added in PDDL3.1 allow for a very similar 

functionality without significant changes (to PDDL3.0). 

 MAPL also introduces a qualitative model of time, 

which was introduced in PDDL3.0 in a more concise form 

(of modal operators). This was necessary to coordinate 

multiple agents’ behavior via speech acts: fixed meta-

actions, whose definition is not part of the description. 

 Such coordination was necessary to synchronize actions 

or events in general with initially uncertain duration which 

is again a novelty of MAPL intended to allow greater 

realism and flexibility. An additional control function (for 

each agent) decides whether this duration is controlled by 

the environment or by the agent. Similarly there is also a 

responsibility function, which maps state variables to 

agents to represent which agent is responsible over a state 

variable. The mentioned additional functions are not part 

of the MAPL description, yet the definition of planning 

problems includes the control function for example, which 

may be confusing. These additions are effectively advices 

to the planner, which contradicts original intentions again: 

“We have endeavored to provide no advice at all as part of 

the PDDL notation” (McDermott et al. 1998). 

 Despite the above additions MAPL still handles the 

interaction of simultaneous actions similarly to NADL. 

“Two events are mutually exclusive (mutex) if one affects 

a state variable assignment that the other relies on or 

affects” (Brenner 2003a). This model avoids destructive 

synergetic effects, but isn’t considering constructive ones. 

 In MAPL every agent may face a different planning 

problem, but all of them eventually share the same goals. 

In actions, agents are represented with variables like in 

Section 2.2.2, but they are handled just like any other 

parameter, which implies further questions, e.g.: Can an 

action have more/no agent-parameters? Should the actor 

always be the first? Can an agent inherit an action defined 

for a parent-type? Can actions be redefined for children? 

 Such questions may become important when a planner is 

being implemented and so they should be addressed 

together with a complete syntax definition at least. The 

reception of MAPL may have also been influenced by that 

it is not just a new requirement (as derived predicates or 

numeric fluents), but it is a new language, which is again 

not in accordance with some intentions behind PDDL, e.g. 

as stated in the Preface of the Proceedings of the Workshop 

on PDDL at ICAPS-03: “how the...development of PDDL 

can be managed within the community to ensure that it 

does not...fork into multiple incompatible directions...”. 

2.2.4. Concurrent STRIPS 

Concurrent STRIPS (CSTRIPS) was proposed in (Oglietti 

and Cesta 2004). It is classic STRIPS with the addition of 

concurrent threads, which are explicitly declared, fixed 

subsets of action schemas. However they are defined only 

at model level without exact syntax (not even in examples). 

 Each agent and controllable environmental process can 

have a separate thread. The planner should find a sequence 

of fully instantiated actions for each thread based on their 

respective action-subsets to produce a joint-plan that 

achieves a common set of goals. While the simplicity of 

this approach may be tempting, it is not enough to describe 

challenging multiagent problems (e.g. action interactions). 

2.2.5. MA-STRIPS 

MA-STRIPS (Brafman and Domshlak 2008) is a multi-

agent extension of STRIPS. Its idea is similar to CSTRIPS: 

partition different agents’ grounded actions into disjoint 

subsets (corresponding to threads in Section 2.2.4). This 

however may raise implementation-level questions like: Is 

it possible that different instantiations of the same 

operator-schema belong to different agents? If yes, then 

how should we represent this exactly, syntactically? 

 Because of the similarity with CSTRIPS, eventually the 

same conclusions hold here too, but it must be noted, that 

the work of (Brafman and Domshlak 2008) focused mainly 

not on the subtleties of describing multi-agent planning 

problems, but given MA-STRIPS, a simple description 

language, they rather set out to formalize and efficiently 

exploit loosely coupled agents. They provided formal 

results to quantify the notion of agents’ coupling and a 

centralized multi-agent planning algorithm that was shown 

to be polynomial in the size of the planning problem for 

fixed coupling levels. Their notions of internal/public 

atoms/actions and the agent interaction digraph could be 

extended to more complex descriptions straightforwardly, 

but the extension of their planning algorithm and the 

implied complexity results relying on these notions could 

be less trivial (e.g. extending them to actions with 

interacting effects, continuous time or competing goals). 

