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Abstract: The problem of designing a given social behavior in a multi-agent system is a 
well known issue, yet there is still no general concept to solve it. In fact, there is still no 
theory, that connects the individual behavior of agents with the collective behavior of the 
multi-agent system in general. Nonetheless there are theories, which capture some 
profound aspects of the problem. One of the foremost is the theory of implementation of 
social choice rules. However the roots of the theory lie in social sciences, so its approach is 
not universally suitable. This article presents a new approach to the problem: a high-level 
agent-model for description, design and analysis of collective behavior in multi-agent 
systems. 
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1 Introduction 

The problem of designing a given social behavior (e.g. cooperative, optimal) in a 
Multi-Agent System (MAS) is a well known issue, yet there is still no general 
concept to solve it. In fact, there is no general theory, that connects the individual 
behavior of agents with the collective behavior of the MAS. Nonetheless there are 
theories, which capture some profound aspects of the problem. One of the 
foremost is the theory of implementation of social choice rules. However the roots 
of the theory lie in social sciences, so its approach is not universally suitable for 
MAS design. This article presents a new approach to the problem: a high-level 
agent-model for description, design and analysis of collective behavior in MAS. 

MAS are usually considered from the perspective of intelligent agents [1]. An 
agent “can be anything that can be viewed as perceiving its environment through 
sensors and acting upon that environment through effectors.” [2]. This means, that 
if an agent’s actions depend on its senses, then it must have some representation of 
the environment, i.e. some kind of a percept. A percept is typically not equivalent 



to the environment, because the environment is usually not fully accessible to the 
agent. Using percepts an agent is able to compute its next action. Moreover, all the 
preceding percepts (the complete percept history) can have an effect on that 
choice. Consequently we may speak of two levels of environmental representation: 
an outer representation exterior to the agent, and an inner representation, inside 
the agent. It is the latter, upon which the agent’s decision mechanism – choosing 
among its possible actions – may be placed. It is the task of the Designer to design 
this mechanism appropriately given the outer representation of the environment, 
and the agent’s architecture (sensors, effectors, etc). This decision mechanism 
may depend on some special features of the environment to allow the agent to act 
effectively, e.g. there may be other agents, which make the environment dynamic. 
Such multi-agent situations require individual agents to consider other agents’ 
activity for effective operation. Not only the past, or the present activity should be 
considered, but also events, which may occur in the future. Thus it is 
advantageous for an agent to plan its actions in advance, and to consider other 
agents’ planning activity too. 

Obviously the goodness (utility, payoff, etc) of such agents depends not only on 
the plan they execute, but also on the plans executed by others. This kind of 
strategic interaction is commonly modeled by game theory [3], where agents are 
called players, and their plans are called strategies [4]. Although game theory 
provides an elaborate description framework, it does not specify how the decision 
mechanism works. This makes game theory inappropriate for the design of 
collective behavior in MAS, where agents should act according to a specified 
(possibly optimal) rule of behavior. Theory of implementation of social choice 
rules [5] (a new branch in game theory) proposes a solution to this problem. 
However, it considers agents to be given. Therefore it specifies the decision 
mechanism not inside, but outside of them. This causes fundamental difficulties, 
which may be overcome, if the mechanism is specified within the agents. 

This article introduces a new game theoretic approach to implementation of social 
choice rules: virtual games. Virtual games specify the mechanism within the 
agents, thus enabling the design of provably optimal collective behavior in MAS. 
The next sections will introduce fundamentals of game theory, and 
implementation theory. Then they’ll proceed to the definition of virtual games. 
After the most important definitions, some essential results [10] are stated, 
followed by a conclusion and an outline of future research. 



