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Abstract:

In this article we propose a novel approach to the evolution of agent-programs by
means of natural selection. The existing approaches (e.g. genetic programming)
are usually constrained to relatively simple program-structures since they need
explicit representation of fitness, genetic operators, and selection mechanism.
We propose a methodology that overcomes these issues by introducing a
lifecycle of agents, and their phenotype-phenotype interaction. As a
consequence, an emerging evolutionary optimization process called “natural
selection” arises, which enables the evolution of arbitrary agent-programs.
Several interesting experiments are presented.
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Introduction

An agent “can be anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through effectors”. [1]. The
program of an agent is responsible for choosing its actions based on its inner
state, which is usually its belief about its environment (including itself and the
other agents too).

This article presents a novel, realistic agent-based simulation model for the
natural selection of such agents. The survival of these agents depends solely on
their arbitrary programs [2] selecting their strategy to interact with each other.
Game theory is used to model the strategic interaction among agents [3].

Several models of program evolution exist, but our approach differs from them
mainly in the following [4]-[7]: we utilize natural selection as a realistic “driving
force’”, and not some preprogrammed, explicit mechanism, to evolve the
population of agents; we do not consider the emergence of new variants, only
proliferation, i.e. asexual replication of given program-types; and so we do not
impose any formal constraints on the structure and the inner workings of
programs; there is no artificial distinction between different generations, they are
allowed to overlap.

By evolution we essentially mean the dynamics of the distribution of the different
agent programs within the evolving population over time. The utility of agents
changes according to repeated strategic interaction with each other. Simple



game theoretical models describe such interaction, masking most of the details,
but nevertheless catching the essential features of agents’ programs, and
working toward a simpler simulation. We hope thus to model and predict several
interesting real world situations more precisely.

The inspiration for our model was drawn mainly from evolutionary game theory,
and the seminal experiments of Robert Axelrod with the Tit-For-Tat (TFT)
strategy in the repeated Prisoner’'s Dilemma (PD) [8]-[10]. The rest of the paper
is organized as follows: Section 2 introduces the background of the evolutionary
simulator, Section 3 describes its concept and implementation, Section 4
presents and evaluates some essential experiments, Section 5 contains
conclusions and briefly outlines future research.

Background

In the following, we will briefly summarize those approaches, which mainly
influenced our model. The purpose of this is to introduce some fundamental
concepts, and to enable later discussion of similarities and differences between
them and our approach.

Axelrod’s experiments

The goal of Axelrod’s experiments was to find the program (the algorithm) out of
a given set of programs which plays the repeated PD game (cf. Table 1) most
efficiently. Programs were compared pairwise. Every program played against
each other a fixed (but previously unknown) number of rounds. In every round
they had to choose between two strategies (cooperate, or defect), and got their
respective payoff according to the collective choice.

Player 2
Player 1 Defect Cooperate
Defect 1;1 5; 0
Cooperate 0; 5 33

Table 1: Payoff matrix of a “Prisoner’s Dilemma” game

TFT, a simple program, which initially cooperates, and then repeats the previous
choice of its opponent, won the tournaments by collecting the most at the end.
Axelrod concluded, that because of the importance of PD as a model of social
interaction, the core characteristics of cooperation in general must be those
found in the TFT. He then conducted other experiments too, called ecological
and evolutionary analysis, and again confirmed the success of TFT.

Evolutionary game theory

Another source of ideas was evolutionary game theory, which in contrary to
Axelrod’s results, enables formal analysis and prediction of evolving systems
(although only for relatively simple cases).



For example, let's suppose that we have an infinite population of agents, who
strive for resources. The game is divided into rounds, and in every round every
agent randomly (according to uniform distribution) meets an other agent to
decide upon a resource of value V>0. For the sake of simplicity let's say, that
there are only two types of agents: hawks (aggressive), and doves (peaceful).
When two hawks meet, they fight for the resource, which has a cost C, and so
they get (V-C)/2 per head. When two doves meet, they divide the resource
equally between each other without fighting (they get V/2 per head). When a
hawk meets a dove, then the hawk takes the resource (gets V), while the dove is
plundered (gets 0). This situation is simply modeled by the Hawk-Dove (HD)
game (cf. Table 2) [11].

Player 2
Player 1 Hawk Dove
Hawk V-0)/2; (V-0)/2 V; 0
Dove 0V V/2; VI2

Table 2: Payoff matrix of a “Prisoner’s Dilemma” game

The gained payoffs are collected over rounds, and the proportion of hawks and
doves in the population depends on their average collected payoff. It can be
shown, that the only reasonable attractor (i.e. state to which this discrete
dynamic system converges) is where only hawks remain in the population.

