

A Multi-Agent Extension of PDDL3.1

Daniel L. Kovacs

Budapest University of Technology and Economics
Budapest, HUNGARY
dkovacs@mit.bme.hu

Abstract

Despite a recent increase of research activity in the field of
multi-agent planning there is still no de-facto standard for
the description of multi-agent planning problems similarly
to the Planning Domain Definition Language (PDDL) in
case of deterministic single-agent planning. For this reason,
in this paper a multi-agent extension of the currently latest
official version of PDDL (3.1) is proposed together with a
corresponding multi-agent planning track for the
International Planning Competition (IPC). Our aim is to
allow for a more direct comparison of planning systems and
approaches, a greater reuse of research, and a more
coordinated development in the field. Multi-agent planning
is fundamentally different from the single-agent case with a
broad range of applications (e.g. multi-robot domains). Not
only is it inherently harder because of an exponential
increase of the number of actions in general, but among
others also constructive/destructive synergies of concurrent
actions, and agents’ different abilities and goals may need to
be considered. The proposed multi-agent extension copes
with these issues and allows planning both for and by agents
even in temporal, numeric domains. It implies minimal
changes to the syntax of PDDL3.1 and the related parsers.

1. Introduction

Multi-agent planning (de Weerdt and Clement 2009) is

about planning by N planning agents for M executing

agents (or actors, actuators, bodies) situated in a multi-

agent environment, with a broad range of applications.

Planning and executing agents may be the same or separate

entities. Executing agents are always situated in the

environment, while planning agents may be external to it.

However the most typical scenario is either when an

external agent is planning for a group of situated agents

(), or when there is a group of autonomous,

situated planning-and-executing agents (). In

general four cases can be distinguished (cf. Table 1).

 In cases where the control of multiple executing

agents may be centralized or decentralized. A typical case

of distributed planning is when agents plan for

Table 1: a general categorization of multi-agent planning

 agent. Planning can be done on-line or off-line, and

agents and environments can correspond to types

mentioned in Chapter 2 in (Russell and Norvig 2010).

 Multi-agent planning is inherently harder than single-

agent planning because agents may act independently and

thus the number of possible actions in general is

exponential (combinations of individual actions need to be

considered). Moreover agents may be heterogeneous; they

may have different abilities, contradicting goals or

asymmetric beliefs; they may require coordination of plan

execution, communication or synchronization of

concurrent actions; constructive/destructive interference of

joint actions may arise (joint actions may produce different

effects from the union of effects of their parts); cooperation

and self-interest, goals of teams and individuals may need

to be conciliated; and the level of coupling between agents

is also important. Thus single-agent planning can’t be

directly applied to multi-agent planning problems.

 Research in the field of multi-agent planning was

focusing recently mainly on the following topics.

 scaling up the performance of planners, e.g. (Shah,

Conrad, and Williams 2009; Stefanovitch et al. 2011;

Jonsson and Rovatsos 2011; Kumar, Zilberstein, and

Toussaint 2011; Spaan, Oliehoek, and Amato 2011);

 coping with more realistic domains, e.g. (Beaudry,

Kabanza, and Michaud 2010; Pajarinen and Peltonen

2011; Zhuo and Li 2011; Wang and Botea 2011; Fox,

Long, and Magazzeni 2011);

 improving solution quality, e.g. (Yabu, Yokoo, and

Iwasaki 2009; Marecki and Tambe 2009);

 exploiting problem structure (Brafman and Domshlak

2008; Nissim, Brafman, and Domshlak 2010);

 utilizing learning, e.g. (Martins and Demiris 2010;

Zhuo, Muñoz-Avila, and Yang 2011);

 reasoning about agents’ knowledge, e.g. (Baral et al.

2010; Baral and Gelfond 2011);

 and addressing agents’ self-interest, e.g. (Brafman et al.

2009; Crosby and Rovatsos 2011).

The problem is that despite all this progress there is still no

standard description language for multi-agent planning

problems allowing a more direct comparison of systems

and approaches and a greater reuse of research similarly to

the Planning Domain Definition Language (PDDL)

(McDermott et al. 1998) in single-agent planning, a base

language of the International Planning Competition (IPC).

 Naturally there were some previous approaches (cf.

Section 2.2), but none of these languages became de-facto

standards probably partly because of their limitations. On

the other hand PDDL is not enough to describe multi-agent

planning problems in general (e.g. possibly different goals

and utilities of different agents, synergy of joint-actions).

 To address these issues, in this paper a multi-agent

extension of PDDL3.1 is proposed, which is currently the

latest official version of PDDL (Helmert 2008), and based

on this extension, ideas for a corresponding multi-agent

planning track are also proposed for the upcoming IPCs.

 The structure of the paper is as follows: after Section 1

discusses the motivation behind the proposed approach,

Section 2 examines its background; Section 3 presents the

main result of the paper, the formal syntax and informal

semantics of the proposed multi-agent extension of

PDDL3.1 and an example; Section 4 discusses ideas for a

multi-agent planning track at the upcoming IPCs based on

the proposed extension; finally Section 5 concludes the

work and outlines some directions for future research.

2. Background

This section examines some of the considerations and

decisions behind the proposed multi-agent extension of

PDDL3.1. Namely it discusses (1) some minor corrections

of PDDL3.1’s syntax, (2) previously published multi-agent

planning problem description languages, and (3)

requirements of an appropriate multi-agent extension.

