
DINA: Dynamic INtelligent Agents 

Kovács, Dániel László 
Budapest University of Technology and Economics 

Department of Measurement and Information Systems 
Budapest, H-1117, Magyar tudósok körútja 2., Hungary 

dkovacs@mit.bme.hu 

 

Abstract – Dynamic Intelligent Agents are agents capable of 
intelligent behavior in any chosen dynamic environment. A new 
agent architecture is proposed, revising the classical concepts of 
system-environment relation, thus agents capable of ”optimal” 
exploratory behavior and heterogeneous cooperation can be 
created. At first an overview is presented, followed by the 
description of a possible implementation tested on a set of micro-
world test cases. Finally conclusions are drawn concerning the 
effectiveness of the concept. 

Keywords – Artificial Intelligence, Genetic Algorithms, Intelligent 
Systems, Planning, Problem-solving 

I. INTRODUCTION 

An agent is an autonomous, adaptive entity situated in an 
environment. Intelligent means that it consistently tries to 
expand its view (to gain knowledge) of its surroundings and 
to understand the relations to and within its environment. 
Dynamic environments have their own tendencies, ongoing 
processes, i.e. activities independent of the agent (other 
agents for example). 

The paper presents an idea of how to relate the mentioned 
concepts in a model that is general enough, yet still 
applicable. For this reason the hitherto used agent-
environment interaction schemes are reinterpreted. They are 
expanded in a way by revising the classical decision making 
mechanism and mental representation of the environment. 

Agents are important topic because of the growing need 
for intelligent applications both in scientific and daily 
activities [1]. The need for intelligent tools is essential in 
fields that are hardly manageable or even inaccessible for 
humans (i.e. space or sea exploration, managing complex 
systems). Assisting human activity with more effective 
machineries is also a well-known issue. A harmless example 
could be the recent intelligent vacuum cleaner, the Internet 
search engines, or the like. 

The goal was to develop a general theory [2] that makes it 
possible for agents to achieve real intelligent behavior. The 
paper first introduces the general concepts of Dynamic 
Intelligent Agents (DINA), proceeding with the description of 
a possible (currently Prolog-based) implementation. Then its 
functionality is illustrated on a set of test cases with final 
conclusions concerning the effectiveness of the approach. 

II. AN OVERVIEW OF DINA 

In our approach the concept that connects intelligent 
agents with dynamic environments is evolution. Agents 
evolve in the environment, making decisions, acting, and 
gaining or loosing accordingly to a particular concept of 
fitness. They elaborate their optimal decisions by 
investigating alternatives via the internal evolution of their 
own models - alter egos - in possible worlds extrapolated 
from the actual observable state of the environment. This 
means, that not only environments can evolve agents – agents 
themselves can also evolve their so-called “thoughts” 
analogously to concepts of memetics [3]. The assumption, 
that evolution is both responsible for the dynamics of 
environments and for the intelligence of agents is plausible, 
when being compared to the empirical notion of human 
evolution. Besides, self-similarity [4] is also a part of nature 
and potentially fruitful to provide analogies. Evolution within 
evolution is (we presume) the main concept holding the key 
for real intelligent behavior, i.e. artificial intelligence. 

Talking about evolution not in a biological, but rather in a 
formal, technical way implies the mention of genetic 
algorithms [5], stochastic search methods proven to be 
globally convergent [6]. Consequently, by using algorithms 
based on genetic algorithms, i.e. genetic programming [7] or 
gene expression programming [8], it is possible to construct 
architectures that realize the above mentioned evolution in 
evolution. Due to the proven convergence, globally “optimal” 



evolution can be achieved enabling the system to realize e.g. 
“optimal” exploration planning [9]. 

III. THE FRAMEWORK 

First the intended meaning of some of the most important 
terms is clarified: 
 
- Evolution is a process, which evolves elements of the 

same type within an environment using natural means of 
selection. 

- An environment is a problem-space representing a task, 
where the solution of the problem(s) means the solution of 
the task. 

- An agent is an adaptive, problem solving entity, which is 
a part of an evolution and attempts to solve a task. 

 
Now the general concept of DINA can be grasped as: 

 
Given an environment, i.e. a problem-space, where a 

population of agents is being developed via an unsupervised 
evolution, every agent evolves its best action via an inner, 
supervised evolution. 
 

To define a suitable architecture the general concepts must 
be embedded in the classical framework of agent-
environment model (Fig. 1): 

 

 
Fig. 1. General framework of DINA 

An agent (an intelligent system) is embedded in an 
environment, where – being a part of an unsupervised 
evolution (competing for resources to gain advantage over 
others) – it thus attempts to solve a task represented by its 
current environment. For this purpose it samples the 
environment (1) creating its inner representation (2), which is 
then used by a decision-making mechanism (3) to produce an 
action (4) executed toward the environment (5), modifying its 
present state (6). An agent continues this loop, until it stops 
by itself (e.g. runs out of resources, etc), or is externally 
interrupted. 