The simulation model

Many interesting results can be obtained by using the previous approaches,
although the necessary assumptions are usually unrealistic, and overly simplified
(fixed or infinite number of agents; simple programs, that can be handled
analytically; etc). For more realistic and complex cases, with arbitrary programs
(like in the ecological analysis of Axelrod) and finite, overlapping generations of
varying size, we need to use simulations.

The proposed agent-based simulation model combines the advantages of the
previous approaches without their drawbacks. It resembles artificial life in many
aspects, but it is different in its purpose (it tries to capture the key features of not
only biological, but also technical systems’ evolution) [12]. It is an extension to
the previous approaches, differing from them mainly in the following. Populations
are finite, and vary in size; agents are modeled individually; the selection
mechanism, and the fitness of agents is not explicitly given, but emerges as a
product of agents’ features, and their interaction in the environment. These
differences make the model more realistic.

Concept

The basis of the model is an intuitive combination and extension of the ideas
discussed in Section 2. The simulation is divided into rounds. There is a finite



number of agents in the population, who are randomly paired in every round
(according to uniform distribution) to play a 2-person game in the role of one of
the players (the role is chosen randomly too). Every agent of the population plays
the same type of game in every round of a run (e.g. just PD, or just HD), and
each of these agents has a program for selecting its strategy in these plays (e.g.
TFT, Random, Always-Cooperate, Always-Defect). After a pair of agents finished
to play in a given round, the respective (possibly negative) payoffs are added to
their individually cumulated utility. If their utility gets below a level (e.g. zero),
then the agent dies, i.e. it instantly disappears from the population, and won't
play in the following rounds; otherwise it remains, and may even reproduce
depending on its reproduction strategy. This strategy defines how and when to
reproduce. Only asexual proliferation, i.e. replication without change is
considered. After every agent finished the given round (died, survived, or even
replicated), comes the next round.

Two types of reproduction are considered: type 1 is called “natural”, and type 2 is
called “technical’. Agents with type 1 reproduction strategy can have only a
limited number of offsprings in their lifetime (maximum one per round). They
replicate, if their utility exceeds a given limit (limit of replication). After replication,
their utility is decreased with the cost of replication (which is usually equal to the
limit of replication). Offsprings start with zero utility, and the same program, and
features, as their parents originally (i.e. the same lower limit of utility necessary
for survival, limit and cost of replication, and limit on the number of offsprings).
On the other hand, agents with type 2 reproduction strategy can have unlimited
offsprings (but maximum one per round). They also replicate when their utility
exceeds the limit of replication, but this limit is doubled every time after an
offspring is produced, and their utility does not decrease after replication.

Offsprings start with the same utility, program, and features, as their parents at
the moment of replication (i.e. the same lower limit of utility necessary for
survival, and limit of replication). The rationale of differentiating several types of
reproduction is to enable the distinction between modeling the evolution of
biological, and artificial (e.g. software) systems.

Implementation

The proposed simulation model was implemented in JADE (Java Agent
DEvelopment) framework [13]. It is an open-source, Java-based, platform
independent, distributed middle-ware and APl (Application Programming
Interface) complying with the FIPA (Foundation for Intelligent Physical Agents)
standards [14]. It enables relatively fast and easy implementation of physically
distributed, asynchronous, high-level multi-agent systems.

The implemented software architecture was aimed to be fast and simple. It
consisted of only two JADE agents: a GaneAgent (GA), and a Pl ayer Agent
(PA). GA was responsible for conducting the runs, and orchestrating PA-s, while
PA-s were the actual agents in the population, who were paired in each round to
play a given 2-person game.



Each JADE agent had a variety of (mostly optional) startup parameters, which in
case of a GA set the type of the game to be played (e.g. PD, or HD, or else), the
maximal number of agents in the population, and the maximal number of rounds
in the run. The OR-relation of the latter two defined the termination criteria of a
run. The startup parameters of a PA set agents’ program and reproduction
strategy, initial utility, the lower limit of utility, the limit and cost of reproduction,
the limit on the number of offsprings, and the capacity of memory. The latter was
needed because each agent had to be able to use its percept history in order to
decide upon the strategy to be played in a given round. The percept history of an
agent associated a series of events (information about past plays) to agent
identifiers (ID-s). There was a limit on the maximal length of these series, and the
maximal number of ID-s. If any of these limits was exceeded, then the oldest
element was replaced by the new one.