2.3. Requirements of a multi-agent extension 

Based on the observations made in previous sections the 

requirements of a multi-agent extension of PDDL3.1 can 

be summarized as follows. In general it should be... 



 Additional: a new, additional, optional extension (a 

PDDL-requirement), not a completely new language; 

 Minimalistic: introduce only minimal changes to the 

base language and try to minimize the modifications 

implied to existing planning systems and approaches; 

 Backward compatible: compatible with every existing 

extension (PDDL-requirement) in the official language; 

 Forward compatible: designed to be easily integrated 

with anticipated future extensions (e.g. partial 

observability, stochastic effects, events, processes); 

 General: useful in all four general categories of multi-

agent planning shown in Table 1; 

 Conforming: in accordance with the design philosophy 

of the language, i.e. neutrally expressing the “physics” 

of the domain and including no advice for planners; 

 Compact: the extended problem- and domain-

description should include every model-level detail; 

 Well-defined: has a complete and accessible definition 

of formal syntax and at least informal semantics; 

In particular the multi-agent extension should allow... 

 Modeling concurrent actions with interacting effects; 

 Modeling competitive, cooperative or mixed domains; 

 Agents having possibly different actions/goals/utilities; 

 Straightforward association of agents and actions; 

 Distinction between agents and non-agent objects; 

 Inheritance/polymorphism of actions/goals/utilities; 

 Different agents in different problems of a domain; 

 Modeling full- and/or partial-observability; 

 Optional use of any combination of PDDL3.1 features. 

Optional communication of agents can be modeled by 

PDDL (by defining communicative actions in the domain), 

so communication can be realized in execution time. 

Similarly agents’ knowledge can be represented with 

domain-specific predicates and/or by using a PDDL-

extension allowing for partial observability, if necessary. 

The proposed multi-agent extension should be modular, 

i.e. useable with such other extensions, e.g. partial-

observability or probabilistic-effects. But in this paper now 

we focus only on extending PDDL3.1 to multiple agents. 

3. A multi-agent extension of PDDL3.1 

In the following the main result of this paper, a multi-agent 

extension of PDDL3.1 (MA-PDDL) is presented based on 

the requirements gathered in Section 2.3. First the syntax 

and semantics are given, then an example and a discussion 

of solutions. The section should be best read in conjunction 

with the BNF of PDDL3.1, e.g. in (Kovacs 2011). 

3.1. Domain description 

A new :multi-agent PDDL-requirement is introduced 

to indicate the presence of multiple agents in the domain. 

Agents are considered objects (or constants) that may have 

associated actions, goals and utilities (metric definitions). 

I.e. the idea is to associate actions, goals and utilities 

directly to objects and/or types (say, sets of objects). 

 The necessary changes implied to the grammar first 

include the following slight modification of the production 

rule defining non-durative actions in the BNF of PDDL3.1. 

The only difference is the addition of an optional part for 

the associated agent(s). It can be used only if the :multi-

agent requirement is declared, and also implies addition 

of the following rules for <agent-def> to the grammar. 

This means that agents can be associated to an action in 

form of constants or variables. If :typing is declared, 

then they can be given in form of types or typed variables 

too. If a type or a variable is given, then the action-schema 

is associated to every object whose type is a subset of the 

given type or the type of the variable (since in PDDL types 

correspond to sets of objects). Without an explicitly 

declared type the agent-variable is assumed to have type 

object by default (corresponding to the set of every 

object). In this case every object is eventually considered 

an agent, since those and only those objects are considered 

agents, which have at least one associated action-schema. 

If agents are referred to with variables, we suggest to use 

types to enable distinction between agents and non-agent 

objects. Furthermore it is required that the names of objects 

and primitive types are unique and not overlapping, and 

that every object has only one directly associated type. 

 If the agent is referenced with a variable in the action-

schema, then this variable may appear in the body of the 

action-schema (in conditions and effects) just like any 

other action-parameter, and thus the name of the agent 

variable is required to be different from parameter-names. 

 If the :multi-agent requirement is declared, but the 

agent-reference is not given in the action-schema, then the 

schema is associated to the type object by default. 

 Now in case of :typing, given a type-hierarchy, an 

agent-object with a given type is associated with actions 

that are either associated to it directly, or directly to its 

type, or directly to an ancestor-type (superset) of its type. 