A. Inner and outer representation 

We gain a more detailed view by looking at the 
environment as if it would be an “outer representation”, its 
image an “inner representation” and the decision-making 
mechanism a “program evolution” based on genetic 
algorithms. Without knowing the generality, we can assume 
that inner and outer representations are collections of facts 
represented by logic statements. 
 

 

Fig. 2. Detailed framework of DINA 

The inner representation of the outer representation is its 
interpretation (Fig. 2). It is a model of the outer 
representation (the environment) “thought to be possible”. 
Outer representation consists of objects, other agents, 
independent environmental processes and relations between 
them. The first step is the interpretation of the outer 
representation. An agent senses the environment (1) and then 
constructs its inner representation (2), which models facts 
sensed in the outer representation. Also a fitness function is 
created, which is used to evaluate conditional action-chains, 
i.e. conditional plans or programs built of models of possible 
elementary actions. A population of such programs is evolved 
by using the fitness function (3). The best program evolved 
by the program evolution (4) is executed as a reaction toward 
the environment (5), modifying its present state (6). 

B. Local and global reality 

Inner and outer representations are rarely equal in content 
and expressive power. Usually only a “surface” of the latter is 
“projected” into the former depending upon the specific 
realization of the agent’s sensors. Therefore agents can only 
use a part of the outer representation to construct its inner 
variant: the part, which can be sensed by them. This leads us 
to a more accurate model: 
 
- The complete environment, i.e. the outer representation is 

the global reality of an agent. 
- An agent’s perception of the global reality is its local 

reality. 



An agent perceives global reality through its local reality. 
There may be several global realities producing the same 
perception, i.e. the same local reality. Consequently agents 
construct alternative global realities, here called fantasies 
depending upon experience and perception. Fantasies are 
global realities “thought to be possible” (similarly to the 
possible worlds in models of various modal logics [10]). 
Meanwhile the agent initializes a population of programs 
built of models of possible elementary actions. Fantasies are 
then used to evaluate the goodness of these programs. At first 
the agent places every individual of the program population 
into every fantasy. It executes them calculating their average 
utility on all the fantasies depending on their effect, their 
operational activity or any other of their attributes. This value 
is then used as the fitness value of the given program. A 
program being executed in a fantasy is called an agent’s 
double because it is also a representation of an agent itself. 
The best agent-double evolved is chosen to be executed by 
the agent. This concept is shown in Fig. 3. 

 

 
Fig. 3. Agent-environment relation in detail 

Every agent has a (learnt) model – depending on its 
“experience” – of how its sensors and effectors work, i.e. of 
how global reality affects its local reality and of how actions 
affect global reality. This experience is a basis of the “self-
simulation”, i.e. of generating fantasies and running agent-
doubles. Experience is collected through time by continually 
sensing a local reality. Both experience and the models 
(deduced from it) are part of the inner representation, which 
is a kind of knowledge base of the agent. 

C. Linear and non-linear memory 

Agents can have different representations of their 
experience. They can construct a linear memory collecting 
their previously executed actions in a list of <When, Where, 
What> statements, where When means the time the action 
was accomplished, Where means the local reality sensed at 
the moment and What is the description of the action itself. 

Moreover it is possible for agents to also have a (very 
different) nonlinear memory, which is a collection of 
<Where, What> statements with Where now meaning an 
agent’s position in its inner representation where What 
(sensed local reality) was felt. While linear memory is a list 
of executed actions, non-linear memory is an implicit map of 
the global reality. Using nonlinear memory and models 
describing sensors and effectors, agents can construct 
fantasies enabling them to proceed with evolving their 
actions. For understanding this process we must first clarify 
the meaning of models for knowledge representation. 

D. Models for representation of knowledge 

By models here we mean collections of (not necessarily 
grounded) logical statements and logical constraints 
describing relations between the attributes (variables) of the 
statements. An example is shown in Fig. 4, where two sets of 
such statements (p and q) are related to each other by using 
logical constraints on the values of their variables. 
 

 
Fig. 4. An example of a relational model 

For example, given a fully grounded statement describing 
the current state of the local reality and a partially grounded 
statement describing the current state of the inner 
representation, an agent can possibly instantiate (or just 
narrow the domain of) some variables in the inner 
representation, thus concluding some facts about the current 
state of the (assumed) global reality. 