Now the simulation went as follows. First a given humber of PA-s were started on
the JADE agent platform (constituting the initial population), followed by a GA,
who at the beginning of every round first searched the platform for available PA-s
(because later there may have been newly born agents, or some of them
disappeared). Then the GA made a pairing of the PA-s found, and informed these
pairs about the game to be played (who plays with whom, and in what role). The
pairs of PA-s then replied to the GA with the ID of their chosen strategy
respectively. The GA then calculated the agents’ respective payoff accordingly,
and informed them about it. This was repeated until the termination criterion of
the simulation was satisfied. Several interesting experiments were conducted this
way. Some of them are explained in the following section.

The complexity of the implemented model is additive. Since all PA agents run in
parallel, it depends solely on the sum of the complexity of the GA and PA agent.

Experimental results

The experiments consisted of running the simulation described above with
several different initial populations and games to observe the changes in the
number, proportion, and average utility of the different types of agent programs.
Each experiment had its own settings, but a part of them was the same in every
case. The maximal number of agents was 800; the maximal number of rounds
was 250; the maximal number of offsprings was 3; the limit and the cost of
reproduction was 20; the lower limit of agents’ utility and their initial utility was 0;
the maximal number of percept histories (about different opponents) was 1000;
and the limit on the length of such a percept history was 4 for every agent in
every experiment. Everyone was playing in every round (except when the
number of agents was odd).

In the following we will describe these experiments grouped according to the
games the agents’ were playing. Five elementary games are examined:
Prisoner's Dilemma (PD), Chicken Game (CG), Battle of Sexes (BS), Leader
Game (LG), and Matching Pennies (MP).



During the experiments agent programs were drawn from a fixed set. Only the
following programs were studied yet: Always-Cooperate, Always-Defect, TFT,
and Random. Nonetheless both types of agents’ reproduction strategy were
examined. All in all, this configuration was more than enough to run insightful
experiments comparable to the previous approaches discussed in Section 2.

Prisoner’s Dilemma game

PD is one of the most popular 2-person games in game theory [15]. It is a special
case of the HD game, when V' >(C >0 (cf. Table 2). The original story of the
game is essentially about two prisoners, who are put in separate cells (cannot
communicate), and are asked to simultaneously decide, whether to cooperate, or
defect. The best outcome is defecting, when the other player cooperates, and it
is the worst outcome for the other. It is better if both defect, and even better, if
both cooperate. The game is called a “dilemma” because its only Nash
Equilibrium (NE) [16] is the sub-optimal Defect-Defect outcome.

For example, if the payoffs are chosen according to the HD game, where V=4,
C=2 (and so it becomes a PD), and if the initial population consists of altogether
6 agents: 3 Always-Cooperate, and 3 Always-Defect agents, then the proportions
of the different agent programs change according to Fig. 1, which is in
accordance with the predictions of Section 2/B. Defective agents (hawks) infest
the population, and the proportion of cooperative players (doves) steadily
decreases. The reproduction strategy of agents in Fig. 1 is of type 1 (“natural”),
but essentially the tendencies are the same in case of type 2 (“technical”).
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Figure 1: Change of proportion of coop. (gray) and def. (black) programs in PD

Fig. 2-3 show the change of quantity and average utility of agent programs, if the
initial population consists of 3 Random and 3 TFT agents, and reproduction is
“natural” The quantity of the corresponding subpopulations (“species”) does not
decrease because there are no negative payoffs in the game, and so agents
cannot die since their cumulated utility cannot decrease below the lower limit.
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Figure 2: Change of quantity of Random (white) and TFT (black) programs in PD

According to Fig. 2, Random agents typically outperform TFT agents by far. This
is the case with both types of reproduction. Similarly, Always-Defect agents also
outperform TFT agents. These observations seem to differ from the results
mentioned in Section 2/A. Moreover, according to Fig. 3, the change of
subpopulations’ proportion isn’t in direct proportionality with the ratio of their
average utility and the average utility of the whole population, as predicted by
replicator dynamics in evolutionary game theory [17].

Figure 3: Change of average utility of Random (white) and TFT (black)
programs, and the whole population (dotted) in PD

If the population consists of 50 TFT agents and 1 Always-Defect intruder, then
Axelrod’s ecological analysis (cf. Section 2/A), which is also based on replicator
dynamics, predicts the extinction of the invading defectors [9]. But our
experiments show the opposite (with both types of reproduction). The proportion
of defectors is steadily growing until they finally overtake the whole population.