2 A Common Approach to Design of Collective 
Behavior in Multi-Agent Systems 

Theory of implementation of social choice rules is used to handle problems of 
designing optimal social behavior. The population of agents is considered a 
society, which – as a collective entity – acts according to a social choice rule 
(SCR), a mapping from relevant underlying parameters to final outcomes. Thus, a 
SCR produces social alternatives (outcomes) depending on the private information 
(e.g. type, individual preferences) of the agents in the society. A single-valued 
SCR is called a social choice function (SCF). The implementation problem is then 
formulated as: “under what circumstances can one design a mechanism so that the 
private information of agents is truthfully elicited and the social optimum ends up 
being implemented?” [5] 

 
Figure 1 

The implementation problem 

Fig. 1 shows the implementation problem in more detail: a Designer must 
construct a mechanism that implements a given SCR by producing the same 
outcomes a1, a2, a3, ..., aN, supposing that the agents 1, 2, 3, ..., N choose their 
messages (e.g. actions, strategies) m1, m2, m3, ..., mN according to a given game 
theoretical solution concept S (e.g. dominant strategies, Nash equilibrium). If it is 
possible to design such a mechanism for a given SCR, then the SCR is called S-
implementable. 

The above approach holds many advantages, since mechanisms can model social 
institutions, outer enforcement or even mutual agreement between agents. For 
instance it is shown [5], that if S is dominant (i.e. if each agent chooses its 
dominant strategy regardless of what the other agents choose), then only 
dictatorial SCFs are implementable1. 

                                                            
1  An SCR is dictatorial if it follows the preferences of one particular agent. 



Despite its constructive results, the approach has also its weaknesses. In non-
economical situations, e.g. in informatics, the Designer of an intelligent system 
(software agent, robot, etc) has explicit control over the system’s decision 
mechanism (e.g. program [6]), unlike to a game theoretical solution concept, 
where the assumption about agents’ decision mechanism is implicit. Why should 
every agent in a MAS act according to a given solution concept S? It is also a 
weakness, that agents are forced to act “through” a central mechanism, which has 
global access to the environment. This assumption is generally unrealistic when 
designing MAS, because agents mostly act in a decentralized way, and the 
Designer, or any mechanism – apart from trivial cases – has only local access to 
the environment (e.g. Internet, deep sea, surface of Mars). Moreover, it is also a 
drawback, that the approach guarantees implementation only when certain special 
conditions hold for the SCR (e.g. monotonicity, ordinality, incentive 
compatibility). Generally only approximate implementation is possible, i.e. 
generally an SCR is implementable only with some error. This type of 
implementation is called virtual implementation [7]. 

3 A New Approach: Virtual Games 

To solve the above mentioned problems a new, high-level model of agent decision 
mechanism, called virtual games, is proposed. To give a detailed description of 
the concept, let us first introduce the fundamental notions of game theory: agents; 
pure and mixed strategies; agent-types; payoff functions; static Bayesian games; 
social choice functions; and finally, the notion of Bayesian Nash-equilibrium. 

3.1 Game Theoretic Fundamentals 

Let { }N = 1, 2,…, n  denote a finite, non-empty set of agents, iS  is the finite, non-
empty set of strategies available to agent i ( )i = 1,2,…,n . Now i is S∈  denotes an 
arbitrary member of this set. A strategy associates an elementary action with every 

possible contingency of an agent. Let ( ) n
1 2 n i=1 is = s ,s ,…,s × S = S∈  denote an arbitrary 

strategy combination. A strategy combination s S∈  prescribes a strategy i is S∈  to 
every agent i. Agents choose their strategies simultaneously, without knowing 
each other’s choice. 

For the description of the uncertainty agents may face in MAS environments 
(deficient sensors; dynamic, non-deterministic behavior of other agents, etc), let us 
introduce types [8]. Types of an agent can be used to represent the type of private 
information, resources, processing abilities, etc, it may possess. Thus the 
uncertainty of an agent about other agents (e.g. because of the imperfection of its 



sensors) can be modeled as the uncertainty about the types of other agents. Let iT  
denote the finite, non-empty set of types of agent i, and i it T∈  an arbitrary type of 
agent i. 