2.1. Corrections of PDDL3.1’s syntax definition

Since PDDL3.1 was chosen as the basis of the multi-agent

extension, a complete and correct BNF (Backus-Naur

Form) definition of its syntax becomes necessary, which

was made available in (Kovacs 2011). It makes mainly the

following minor corrections to previously published BNF.

 The default type (of objects) in PDDL is object, but

until now this was not made explicit in the grammar.

Accordingly the next rule should be added to the BNF.

 <primitive-type> ::= object

 Similarly the definition of the built-in 2-ary = predicate

in case of the :equality requirement was also left out

from previous definitions of PDDL. To correct this, the

following rule needs to be added to the BNF.

 <atomic formula(t)> ::=:equality (= t t)

 Since PDDL2.1 (Fox and Long 2003) function-

expressions in the domain description allowed only 2-

argument numeric operators, although in the problem

description, in the definition of metric they could be

also multi-argument. To fix this, the following two

production rules should be added to the grammar.

 <f-exp> ::=
:numeric-fluents

 (<multi-op> <f-exp> <f-exp>
+
)

 <f-exp-da> ::=
:numeric-fluents

 (<multi-op> <f-exp-da> <f-exp-da>
+
)

 The definition of non-terminals <name> and <number>

was underspecified until now, so it is suggested to

define them more precisely, for example as shown in

the Appendix in (Teichteil-Königsbuch 2008).

 The following rule would allow durative actions to

have non temporally annotated numeric effects, which

would contradict the specification of durative actions in

(Fox and Long 2003). Thus it needs to be deleted.

 <da-effect> ::=
:numeric-fluents

 (<assign-op> <f-head> <f-exp-da>)

 The following rule is present in the BNF of PDDL2.1

and PDDL3.0 (Gerevini and Long 2005). The problem

with it is that <a-effect> is not defined anywhere, so

<a-effect> should be changed to <cond-effect>.

Otherwise <p-effect> or <effect> may also be

considered, but the former would not allow

conjunctions of propositions, while the latter would

overly complicate the syntax and allow semantically

ambiguous constructs (e.g. nested conditional effects).

 <timed-effect> ::=

 (at <time-specifier> <a-effect>)

 Production rules for non-terminals <assign-op-t>

and <f-exp-t> are referenced, but missing from the

BNF since PDDL3.0 in the form they were given in the

BNF of PDDL2.1. They should be included again.

 The following rule defines the syntax of derived

predicates since PDDL2.2 (Edelkamp and Hoffmann

2004a). The problem with it is that there is no mention

of the name of the derived <predicate>. Thus instead

of <typed list (variable)> (Edelkamp and

Hoffmann 2004b) would suggest <atomic

formula(term)>, which is better, since it includes the

name of the derived predicate, but then there are no

argument-types in the head of the derived-rule as one

might expect in case of :typing. To include both the

name of the predicate and the type of its arguments

<atomic formula skeleton> should be used

instead of <typed list (variable)> below.

 <derived-def> ::=

 (:derived <typed list (variable)> <GD>)

 The following rule is present in the initial conditions

part of the problem description since PDDL2.1, but it is

incorrect, since <f-head> may be lifted, although it

should be grounded. To fix this <basic-function-

term> can be used instead of <f-head> below.

 <init-el> ::=
:numeric-fluents

 (= <f-head> <number>)

 PDDL3.0 introduced plan constraints via modal

operators at the 5
th

 IPC in 2006, but they were not

allowed to be nested at the time of the competition.

Nonetheless this restriction could be lifted by using

production rules provided in Section 3 in (Gerevini and

Long 2005). The problem with those rules, which are

still part of the BNF, is that they do not allow a normal

end to the recursive nesting of modal operators. This

needs to be corrected, e.g. as given in (Kovacs 2011).

2.2. Previous approaches

Previous multi-agent planning problem description

languages provided valuable experience and ideas for the

design of the proposed multi-agent extension of PDDL3.1.

In the following an overview of these languages is given.

2.2.1. Non-deterministic Agent Domain Language

The Non-deterministic Agent Domain Language (NADL)

introduced in (Jensen and Veloso 2000) is suitable for

describing multi-agent planning domains to a limited

extent. It could be seen a predecessor of numeric fluents of

PDDL2.1, but its syntax differs significantly from PDDL.

 In NADL each explicitly given agent is a collection of

actions that have preconditions and effects (numeric and/or

propositional formulas). Actions can also refer to state

variables they constrain. These constraints are then used in

planning time to avoid joint actions that have destructive

synergetic effects, i.e. which constrain an overlapping set

of state variables (e.g. actions that assign different values

to a numeric fluent). Constructive interferences on the

other hand are not modeled. This makes for a relatively

simple model of interactions among concurrent actions.

 However NADL allows a distinction between system

and environment agents, the latter being non-controllable

and thus responsible for possible non-deterministic effects.

 NADL’s model of time is discrete. Actions have equal

duration and each agent can execute only one action at a

time. All agents share the same goal. Later in (Bowling,

Jensen, and Veloso 2002) this was extended to multiple

agents having possibly different goals, but no

accompanying description language was provided, and the

model was applicable only to propositional domains.