All of the results mentioned above are typical in the sense that they are



indifferent to parameter changes (e.g. different runs, changing the size of the
initial population; changing the type, limits, or cost of reproduction, or the payoff
values in the game). TFT agents can be made a little better by increasing the
size of their memory, but in the end it doesn’t change the overall tendencies.
These observations may also help to explain the scarce evidence of TFT-like
cooperation in nature [18].

Chicken game

This game is also a special case of the HD game, when C >V (cf. Table 2) [15].
The original story is about two cars driving toward each other. If both drivers are
‘reckless” (i.e. defect), and won’t swerve away, it is the worst outcome, since
they crash. Better is, if one swerves away (being cooperative, or “chicken”), while
the other wins (best outcome). But it is better for the former, if the latter swerves
away too. This is called a mixed motive game, because it has two NE-s (those
outcomes, when players do the opposite).

Experiments with this game showed different results than in case of PD in
Section 4/A. The main reason for that is that the payoffs were chosen according
to HD game, where V=2, C=4, and so agents could die because of negative
payoffs. Always-Cooperate (i.e. Always-Chicken) proved to be the best (most
proliferating) program out the four studied alternatives if there were only two
types of programs in the initial population. Always-Reckless and TFT claimed the
second place, while Random was the worst. This means that if the cost of being
mutually defective is beyond the achievable value (C >7), then it becomes too
risky not to cooperate. It was interesting to observe, that if Always-Reckless
proved to be the winner of a situation (i.e. if it extinguished all other “species”),
then it too died out. In this aspect Always-Reckless is “parasite”, that exploits the
other subpopulations from whom its survival depends. Experiments with more
than two types of agent programs were rather unpredictable. They depended
mostly on the actual pairing of the individuals in the first dozen of rounds.

Battle of Sexes game

This game is also a mixed motive game, like CG, but it differs from the previous
games in that it is asymmetric by default (cf. Table 3) [3]. The original story is
about a husband and a wife, who must choose between going to a football
match, or an opera. The husband would better like to go to the football match,
while his wife would better go the opera. But, in any case, it is more preferable
for them to go together, than to go alone.

Wife
Husband Opera Football
Opera 1, 2 -1, -1
Football 0,0 2,1

Table 3: Payoff matrix of a “Battle of Sexes” game



Cooperation is different in case of the husband, than in case of the wife. They
cooperate, if they try to do what is best for the other, and that is the worst
(husband goes to opera, and wife goes to football). So Always-Cooperate, and
Always-Defect strategies are a bit more complex now, since they depend also on
the actual role of the agents. Moreover, TFT needs also to be revised.

Experiments showed that regardless of the type of reproduction, Always-
Cooperate and TFT agents were the worst (others made them die out almost
every time). Always-Defect was the best program, and Random was second
(since it survived almost every time).

Leader game

This game is similar to the symmetrical form of BS, with the exception that
mutual defection is the worst outcome, and mutual cooperation is better [19].

The name of the game comes from the following situation: two cars wait to enter
a one-way street. The worst case is, if they go simultaneously (defect-defect),
because they crash. If both wait (cooperate), it is better. But it is even better if
they go separately. The one, who goes first, is the best.

According to our experiments, TFT and Always-Cooperate were better, than
Always-Defect agents, but Random agents again outperformed TFT agents. The
reproduction strategy made a difference in the tendencies, but not in the overall
outcome.

Matching Pennies game

This is, similarly to BS, an asymmetric game, with the exception that it has no
symmetric form, and cooperation and defection have no meaning in it [20]. Thus
the first (hitherto cooperative) move of TFT doesn’t particularly matter now.

The original game is about two players, who both have a penny. They turn the
penny secretly to heads or tails, and then reveal their choice. If the pennies
match, one player gets a dollar from the other, else it is conversely.

Our experiments showed that in this scenario Random agents were the fittest for
survival (playing the only mixed NE of the game), but in case of type 1
reproduction they died out like all the others. However in case of type 2
(technical) reproduction they could cumulate enough utility to ensure their
survival, and start proliferating after a while.

Conclusions

In this article we presented a novel agent-based simulation model for the real
natural selection of arbitrary programs choosing agents’ strategies in repeated 2-
person games. Experiments threw new light upon previous results in the field. It
was shown, that the proposed simulation model is more realistic and thus useful,
than the previous models. Future research will aim at extending these concepts



by introducing N-agent interaction, genetic representation and variation of agent
programs, and more realistic models of agents’ environment and resources.
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