Now we can define the payoff of agents. The payoff of an agent describes its 
success (optimality, efficiency, etc) in the environment. Let i iu :S T× →ℜ  denote 
the payoff function of agent i, where ( ) ( )i 1 2 n i i iu s ,s ,…,s ; t u s; t=  is the payoff to agent 
i if the agents choose strategies ( )1 2 ns = s ,s ,…,s S∈ , and the active type of agent i is 

i it T∈ . This means, that the payoff of an agent i depends only on the strategy i is S∈  
it selected, its active type i it T∈ , and the strategies ( )-i 1 2 i-1 i+1 n -is = s ,s ,…,s ,s , ,s S∈K  
chosen by other agents. 

The active type i it T∈  of the agent i is supposed to be chosen by Nature with a 
probability ( )i ip t , where ( )i ip Δ T∈  denotes a probability distribution over iT . 
Every agent i knows only its own active type i it T∈ , but is uncertain about the 
active types ( )-i 1 2 i-1 i+1 n -it = t , t ,…, t , t , , t T∈K  of others. To model this uncertainty, let us 

introduce a ( )p Δ T∈  joint probability distribution over 
n
i=1 iT = × T . Now the 

probability that the types of the agents are really ( )1 2 nt = t , t ,…, t  can be calculated 
as ( ) ( ) ( ) ( )1 1 2 2 n np t = p t p t p t⋅ ⋅ ⋅K , assuming that 1 2 np , p ,…, p  are independent. The 
probability ( )i -i ip t | t  is called agent i’s belief about other agents’ types, -it , given 
its knowledge of its own type, it . Assuming, that 1 2 nS ,S ,…,S , 1 2 nT ,T ,…,T , 

1 2 nu , u ,…, u , and 1 2 np , p ,…, p  are common knowledge among the agents (i.e. 
everybody knows, that everybody knows, that…), the belief ( )i -i ip t | t  can be 
calculated by any of the agents using Bayes’ rule: 

( ) ( )
( )

( )
( )

-i -i

-i i -i i
i -i i

i -i i
t T

p t , t p t , t
p t | t = =

p t p t , t
∈
∑

, where ( ) ( )-i ip t , t = p t , and ( )i it t , t−=  (1) 

Types enabled us to transform any incomplete information game to a game with 
imperfect information [8]. Incomplete information games are games, where some 
players are uncertain about the structure of the game (e.g. strategy sets, or utility 
functions of others), while imperfect information games are essentially the classic 
games introduced by von Neumann [3]. Collecting all of this information together, 
we have: 

Definition 1   The normal-form representation of an n-player (static Bayesian) 
game specifies agents 1, 2, …, n, their strategy spaces 1 2 nS ,S ,…,S , their type spaces 

1 2 nT ,T ,…,T , their payoff functions 1 2 nu , u ,…, u , and the probability distributions 



1 2 np , p ,…, p . At the beginning of a play of the game Nature chooses agent types 
according to the independent probability distributions, and reveals type i it T∈  only 
to agent i. After that agents choose their strategies simultaneously and execute 
them in parallel. Agent i gains a payoff depending on the chosen strategy-
combination, and its active type i it T∈ . Such a game is denoted by a 5-tuple: 

{ } { } { } { }( )i i i ii N i N i N i N
Γ = N, S , T , u , p

∈ ∈ ∈ ∈ . 

If agents are allowed to choose their strategies according to a probability 

distribution ( )i i iq Q = Δ S∈ , where 
( )

i i

i i
s S

q s = 1
∈
∑

, and ( )i iq s 0≥  for every i is S∈ , then 
the strategies i is S∈  are called pure strategies, while the probability distributions 

iq  are called mixed strategies. Now ( )i iq s  denotes the probability, that agent i 
plays a given pure strategy is  by playing the mixed strategy iq . Thus mixed 
strategies generalize pure strategies. The set of mixed strategy combinations is 

constructed as 
n
i=1 iQ = × Q . 