2.2.2. Concurrent interacting actions in STRIPS

This multi-agent extension of STRIPS (Boutilier and

Brafman 2001) provides a more elaborate way to model

interactions of concurrent actions than NADL based on the

idea of concurrent action lists. Essentially the same (but a

bit simplified) idea is presented in Section 11.4.1 in

(Russell and Norvig 2010). Concurrent action lists refer to

state variables and concurrently executed actions in form

of separate lists attached to actions’ preconditions or to

conditional effects’ conditions. In Section 2.2 in (Boutilier

and Brafman 2001) they are described precisely as follows.

If an action schemata A’ appears in the concurrent
action list of an action A then an instance of schema
A’ must be performed concurrently with action A in
order to have the intended effect. If an action schema
A’ appears negated in the concurrent action list of an
action A then no instance of schema A’ can be
performed concurrently with action A if A is to have
the prescribed effect.

This is a generic and intuitive way to model interference of

concurrent actions, however the implicit quantifiers over

actions are a bit restrictive and the scope of quantification

(the whole list) is also a bit broad. This could be improved

by having explicit quantification, and including reference

to concurrent actions directly in (pre)conditions.

 Agents responsible for the execution of actions are

referred to in form of variables (always the first parameter

of an action). The only issue with this is that there is no

typing, and thus no distinction between agents and objects.

Effectively every object can be considered an agent (e.g. a

planner may try to instantiate a table object in the first

variable of a pickup action, which wouldn’t make much

sense). Otherwise the language is just like STRIPS: time is

discrete, states are propositional. Moreover, each agent can

execute only one action at a time (no parallel or partially

ordered actions are allowed for one agent), and all share

the same goal, i.e. only cooperative agents are modeled.

 Despite all these limitations this language shows that a

proper multi-agent extension can be achieved with minimal

changes to a single-agent base language (STRIPS), and

that the changes implied to planners may also be limited.

2.2.3. Multiagent Planning Language

Multiagent Planning Language (MAPL) was presented in

(Brenner 2003a; 2003b) after interest in such an extension

was coined in the Call for Contributions of the Workshop

on PDDL at the ICAPS-03 conference. However there was

no multi-agent planning track at any IPC ever since or

before. Understanding all the reasons is beyond our scope,

but some observations can still be made regarding MAPL.

 MAPL builds upon PDDL2.1 and thus it includes

PDDL2.1’s main features (typing, numeric fluents, and

durative actions), but at the same time it also makes quite

drastic changes to the base language, which may be partly

responsible for MAPL’s limited success. Among others it

abandons the closed-world assumption and instead of

predicates it introduces n-ary state variables (which may be

even unknown). This is done partly to cope with partial

observability arising from multiple agents operating in the

environment, but it also gives rise to the question, if e.g.

actions’ preconditions reflect an agent’s knowledge

necessary to execute the action, or states of the “physical”

environment in which the action can be executed? In our

interpretation the latter is closer to the design philosophy

of PDDL, since “PDDL is intended to express the ‘physics’

of a domain” (McDermott et al. 1998). Moreover object-

fluents added in PDDL3.1 allow for a very similar

functionality without significant changes (to PDDL3.0).

 MAPL also introduces a qualitative model of time,

which was introduced in PDDL3.0 in a more concise form

(of modal operators). This was necessary to coordinate

multiple agents’ behavior via speech acts: fixed meta-

actions, whose definition is not part of the description.

 Such coordination was necessary to synchronize actions

or events in general with initially uncertain duration which

is again a novelty of MAPL intended to allow greater

realism and flexibility. An additional control function (for

each agent) decides whether this duration is controlled by

the environment or by the agent. Similarly there is also a

responsibility function, which maps state variables to

agents to represent which agent is responsible over a state

variable. The mentioned additional functions are not part

of the MAPL description, yet the definition of planning

problems includes the control function for example, which

may be confusing. These additions are effectively advices

to the planner, which contradicts original intentions again:

“We have endeavored to provide no advice at all as part of

the PDDL notation” (McDermott et al. 1998).

 Despite the above additions MAPL still handles the

interaction of simultaneous actions similarly to NADL.

“Two events are mutually exclusive (mutex) if one affects

a state variable assignment that the other relies on or

affects” (Brenner 2003a). This model avoids destructive

synergetic effects, but isn’t considering constructive ones.

 In MAPL every agent may face a different planning

problem, but all of them eventually share the same goals.

In actions, agents are represented with variables like in

Section 2.2.2, but they are handled just like any other

parameter, which implies further questions, e.g.: Can an

action have more/no agent-parameters? Should the actor

always be the first? Can an agent inherit an action defined

for a parent-type? Can actions be redefined for children?

 Such questions may become important when a planner is

being implemented and so they should be addressed

together with a complete syntax definition at least. The

reception of MAPL may have also been influenced by that

it is not just a new requirement (as derived predicates or

numeric fluents), but it is a new language, which is again

not in accordance with some intentions behind PDDL, e.g.

as stated in the Preface of the Proceedings of the Workshop

on PDDL at ICAPS-03: “how the...development of PDDL

can be managed within the community to ensure that it

does not...fork into multiple incompatible directions...”.