This is called inheritance of actions. Polymorphism on the 

other hand works as follows: an action with the same name 

and arity (number of arguments) can be redefined for 

descendants, i.e. an action directly associated to a type 

redefines any action directly associated to its ancestor type 

(superset), if the name and arity of the actions are equal. 



An action associated directly to an object (constant) 

redefines any actions with the same name and arity directly 

associated to the type of the object, or which are inherited. 

An agent-object or type cannot have two or more directly 

associated action-schemas with the same name and arity. 

Therefore association of actions to agents is unambiguous. 

 Beyond typing an even more important aspect of a 

proper multi-agent extension is how interaction of 

concurrent (joint) actions works. For the proposed 

extension a generalization of concurrent action lists 

presented in Section 2.2 in (Boutilier and Brafman 2001) is 

proposed. The idea is simply to allow references to 

concurrent actions not only in a special construct, such as 

the concurrent action list, but also among the preconditions 

of actions and the conditions of actions’ conditional 

effects. Interweaving the content of concurrent action lists 

with conditions this way allows for a more convenient and 

compact design. The proposed idea is similar to 

“progressive predicates” suggested in Section 2.1 in 

(Bacchus 2003), except that we now refer directly to 

ongoing actions, and not to facts. This also implies that the 

name-arity pairs of fluents (predicates, numeric and object 

fluents) need to be unique, and cannot overlap with the 

name-arity pairs of actions (durative or non-durative). 

 The above considerations imply the addition of the 

following 4 new production rules to the grammar. 

This means that if the :multi-agent requirement is 

declared, a goal description, <GD> is allowed to refer also 

to ongoing actions (similarly to state fluents). The exact 

form of reference to concurrent actions is the following. 

The first argument (term) should be always the agent 

executing the referenced action, while further arguments 

should be the actual parameters of that action in their 

respective order. If during execution a grounded reference 

to an action A needs to be positive for the conditions of a 

grounded action B to hold, then this means that A needs to 

be executed in parallel with B for B’s respective effects to 

take place. Otherwise, if the grounded reference to A needs 

to be negative for conditions of B to hold at a given time 

during execution, then A should not be executed in parallel 

with B for B’s respective effects to take place at that time. 

 The exact time(interval) when A should or should not be 

under parallel execution with B is the same time(interval), 

when a unique “progressive” proposition PA corresponding 

to A should or should not be true respectively for B’s 

conditions to hold were all occurrences of A replaced with 

PA in the grounded PDDL-description and thus in the plan. 

Now this depends only on the semantics of PDDL3.1. 

 It must be noted though that the consistency of a joint-

action (where all member actions either refer to other 

members in their conditions, or they are referred to by at 

least one of them) should be more relaxed than the 

traditional definition of mutex actions. For non-durative 

actions, similarly to Definition 2 and 3 in (Boutilier and 

Brafman 2001) we only require that the members of the 

joint-action have consistent joint-(pre)conditions and joint-

effects in a given state, i.e. interference among effects and 

(pre)conditions is not considered. In case of durative 

actions the consistency check should focus on the exact 

time instants and intervals when (pre)conditions need to 

hold, and when effects take place during scheduled 

execution. That is in this case it may happen that the 

(pre)conditions of a member of a durative joint-action are 

inconsistent with the effects of another member, which 

may imply a re-scheduling of these actions by the planner. 

The way this is achieved is beyond the scope of this paper. 

A consistent joint-plan consists of consistent joint-actions. 

 Durative actions of multiple agents are defined similarly 

to non-durative actions. The rule for <durative-

action-def> needs to be slightly modified as follows. 

This means that we can now associate agents to durative 

actions just like we did to non-durative actions. 

 Many further additions could be made to the grammar 

of the domain. A minimal, but useful one is the following. 

The built-in function num calculates the number of actions 

under execution (during execution) for every instantiation 

of a list of variables where given conditions hold. This 

small extension adds great expressivity. 

3.2. Problem description 

The problem description needs to be extended slightly to 

cope with possibly different goals and utilities of agents. 

This requires modification of the problem definition first. 

The only change here is that now at least one <goal> and 

zero or more <metric-spec> structures are required. 



Goals can be empty (always true), while utilities don’t 

need to be present when :numeric-fluents is declared. 