Utility functions also need to be generalized to support mixed strategies. Let 
i iu : Q T× →ℜ  denote agent i’s payoff function, where ( )i iu q; t  is the payoff to agent 

i if agents choose mixed strategies ( )1 2 nq = q ,q ,…,q Q∈ , and agent i’s type is i it T∈ . 
With a slight abuse of notation, this utility can be written as the expectation above 
the payoffs of all pure strategy combinations: 

( ) ( ) ( ) ( ) ( )
( )1 2 n

i i 1 1 2 2 n n i i
s s ,s , ,s S

u q; t q s q s q s u s; t
= ∈

= ⋅ ⋅ ⋅ ⋅∑
K

K

, where ( )1 2 nq = q ,q ,…,q Q∈  (2) 

Before proceeding to the definition of the Nash equilibrium [9], let us first define 

strategy profiles 
( ){ }

i i
i i t T

f t
∈  of agent i ( )i = 1, 2,…, n , and social choice functions. A 

strategy profile is a mapping i i if : T Q→ , which associates a mixed strategy iq  to 

every type i it T∈  of an agent i. Let ( ) n
1 2 n i 1 if f , f , , f F F== ∈ = ×K  denote a strategy 

profile combination, i.e. a social choice function (SCF), and let 
( ) ( ) ( ) ( )( )1 1 2 2 n nf t f t , f t , , f t Q= ∈K

 denote the mixed strategy combination provided 
by SCF f, given the agents’ types are ( )1 2 nt = t , t ,…, t T∈ . Now the expected payoff 
of agent i in case of an SCF f is: 

( ) ( ) ( )( )i i i i i i iiu f ;t p t |t u f t ,t ;ti
t Ti i

− −= ⋅
∈− −

∑
, where ( )i it t , t−=  (3) 

In (3) the payoff function i iu : F T× →ℜ  of agent i was redefined again (with a 
slight abuse of notation) to support SCFs. Because of the uncertainty about other 



agents’ types, this is the payoff, that agent i with type i it T∈  tries to maximize, not 
( )( )i iu f t ; t . The belief ( )i -i ip t | t  in (3) should be calculated according to (1), and the 

expected payoff ( )( )i iu f t ; t  in case of a mixed strategy combination ( )f t Q∈  should 
be calculated according to (2). Now we can define Bayesian Nash equilibrium: 

Definition 2   In a static Bayesian game { } { } { } { }( )i i i ii N i N i N i N
Γ = N, S , T , u , p

∈ ∈ ∈ ∈  a SCF 
( )* * * *

1 2 nf = f , f ,…,f F∈  is a Bayesian Nash equilibrium if for each agent i and for each 

i it T∈ , ( )*
i i if t Q∈  solves 

( ) ( ) ( ) ( ) ( ) ( )( )* * * * *
i i i 1 2 i 1 i 1 n i

q Qi i
max p t |t u f t ,f t , ,f t ,q ,f t , ,f t ;ti 1 2 i 1 i i 1 n

t Ti i

− − +
∈

⋅ − +
∈− −

∑ K K

. 

3.2 Virtual Games 

Section 3.1 introduced the fundamentals of game theory. Now we can proceed to 
discuss the solution of the problem outlined in Section 2. A new approach for 
implementation of social choice rules is proposed, called virtual games. This 
concept enables the construction of mechanisms, which provably implement any 
SCF exactly. Roughly speaking a virtual game is a part of this mechanism. Fig. 2 
illustrates the concept: 

 
Figure 2 

A new approach to the implementation problem 

The mechanism is distributed among the agents. Every agent has a decision 
mechanism, which has three parts: a transformation, a virtual game, and a function 
for selecting a Nash-equilibrium. First the agent senses the outer representation of 
the environment: the real game. From that percept it creates an inner 
representation of the real game: the model of the real game. This is the input for 



the decision mechanism choosing among strategy profiles. Finally, the agent acts 
according to that profile. 