2.2.4. Concurrent STRIPS

Concurrent STRIPS (CSTRIPS) was proposed in (Oglietti

and Cesta 2004). It is classic STRIPS with the addition of

concurrent threads, which are explicitly declared, fixed

subsets of action schemas. However they are defined only

at model level without exact syntax (not even in examples).

 Each agent and controllable environmental process can

have a separate thread. The planner should find a sequence

of fully instantiated actions for each thread based on their

respective action-subsets to produce a joint-plan that

achieves a common set of goals. While the simplicity of

this approach may be tempting, it is not enough to describe

challenging multiagent problems (e.g. action interactions).

2.2.5. MA-STRIPS

MA-STRIPS (Brafman and Domshlak 2008) is a multi-

agent extension of STRIPS. Its idea is similar to CSTRIPS:

partition different agents’ grounded actions into disjoint

subsets (corresponding to threads in Section 2.2.4). This

however may raise implementation-level questions like: Is

it possible that different instantiations of the same

operator-schema belong to different agents? If yes, then

how should we represent this exactly, syntactically?

 Because of the similarity with CSTRIPS, eventually the

same conclusions hold here too, but it must be noted, that

the work of (Brafman and Domshlak 2008) focused mainly

not on the subtleties of describing multi-agent planning

problems, but given MA-STRIPS, a simple description

language, they rather set out to formalize and efficiently

exploit loosely coupled agents. They provided formal

results to quantify the notion of agents’ coupling and a

centralized multi-agent planning algorithm that was shown

to be polynomial in the size of the planning problem for

fixed coupling levels. Their notions of internal/public

atoms/actions and the agent interaction digraph could be

extended to more complex descriptions straightforwardly,

but the extension of their planning algorithm and the

implied complexity results relying on these notions could

be less trivial (e.g. extending them to actions with

interacting effects, continuous time or competing goals).

2.3. Requirements of a multi-agent extension

Based on the observations made in previous sections the

requirements of a multi-agent extension of PDDL3.1 can

be summarized as follows. In general it should be...

 Additional: a new, additional, optional extension (a

PDDL-requirement), not a completely new language;

 Minimalistic: introduce only minimal changes to the

base language and try to minimize the modifications

implied to existing planning systems and approaches;

 Backward compatible: compatible with every existing

extension (PDDL-requirement) in the official language;

 Forward compatible: designed to be easily integrated

with anticipated future extensions (e.g. partial

observability, stochastic effects, events, processes);

 General: useful in all four general categories of multi-

agent planning shown in Table 1;

 Conforming: in accordance with the design philosophy

of the language, i.e. neutrally expressing the “physics”

of the domain and including no advice for planners;

 Compact: the extended problem- and domain-

description should include every model-level detail;

 Well-defined: has a complete and accessible definition

of formal syntax and at least informal semantics;

In particular the multi-agent extension should allow...

 Modeling concurrent actions with interacting effects;

 Modeling competitive, cooperative or mixed domains;

 Agents having possibly different actions/goals/utilities;

 Straightforward association of agents and actions;

 Distinction between agents and non-agent objects;

 Inheritance/polymorphism of actions/goals/utilities;

 Different agents in different problems of a domain;

 Modeling full- and/or partial-observability;

 Optional use of any combination of PDDL3.1 features.

Optional communication of agents can be modeled by

PDDL (by defining communicative actions in the domain),

so communication can be realized in execution time.

Similarly agents’ knowledge can be represented with

domain-specific predicates and/or by using a PDDL-

extension allowing for partial observability, if necessary.

The proposed multi-agent extension should be modular,

i.e. useable with such other extensions, e.g. partial-

observability or probabilistic-effects. But in this paper now

we focus only on extending PDDL3.1 to multiple agents.

3. A multi-agent extension of PDDL3.1

In the following the main result of this paper, a multi-agent

extension of PDDL3.1 (MA-PDDL) is presented based on

the requirements gathered in Section 2.3. First the syntax

and semantics are given, then an example and a discussion

of solutions. The section should be best read in conjunction

with the BNF of PDDL3.1, e.g. in (Kovacs 2011).

3.1. Domain description

A new :multi-agent PDDL-requirement is introduced

to indicate the presence of multiple agents in the domain.

Agents are considered objects (or constants) that may have

associated actions, goals and utilities (metric definitions).

I.e. the idea is to associate actions, goals and utilities

directly to objects and/or types (say, sets of objects).

 The necessary changes implied to the grammar first

include the following slight modification of the production

rule defining non-durative actions in the BNF of PDDL3.1.

The only difference is the addition of an optional part for

the associated agent(s). It can be used only if the :multi-

agent requirement is declared, and also implies addition

of the following rules for <agent-def> to the grammar.

This means that agents can be associated to an action in

form of constants or variables. If :typing is declared,

then they can be given in form of types or typed variables

too. If a type or a variable is given, then the action-schema

is associated to every object whose type is a subset of the

given type or the type of the variable (since in PDDL types

correspond to sets of objects). Without an explicitly

declared type the agent-variable is assumed to have type

object by default (corresponding to the set of every

object). In this case every object is eventually considered

an agent, since those and only those objects are considered

agents, which have at least one associated action-schema.

If agents are referred to with variables, we suggest to use

types to enable distinction between agents and non-agent

objects. Furthermore it is required that the names of objects

and primitive types are unique and not overlapping, and

that every object has only one directly associated type.