 In case of multiple agents, goals can be captured by the 

addition of the following production rule to the grammar. 

The only essential change here compared to PDDL3.1 is 

the addition of the agent-reference. If it refers to the agent 

with a variable, then the variable may appear in the goal 

formula. Goal conditions are prefixed with :condition to 

emphasize them more. Utilities need a similar addition. 

The declaration of the :multi-agent requirement is 

necessary for the use of the above two structures, but we 

can also use default PDDL3.1 goals and metric structures, 

which would mean – similarly to the case of actions – that 

goals and utilities are associated with the object type, i.e. 

with every agent-object. Above we see that goal and utility 

schemas can be associated directly to objects (or constants) 

or types similarly to actions, although one object or type 

can have only one directly associated goal or utility 

schema in contrary to actions. But inheritance and 

polymorphism are the same as in case of actions. Therefore 

the assignment of goals/utilities to agents is unambiguous. 

 One last addition is necessary to the grammar to allow 

agent-variables in hitherto grounded metric expressions. 

This way now we can include fluents in connection with 

agents in the definition of their utility, but naturally the 

value of metric needs to remain numeric. Not all agents 

have to have a utility though, but all of them need to have 

(at least an inherited) goal, which may be the same for all 

of them or different depending on the problem at hand. 

 An important topic is still left untouched: For which 

agents is a planner planning? Which object(s) represent(s) 

the planner in the description? Should it be represented? 

 The answer depends on how the MA-PDDL description 

is used: whether the planner is external or situated; whether 

planning is centralized or decentralized, whether it is 

distributed; or whether planners share the same MA-PDDL 

description. The association of the planner and agent(s) can 

vary from run-to-run (similarly to how an agent may 

assume different players’ role during different plays of the 

same game (von Neumann and Morgenstern 1944)). This 

meta-information, the connection of planners and agent-

objects is therefore not included in the description. It is the 

responsibility of the planner to know for whom it plans, 

and possibly which object(s) represent(s) it in the problem. 

So it is suggested to planner applications to have 1-2 more 

inputs carrying this information beside other parameters. 

3.3. Example 

The following simple example aims to give a basic idea of 

how the proposed multi-agent extension works. A minimal 

set of PDDL features is used to illustrate important aspects, 

such as cooperation, joint-actions, constructive synergy. 

 The only action-schema in the domain (lift) is 

associated with type agent, which is a direct descendant 

(subset) of object; lift allows an agent to lift the table 

(the only domain-constant of type object), but only if it is 

not yet lifted, if the agent is at the table, and if there is at 

least one other agent at the table lifting it simultaneously. 

The related problem description defines 2 agents: a and b, 

both being at the table, and having the same goal: the 

table being lifted. Their goal is defined for type agent. 

The solution requires cooperation from a and b, since they 

have the same goal and the only way for them to achieve it 

is to coordinate their actions. The only, trivially simple 

solution is when both lift the table starting at time 0: 

[0:(lift a) 0:(lift b)]. Because of the lack of 

options the same plan should arise in case one or more 

external rational planners plan for a and b. 

 When a planner chooses a grounded lift action for 

execution in a given state, it can assert a corresponding 

unique (lift ·) fact to the state, and check what 

implications this has on the applicability of other chosen 

actions. If they remain executable, it may continue, 

otherwise it may retract (lift ·) from the state, and 

choose different actions. This should work also in general. 

 In case of decentralized planning, i.e. when different 

planners plan for different agent-objects, but all planners 

share the same MA-PDDL description (which is common 

knowledge among them), then solution-plans should not be 

fully ordered sequences of temporally annotated actions 

anymore. They should be rather strategies (for each agent) 

that prescribe actions to observation-histories of the agent. 

A joint plan in this case is a combination of such strategies. 

 In our case, since partial observability isn’t introduced 

yet as another extension, the planning environment is fully 

observable, i.e. observations are complete descriptions of 

new states and action-combinations that produced them. 

 We should also note that though an MA-PDDL 

description may be converted to an extensive- or normal-

form game, it would be a much less detailed description. 



 Two issues arise in the decentralized case: (1) coping 

with durative strategies; and (2) both in durative and non-

durative case it is not trivial how to compactly represent 

strategies, especially in case of large state-spaces. 