Thus, virtual games are artificial constructs built from the model of the real game. 
They are not models of the real game, they are components of the decision 
mechanism of agents, and as such, they may be arbitrarily “far” from the model of 
the real game. Technically they differ from the model of the real game only in that 
they have different pure strategy spaces, called pure virtual strategies, and payoff 
functions, called virtual payoff functions. Formally this means, that every agent i 
has a finite, non-empty set of pure virtual strategies i iV Q⊂ , a subset of the set of 
mixed strategies. These are the feasible strategies for agent i. Now the virtual 

payoff function of agent i is denoted by i iv : V T× →ℜ , where 
n
i 1 iV V== × . Virtual 

payoff represents an agent’s private valuation of the feasible strategic outcomes. A 
virtual game is then a normal-form static Bayesian game 

{ } { } { } { }( )*
i i i ii N i N i N i N

Γ = N, V , T , v , p
∈ ∈ ∈ ∈ . In this game the concepts of mixed strategies, 

mixed strategy combinations, their payoff, strategy profiles, social choice 
functions, their payoff, and Bayesian Nash equilibrium are defined similarly to the 
concepts introduced in Section 3.1. 

A mixed virtual strategy of agent i is denoted by ( )i i ir R = Δ V∈ , where ( )i ir q  
denotes the probability, that agent i plays the pure virtual strategy i i iq V Q∈ ⊂  by 
playing the mixed virtual strategy i ir R∈ . The set of mixed virtual strategy 

combinations is denoted by 
n
i=1 iR = × R . The virtual payoff function for them is 

denoted by i iv : R T× →ℜ , and the virtual payoff is calculated similarly to (2). Let 
i i ig : T R→  denote a virtual strategy profile of an agent i in a virtual game. An SCF 

g of the virtual game is called a virtual social choice function (VSCF). The virtual 
payoff for a VSCF is calculated similarly to (3). A mixed virtual strategy i ir R∈  in 
the virtual game is equivalent to a mixed strategy i iq Q∈  in the model of the real 

game, and denoted i ir q≡ , if 

( ) ( )( ) ( ) ( )
( )j
i i

j j
i i i i i i

q V

q s = r q q s

∈

⋅∑
 holds for every i is S∈ . A 

mixed virtual strategy combination r R∈  is equivalent to a mixed strategy 
combination q Q∈ , and denoted r q≡ , if i ir q≡  holds for every i = 1, 2,…, n . A VSCF 
g is equivalent to a SCF f, and denoted g f≡ , if ( ) ( )g t f t≡  holds for every t T∈ . 

Corollary 1   If given a mixed virtual strategy i ir R∈  and a mixed strategy 
i i iq V Q∈ ⊂  which is also pure virtual strategy, where ( )i ir q = 1  holds, then i ir q≡ . 

Now it is possible to state the result, which is a key step in showing that with 
decision mechanisms based on virtual games any SCF is exactly implementable. 



Theorem 1   If in a virtual game { } { } { } { }( )*
i i i ii N i N i N i N

Γ = N, V , T , v , p
∈ ∈ ∈ ∈  constructed for 

a static Bayesian game { } { } { } { }( )i i i ii N i N i N i N
Γ = N, S , T , u , p

∈ ∈ ∈ ∈  for every ( )1 2 nt = t , t ,…, t T∈  

exists a 
( ) ( ) ( ) ( )( )t tt t

1 2 nq = q , q ,…, q V Q∈ ⊂
 pure virtual strategy combination such that for 

every i = 1, 2,…, n  
( )

( )

( ){ }
t

i i t

1, q = q
v q, t =

0, q V \ q∈

⎧⎪
⎨
⎪⎩  holds, then the only Bayesian Nash 

equilibrium of the virtual game *Γ  that yields maximal virtual payoff for every 
i = 1, 2,…, n  is the VSCF ( )

1 2 n

* * * *g = g , g ,…, g
, where for every ( )1 2 nt t , t , , t T= ∈K  

( ) ( ) ( ) ( )( )* * * *
1 1 2 2 n ng t = g t , g t ,…, g t R∈

 is a mixed virtual strategy combination such that 
( ) ( )( )* t

i i ig t q = 1
 holds for every i = 1,2,…,n , i.e. 

( ) ( ) ( ) ( ) ( )( )* t t t t
1 2 ng t q q , q , , q Q≡ = ∈K

 for every 
t T∈ . 