 If the agent is referenced with a variable in the action-

schema, then this variable may appear in the body of the

action-schema (in conditions and effects) just like any

other action-parameter, and thus the name of the agent

variable is required to be different from parameter-names.

 If the :multi-agent requirement is declared, but the

agent-reference is not given in the action-schema, then the

schema is associated to the type object by default.

 Now in case of :typing, given a type-hierarchy, an

agent-object with a given type is associated with actions

that are either associated to it directly, or directly to its

type, or directly to an ancestor-type (superset) of its type.

This is called inheritance of actions. Polymorphism on the

other hand works as follows: an action with the same name

and arity (number of arguments) can be redefined for

descendants, i.e. an action directly associated to a type

redefines any action directly associated to its ancestor type

(superset), if the name and arity of the actions are equal.

An action associated directly to an object (constant)

redefines any actions with the same name and arity directly

associated to the type of the object, or which are inherited.

An agent-object or type cannot have two or more directly

associated action-schemas with the same name and arity.

Therefore association of actions to agents is unambiguous.

 Beyond typing an even more important aspect of a

proper multi-agent extension is how interaction of

concurrent (joint) actions works. For the proposed

extension a generalization of concurrent action lists

presented in Section 2.2 in (Boutilier and Brafman 2001) is

proposed. The idea is simply to allow references to

concurrent actions not only in a special construct, such as

the concurrent action list, but also among the preconditions

of actions and the conditions of actions’ conditional

effects. Interweaving the content of concurrent action lists

with conditions this way allows for a more convenient and

compact design. The proposed idea is similar to

“progressive predicates” suggested in Section 2.1 in

(Bacchus 2003), except that we now refer directly to

ongoing actions, and not to facts. This also implies that the

name-arity pairs of fluents (predicates, numeric and object

fluents) need to be unique, and cannot overlap with the

name-arity pairs of actions (durative or non-durative).

 The above considerations imply the addition of the

following 4 new production rules to the grammar.

This means that if the :multi-agent requirement is

declared, a goal description, <GD> is allowed to refer also

to ongoing actions (similarly to state fluents). The exact

form of reference to concurrent actions is the following.

The first argument (term) should be always the agent

executing the referenced action, while further arguments

should be the actual parameters of that action in their

respective order. If during execution a grounded reference

to an action A needs to be positive for the conditions of a

grounded action B to hold, then this means that A needs to

be executed in parallel with B for B’s respective effects to

take place. Otherwise, if the grounded reference to A needs

to be negative for conditions of B to hold at a given time

during execution, then A should not be executed in parallel

with B for B’s respective effects to take place at that time.

 The exact time(interval) when A should or should not be

under parallel execution with B is the same time(interval),

when a unique “progressive” proposition PA corresponding

to A should or should not be true respectively for B’s

conditions to hold were all occurrences of A replaced with

PA in the grounded PDDL-description and thus in the plan.

Now this depends only on the semantics of PDDL3.1.

 It must be noted though that the consistency of a joint-

action (where all member actions either refer to other

members in their conditions, or they are referred to by at

least one of them) should be more relaxed than the

traditional definition of mutex actions. For non-durative

actions, similarly to Definition 2 and 3 in (Boutilier and

Brafman 2001) we only require that the members of the

joint-action have consistent joint-(pre)conditions and joint-

effects in a given state, i.e. interference among effects and

(pre)conditions is not considered. In case of durative

actions the consistency check should focus on the exact

time instants and intervals when (pre)conditions need to

hold, and when effects take place during scheduled

execution. That is in this case it may happen that the

(pre)conditions of a member of a durative joint-action are

inconsistent with the effects of another member, which

may imply a re-scheduling of these actions by the planner.

The way this is achieved is beyond the scope of this paper.

A consistent joint-plan consists of consistent joint-actions.

 Durative actions of multiple agents are defined similarly

to non-durative actions. The rule for <durative-

action-def> needs to be slightly modified as follows.

This means that we can now associate agents to durative

actions just like we did to non-durative actions.

 Many further additions could be made to the grammar

of the domain. A minimal, but useful one is the following.

The built-in function num calculates the number of actions

under execution (during execution) for every instantiation

of a list of variables where given conditions hold. This

small extension adds great expressivity.

3.2. Problem description

The problem description needs to be extended slightly to

cope with possibly different goals and utilities of agents.

This requires modification of the problem definition first.

The only change here is that now at least one <goal> and

zero or more <metric-spec> structures are required.

Goals can be empty (always true), while utilities don’t

need to be present when :numeric-fluents is declared.

 In case of multiple agents, goals can be captured by the

addition of the following production rule to the grammar.

The only essential change here compared to PDDL3.1 is

the addition of the agent-reference. If it refers to the agent

with a variable, then the variable may appear in the goal

formula. Goal conditions are prefixed with :condition to

emphasize them more. Utilities need a similar addition.

The declaration of the :multi-agent requirement is

necessary for the use of the above two structures, but we

can also use default PDDL3.1 goals and metric structures,

which would mean – similarly to the case of actions – that

goals and utilities are associated with the object type, i.e.

with every agent-object. Above we see that goal and utility

schemas can be associated directly to objects (or constants)

or types similarly to actions, although one object or type

can have only one directly associated goal or utility

schema in contrary to actions. But inheritance and

polymorphism are the same as in case of actions. Therefore

the assignment of goals/utilities to agents is unambiguous.