 However both issues can be solved (1) by reasonably 

restricting the scheduling of durative actions (e.g. an agent 

could schedule its next actions only when an other action 

starts/ends); and (2) by using a client-server architecture 

with planners as clients. Planners could receive new 

observations for relevant time-instants (see previous issue) 

from the Server and answer with their actual actions. 

4. A multi-agent planning track at the IPC 

In this section a short proposal is made for a multi-agent 

planning track at the forthcoming IPCs based on the multi-

agent extension of PDDL3.1 presented in Section 3. 

 There are 3 organizational steps (similarly to current 

IPCs): (1) preparation; (2) competition; and (3) evaluation. 

During the preparation phase the following should be 

made public: a Call for Submissions; detailed rules of the 

competition/evaluation; any source-code and additional 

applications with documentation; a detailed manual/article 

about MA-PDDL; and domains/problems for participants. 

 For the competition the participants would need to 

submit planners (sources, binaries) and papers about them. 

The competition itself could consist of 2 fully-observable 

sub-tracks at first: (2a) when     external planner plans 

for     situated agents, and (2b) when planning is done 

by       situated planners. In both cases problems 

can be categorized according to 3 properties: whether (i) 

all agents’ goals/utilities are the same; (ii) if there are 

utilities at all; and (iii) if durative actions are allowed. If in 

(2b) we do not allow durative actions, then altogether 12 

categories of multi-agent competition emerge. 

 When (i) holds, problems are cooperative. Otherwise 

they are competitive. The latter case can be divided into 

sub-cases, where each agent has different goals/utilities, 

and where only agents in teams have the same goal/utility. 

 It should be noted that the easiest category is sub-track 

(2a) when (i) holds, but this is still harder than single-agent 

planning e.g. because of possible constructive synergies. 

 In each of the 12 categories approx. 12-14 domains 

could be present each with around 20 related problems. 

The evaluation in case of sub-track (2a) could measure 

normalized quality of joint-plans and planning-time per 

problem, and the number of solved problems per domain 

for each planner. The sum of these scores could decide the 

winner of sub-track (2a). But it should be added, that the 

quality of plans depends mostly on (i). If (i) and (ii) hold, 

then quality is defined by utility, but if (ii) is not true, then 

quality can be the makespan of plans. If (i) is false, then 

the number of agents whose goal was achieved, or the sum 

of achieved sub-goals or of plans’ makespan can be used. 

 The evaluation of planners in sub-track (2b) could be 

similar to evaluation at the probabilistic track at IPC-2011. 

As mentioned in Section 3.3, a client/server architecture 

could be used with planner-clients receiving observations 

from a server and replying to it with their actions. The 

server could wait for planners’ actions at each step for a 

given time. In case of time-out (e.g. after 30 seconds/step) 

the no-op action could be chosen for late planners. 

 Initially the server should broadcast the MA-PDDL 

description, and then for each problem and permutation of 

planner-agent assignments it could execute e.g. 30 runs to 

determine planners’ average fitness for each assignment 

(since some may make non-deterministic decisions). The 

sum of these averages over assignments could be the score 

of a planner for a problem, and thus the sum of scores over 

problems and domains could determine the winner of sub-

track (2b). If (ii) holds, then planners’ fitness could be the 

individual utility of their agent. Otherwise it could be the 

maximum of its simultaneously achieved sub-goals. 

5. Conclusions 

A multi-agent extension of PDDL3.1 was proposed with a 

corresponding multi-agent planning track for the IPC to 

enable more direct comparison of multi-agent planners and 

approaches and a greater reuse of research. Planning by 

and for agents is both possible. The syntax and semantics 

of the extension were provided together with an example. 

A few corrections to the BNF of PDDL3.1 were also listed 

and an overview of current research in the field was given. 

 Future research could focus on providing more detailed, 

possibly formal semantics; planning algorithms; more 

application domains (e.g. multi-robots, such as RoboCup, 

or networking problems, such as efficient routing with 

limited resources). The addition of partial observability (in 

a separate, modular PDDL-requirement) would be primary, 

but probabilistic effects and events/processes may also be 

considered to allow treatment of more realistic problems. 

The corresponding multi-agent IPC track could also be 

developed further to narrow the gap between theory and 

practice and to advance the field of multi-agent planning. 
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