Theorem 1 guarantees a unique Bayesian Nash equilibrium in virtual games, 
where the virtual payoff functions of agents are such, that for every type t T∈  their 
value is zero for all except one pure virtual strategy combination 
( ) ( ) ( ) ( )( )t tt t

1 2 nq = q , q ,…, q V Q∈ ⊂
, where it is one. The theorem proves this proposition by 

first showing, that if every agent i plays according to a virtual strategy profile 
*
ig , 

where 
( ) ( )( )* t

i i ig t q = 1
, then the VSCF ( )

1 2 n

* * * *g = g , g ,…, g
 is a Bayesian Nash equilibrium 

of the virtual game. Second, it proves (by contradiction) that this is a unique 
Bayesian Nash equilibrium of that virtual game in a sense that it is maximal for 
every agent. A proof of the theorem can be found in [10]. 

To use this result, the notion of game theoretical solution concepts and 
implementation need to be defined. Let S  be a game theoretical solution concept. 

Given a game Γ  we denote by ( ) F2Γ ∈S  the set of strategy profiles (SCF’s) that 
are recommended by S  in game Γ . An SCF f in Γ  is S -implementable if there 

exists a virtual game *Γ  constructed for Γ , such that ( )*f Γ≡ S
. Now the main 

result of the article can be stated as follows: 

Theorem 2   Any SCF of any static Bayesian game is Bayesian Nash-
implementable. 

Theorem 2 uses Theorem 1 to prove its statement in the following way: first it 
takes an arbitrary Bayesian game Γ , and an arbitrary SCF f in Γ . Then it 
constructs a virtual game *Γ  such, that for every agent i the set of virtual pure 
strategies iV  is the set of mixed strategies ( )i iq =f t  recommended by the SCF f, i.e. 

( ){ }
i i

i i t T
V f t

∈
∈

, and the virtual payoff function iv  is zero for all except one virtual 



pure strategy combination ( )q=f t , where its value is one. In this case Theorem 1 
guarantees, that the only Bayesian Nash equilibrium of the virtual game *Γ  is the 

VSCF, where every agent i with type i it T∈  plays ( )if t , i.e. ( )*f Γ≡ B
, where ( )•B  

denotes the game theoretical solution concept of Bayesian Nash equilibrium. 

A proof of the Theorem 2 can be found in [10]. In a game theoretical sense the 
result is independent of the accuracy of agents’ modelling abilities. Theorem 2 
states only that any SCF of any static Bayesian game can be implemented (even 
by virtual games with special binary payoffs) in case when agents act according to 
the maximal Bayesian Nash equilibrium of the virtual game constructed for the 
given static Bayesian game. Nonetheless, when players are considered agents, 
there is no guarantee, that they will use the same virtual game, because – by 
definition – they construct virtual games upon their model of the real game (see 
Fig. 2), and this model may be different among the agents. Thus, the results in 
Theorem 2 apply only to situations, when agents have the same virtual game. I 
assume that it is the task of the Designer to construct agents that way. Any 
relaxation of the assumptions is the task of future research. 

Conclusions 

The results in this article enable a high-level description, design and analysis of 
agents’ decision mechanism in MAS. The results overcome the weaknesses of the 
theory of implementation of social choice rules. It is shown, that arbitrary 
collective behavior can be achieved exactly and in general. Consequently optimal 
(e.g. Pareto-optimal, bounded optimal [6]) SCFs are implementable, e.g. to 
optimize agents’ communication protocols (strategic interaction); resource usage 
(in connection with the utility of agents); or the quality of various services of 
MAS (in connection with the optimality of the SCF). A uniform framework is 
provided to describe, design and analyze social behaviour. Elaborate distinctions 
can be made in the incentives, private valuation and preferences of agents if 
modelling their decision mechanism via virtual games. However, only virtual 
games with binary payoffs were discussed. The examination of virtual games with 
non-binary payoff functions is the task of future research. This research will 
mainly concentrate on connecting the concept of virtual games to existing low-
level agent architectures (e.g. [11], [12]) and integrating it into a unified theory of 
designing and analysing intelligent multi-agent systems. 
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