 One last addition is necessary to the grammar to allow

agent-variables in hitherto grounded metric expressions.

This way now we can include fluents in connection with

agents in the definition of their utility, but naturally the

value of metric needs to remain numeric. Not all agents

have to have a utility though, but all of them need to have

(at least an inherited) goal, which may be the same for all

of them or different depending on the problem at hand.

 An important topic is still left untouched: For which

agents is a planner planning? Which object(s) represent(s)

the planner in the description? Should it be represented?

 The answer depends on how the MA-PDDL description

is used: whether the planner is external or situated; whether

planning is centralized or decentralized, whether it is

distributed; or whether planners share the same MA-PDDL

description. The association of the planner and agent(s) can

vary from run-to-run (similarly to how an agent may

assume different players’ role during different plays of the

same game (von Neumann and Morgenstern 1944)). This

meta-information, the connection of planners and agent-

objects is therefore not included in the description. It is the

responsibility of the planner to know for whom it plans,

and possibly which object(s) represent(s) it in the problem.

So it is suggested to planner applications to have 1-2 more

inputs carrying this information beside other parameters.

3.3. Example

The following simple example aims to give a basic idea of

how the proposed multi-agent extension works. A minimal

set of PDDL features is used to illustrate important aspects,

such as cooperation, joint-actions, constructive synergy.

 The only action-schema in the domain (lift) is

associated with type agent, which is a direct descendant

(subset) of object; lift allows an agent to lift the table

(the only domain-constant of type object), but only if it is

not yet lifted, if the agent is at the table, and if there is at

least one other agent at the table lifting it simultaneously.

The related problem description defines 2 agents: a and b,

both being at the table, and having the same goal: the

table being lifted. Their goal is defined for type agent.

The solution requires cooperation from a and b, since they

have the same goal and the only way for them to achieve it

is to coordinate their actions. The only, trivially simple

solution is when both lift the table starting at time 0:

[0:(lift a) 0:(lift b)]. Because of the lack of

options the same plan should arise in case one or more

external rational planners plan for a and b.

 When a planner chooses a grounded lift action for

execution in a given state, it can assert a corresponding

unique (lift ·) fact to the state, and check what

implications this has on the applicability of other chosen

actions. If they remain executable, it may continue,

otherwise it may retract (lift ·) from the state, and

choose different actions. This should work also in general.

 In case of decentralized planning, i.e. when different

planners plan for different agent-objects, but all planners

share the same MA-PDDL description (which is common

knowledge among them), then solution-plans should not be

fully ordered sequences of temporally annotated actions

anymore. They should be rather strategies (for each agent)

that prescribe actions to observation-histories of the agent.

A joint plan in this case is a combination of such strategies.

 In our case, since partial observability isn’t introduced

yet as another extension, the planning environment is fully

observable, i.e. observations are complete descriptions of

new states and action-combinations that produced them.

 We should also note that though an MA-PDDL

description may be converted to an extensive- or normal-

form game, it would be a much less detailed description.

 Two issues arise in the decentralized case: (1) coping

with durative strategies; and (2) both in durative and non-

durative case it is not trivial how to compactly represent

strategies, especially in case of large state-spaces.

 However both issues can be solved (1) by reasonably

restricting the scheduling of durative actions (e.g. an agent

could schedule its next actions only when an other action

starts/ends); and (2) by using a client-server architecture

with planners as clients. Planners could receive new

observations for relevant time-instants (see previous issue)

from the Server and answer with their actual actions.

4. A multi-agent planning track at the IPC

In this section a short proposal is made for a multi-agent

planning track at the forthcoming IPCs based on the multi-

agent extension of PDDL3.1 presented in Section 3.

 There are 3 organizational steps (similarly to current

IPCs): (1) preparation; (2) competition; and (3) evaluation.

During the preparation phase the following should be

made public: a Call for Submissions; detailed rules of the

competition/evaluation; any source-code and additional

applications with documentation; a detailed manual/article

about MA-PDDL; and domains/problems for participants.

 For the competition the participants would need to

submit planners (sources, binaries) and papers about them.

The competition itself could consist of 2 fully-observable

sub-tracks at first: (2a) when external planner plans

for situated agents, and (2b) when planning is done

by situated planners. In both cases problems

can be categorized according to 3 properties: whether (i)

all agents’ goals/utilities are the same; (ii) if there are

utilities at all; and (iii) if durative actions are allowed. If in

(2b) we do not allow durative actions, then altogether 12

categories of multi-agent competition emerge.

 When (i) holds, problems are cooperative. Otherwise

they are competitive. The latter case can be divided into

sub-cases, where each agent has different goals/utilities,

and where only agents in teams have the same goal/utility.

 It should be noted that the easiest category is sub-track

(2a) when (i) holds, but this is still harder than single-agent

planning e.g. because of possible constructive synergies.

 In each of the 12 categories approx. 12-14 domains

could be present each with around 20 related problems.

The evaluation in case of sub-track (2a) could measure

normalized quality of joint-plans and planning-time per

problem, and the number of solved problems per domain

for each planner. The sum of these scores could decide the

winner of sub-track (2a). But it should be added, that the

quality of plans depends mostly on (i). If (i) and (ii) hold,

then quality is defined by utility, but if (ii) is not true, then

quality can be the makespan of plans. If (i) is false, then

the number of agents whose goal was achieved, or the sum

of achieved sub-goals or of plans’ makespan can be used.

 The evaluation of planners in sub-track (2b) could be

similar to evaluation at the probabilistic track at IPC-2011.

As mentioned in Section 3.3, a client/server architecture

could be used with planner-clients receiving observations

from a server and replying to it with their actions. The

server could wait for planners’ actions at each step for a

given time. In case of time-out (e.g. after 30 seconds/step)

the no-op action could be chosen for late planners.

 Initially the server should broadcast the MA-PDDL

description, and then for each problem and permutation of

planner-agent assignments it could execute e.g. 30 runs to

determine planners’ average fitness for each assignment

(since some may make non-deterministic decisions). The

sum of these averages over assignments could be the score

of a planner for a problem, and thus the sum of scores over

problems and domains could determine the winner of sub-

track (2b). If (ii) holds, then planners’ fitness could be the

individual utility of their agent. Otherwise it could be the

maximum of its simultaneously achieved sub-goals.

5. Conclusions

A multi-agent extension of PDDL3.1 was proposed with a

corresponding multi-agent planning track for the IPC to

enable more direct comparison of multi-agent planners and

approaches and a greater reuse of research. Planning by

and for agents is both possible. The syntax and semantics

of the extension were provided together with an example.

A few corrections to the BNF of PDDL3.1 were also listed

and an overview of current research in the field was given.

 Future research could focus on providing more detailed,

possibly formal semantics; planning algorithms; more

application domains (e.g. multi-robots, such as RoboCup,

or networking problems, such as efficient routing with

limited resources). The addition of partial observability (in

a separate, modular PDDL-requirement) would be primary,

but probabilistic effects and events/processes may also be

considered to allow treatment of more realistic problems.

The corresponding multi-agent IPC track could also be

developed further to narrow the gap between theory and

practice and to advance the field of multi-agent planning.

Acknowledgments

This work was partially supported by the ARTEMIS JU

and the Hungarian National Development Agency (NFÜ)

in frame of the R3-COP (Robust & Safe Mobile Co-

operative Systems) project. The author wishes also to

thank SUZUKI Foundation Japan, Derek Long, Carlos L.

López, Gabriele Röger, Ron Alford, Éric Jacopin, Takashi

Watanabe, Naoki Fukuta and Tadeusz P. Dobrowiecki.

References

Bacchus, F. 2003. The Power of Modeling - a Response to
PDDL2.1 (Commentary). J. of AI Res. 20:125-132.

Baral, C.; Gelfond, G.; Son, T. C.; and Pontelli, E. 2010. Using
Answer Set Programming to model multi-agent scenarios
involving agents’ knowledge about other’s knowledge, In Proc.
of AAMAS-2010, 259-266. IFAAMAS.

Baral, C.; and Gelfond, G. 2011. On representing actions in
multi-agent domains, In Engelmore, R., and Morgan, A. eds.
Logic programming, knowledge representation, and
nonmonotonic reasoning. 213-232. Springer.

Beaudry, E.; Kabanza, F.; and Michaud, F. 2010. Planning for
Concurrent Action Executions Under Action Duration
Uncertainty Using Dynamically Generated Bayesian Networks.
In Proc. of ICAPS-10, 10-17. AAAI Press.

Boutilier, C.; and Brafman, R. I. 2001. Partial-order planning
with concurrent interacting actions. J. of AI Res. 14(1):105-136.

Bowling, M.; Jensen, R.; and Veloso, M. 2002. A formalization
of equilibria for multiagent planning. In Proc. of the Workshop on
Planning with and for Multiagent Systems, AAAI-02, 1-6.

Brafman, R. I.; and Domshlak, C. 2008. From One to Many:
Planning for Loosely Coupled Multi-Agent Systems. In Proc. of
ICAPS-08, 28-35. AAAI Press.

Brafman, R. I.; Domshlak, C.; Engel, Y.; and Tennenholtz, M.
2009. Planning Games, In Proc. of IJCAI-09, 73-78. AAAI Press.

Brenner, M. 2003a. A Multiagent Planning Language. In Proc. of
the Workshop on PDDL, ICAPS-03, 33-38.

Brenner, M. 2003b. Multiagent Planning with Partially Ordered
Temporal Plans, Technical Report No. 190, Institut für
Informatik, Universität Freiburg, Germany.

Crosby, M.; and Rovatsos, M. 2011. Heuristic Multiagent
Planning with Self-Interested Agents, In Proc. of AAMAS-2011,
1213-1214. IFAAMAS.

Edelkamp, S.; and Hoffmann, J. 2004a. PDDL2.2: The Language
for the Classical Part of the 4th International planning
Competition, Technical Report No. 195, Institut für Informatik,
Albert-Ludwigs-Universität Freiburg, Germany.

Edelkamp, S.; and Hoffmann, J. 2004b. PDDL2.2: The Language
for the Classical Part of IPC-4. In IPC-4 Booklet, ICAPS-04, 1-5.

Fikes, R. E.; and Nilsson, N. 1971. STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial
Intelligence 5(2):189-208.

Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to pddl for
Expressing Temporal Planning Domains. J. of AI Res. 20: 61-124.

Fox, M.; and Long, D. 2006. Modelling Mixed Discrete-
Continuous Domains for Planning. J. of AI Res. 27:235-297.

Fox, M.; Long, D.; and Magazzeni, D. 2011. Automatic
Construction of Efficient Multiple Battery Usage Policies. In
Proc. of ICAPS-11, 2620-2625. AAAI Press.

Gerevini, A.; and Long D. 2005. BNF Description of PDDL3.0.
Unpublished manuscript from the IPC-5 website.
http://cs-www.cs.yale.edu/homes/dvm/papers/pddl-bnf.pdf

Helmert, M. 2008. Changes in PDDL 3.1. Unpublished summary
from the IPC-2008 website.
http://ipc.informatik.uni-freiburg.de/PddlExtension

Jensen, R. M.; and Veloso, M. M. 2000. OBDD-based universal
planning for synchronized agents in non-deterministic domains. J.
of AI Res. 13(1):189-226.

Jonsson, A.; and Rovatsos, M. 2011. Scaling Up Multiagent
Planning: A Best-Response Approach. In Proc. of ICAPS-11,
114-121. AAAI Press.

Kovacs, D. L. 2011. BNF definition of PDDL 3.1. Unpublished
manuscript from the IPC-2011 website.
http://www.plg.inf.uc3m.es/ipc2011-deterministic/Resources

Kumar, A.; Zilberstein, S.; and Toussaint, M. 2011. Scalable
Multiagent Planning Using Probabilistic Inference, In Proc. of
IJCAI-11, 2140-2146. AAAI Press.

Marecki, J.; and Tambe, M. 2009. Planning with Continuous
Resources for Agent Teams, In Proc. of AAMAS-09, 1089-1096.

Martins, M. F.; and Demiris, Y. 2010. Learning Multirobot Joint
Action Plans from Simultaneous Task Execution Demonstrations,
In Proc. of AAMAS-2010, 931-938. IFAAMAS.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram, A.;
Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL---The
Planning Domain Definition Language, Technical Report, CVC
TR­98­003/DCS TR­1165, Yale Center for CVC, NH, CT.

von Neumann, J.; and Morgenstern, O. 1944. Theory of games
and economic behavior. Princeton University Press.

Nissim, R.; Brafman, R. I.; and Domshlak, C. 2010. A General,
Fully Distributed Multi-Agent Planning Algorithm, In Proc. of
AAMAS-2010, 1323-1330. IFAAMAS.

Oglietti, M.; and Cesta, A. 2004. CSTRIPS: Towards Explicit
Concurrent Planning. In Proc. of the 3rd Italian WS on Plan. and
Sched., 9th Nat. Symp. of Assoc. Italiana per l'Int. Artif., 1-13.

Pajarinen, J.; and Peltonen, J. 2011. Efficient Planning for
Factored Infinite-Horizon DEC-POMDPs, In Proc. of IJCAI-11,
325-331. AAAI Press.

Russell, S.; and Norvig, P. 2010. Artificial Intelligence: A
Modern Approach. Prentice Hall.

Shah, J. A.; Conrad, P. R.; and Williams, B. C. 2009. Fast
distributed multi-agent plan execution with dynamic task
assignment and scheduling. In Proc. of ICAPS-09, 289-296.

Spaan, M. T. J.; Oliehoek, F. A.; and Amato, C. 2011. Scaling Up
Optimal Heuristic Search in Dec-POMDPs via Incremental
Expansion, In Proc. of IJCAI-11, 2027-2032. AAAI Press.

Stefanovitch, N.; Farinelli, A.; Rogers, A.; and Jennings, N. R.
2011. Resource-Aware Junction Trees for Efficient Multi-Agent
Coordination, In Proc. of AAMAS-2011, 363-370. IFAAMAS.

Teichteil-Königsbuch, F. 2008. Extending PPDDL1.0 to Model
Hybrid Markov Decision Processes. In Proc. of the WS on A
Reality Check for Plan. and Sched. Under Unc., ICAPS-08, 1-8.

Wang, K. C.; and Botea, A. 2011. MAPP: a Scalable Multi-Agent
Path Planning Algorithm with Tractability and Completeness
Guarantees. J. of AI Res. 42:55-90.

de Weerdt, M.; and Clement, B. 2009. Introduction to planning in
multiagent systems. Multiagent Grid Systems 5(4):345-355.

Yabu, Y.; Yokoo, M.; and Iwasaki, A. 2009. Multiagent Planning
with Trembling-Hand Perfect Equilibrium in Multiagent
POMDPs, In Ghose, A.; Governatori, G.; and Sadananda, R. eds.
Agent Computing and Multi-Agent Systems. 13-24. Springer.

Zhuo, H. H.; and Li, L. 2011. Multi-Agent Plan Recognition with
Partial Team Traces and Plan Libraries, In Proc. of IJCAI-11,
484-489. AAAI Press.

Zhuo, H. H.; Muñoz-Avila, H.; and Yang, Q. 2011. Learning
Action Models for Multi-Agent Planning, In Proc. of AAMAS-
2011, 217-224. IFAAMAS.