By the use of such models describing the connection 
between actions and their effects on the state of the global 
reality, the relations between (and inside) the state of local 
and global reality, agents are able to generate fantasies and to 
properly represent themselves in them via agent-doubles. 

E. Agent-doubles and Fantasies 

Agent-doubles, when executed in a fantasy, are provided 
only with a “local fantasy”, as if the fantasy would be their 
global reality. They are also provided with all the experience 
gathered by the agent, i.e. they have both the agent’s linear 
and non-linear memory enabling them to properly represent 
the agent. That way agents “simulate the world and 



themselves within” via agent-doubles being embedded and 
executed in fantasies. 

Fantasies are generated the following way. From a non-
linear memory agents can deduce facts about the assumed 
global reality (inner representation) by using logical 
constraints, i.e. by instantiating (or narrowing the domain of) 
some variables in the statements describing the inner 
representation. Fantasies are all of the possible instantiations 
(considering the constraints) of this inner representation. 

When creating fantasies agents do not consider those parts 
of the global reality they haven’t yet felt. This way they avoid 
the problem of omniscience. Only those facts of the global 
reality appear in their fantasies, which had effect on their 
local reality. Fig. 5 presents the relation of these concepts: 

 
Fig. 5. Global reality and its inner representation 

Facts about the global reality that are known by the agent 
(a.) appear in the inner representation as grounded logical 
statements, and thus every fantasy contains them. These are 
statements which variables had been instantiated by the 
constraints of the models. Facts that were sensed, but are still 
uncertain (b.) appear as partially grounded statements, and so 
fantasies are the possible instantiations of these statements. 
The knowable facts that weren’t yet sensed by the agent, but 
can possibly be sensed as a result of an action sequence (c.), 
do not appear in the inner representation or in any fantasy (at 
the moment of sensing). Facts that cannot be sensed (d.) will 
never appear in the inner representation or in any fantasy. 

F. Gene Expression Programming 

The only theoretical aspect of DINA still not covered is 
the way agents and their doubles are coded and evolved. 
Gene Expression Programming (GEP) [8] (an extension to 
Genetic Programming (GP) [7]) is used to realize both the 
evolution of agents and their doubles. It is used because it is 
efficient and fits well the philosophy of the approach. 

Agent-doubles are represented with multi-genic GEP 
chromosomes, where every gene is a coded decision tree 
evaluated with a TOP-DOWN method. 

 
Fig. 6. Example of a decoded gene 

Fig. 6 shows a decoded GEP gene, actually a decision tree 
with conditions as its inner vertices and actions as its leaves. 
When evaluating such a decision tree with a TOP-DOWN 
method only one leaf is activated depending on the conditions 
present, and thus every gene codes a complex conditional-
action (a program). Vertices are elementary actions, which 
are of three different types: perceptive, cognitive and 
effective actions. Effective actions modify the state of the 
environment (global reality). Perceptive actions are decisions 
based upon the current local reality. Cognitive actions are 
decisions based upon experience. 

By evolving chromosomes consisting of genes built of 
such elementary actions, conditional action-chains (i.e. 
programs or plans) are evolved, where decisions are realized 
by perceptive and cognitive actions. This way chromosomes 
code conditional plans, i.e. agent-doubles. Agents are coded 
with multiple chromosomes, where every chromosome is 
responsible for a different aspect of the agent’s architecture 
and behavior. Some of them can code production-rules that 
realize the interpretation-mechanism; others can be 
responsible for parametrizing the inner evolution, etc. 

By evolving agents and because of a globally convergent 
computational model of evolution [5], intelligent systems 
capable of designing “optimal” plans for dynamic 
environments can be evolved. From the point of view of 
planning this means, that theoretically the hardest problems, 
i.e. exploration problems can be “optimally” solved. 
Exploration problems [9] are problems afflicted by 
inaccessible environments, lack of knowledge and possibly 
faulty sensors and effectors. The agent, i.e. the exploration 
planner doesn’t know at first the effects of his actions, but 
explores them by operating in the environment. The evolution 
of such agents produces an “optimal” exploration planner, 
which is able to appropriately learn the model of its 
environment and thus the effects of its actions. Because of a 
globally optimal inner evolution, the agent is able to produce 
contingency plans for “optimally” solving the problem posed 
by the environment. 

IV. IMPLEMENTATION 

The DINA is currently Prolog-based. Sicstus Prolog 3.10.0 
[11] was used for implementing the concrete architecture 



with the extension of the “Constraint Logic Programming on 
Finite Domains” (CLP(FD)) library [12] for creating 
relational models, “Definite Clause Grammars” (DCG) [13] 
for realizing production-rules (responsible for agents’ 
structure and behavior coded by their GEP chromosomes), 
and the “Tool Command Language and Tool Kit” (TCL/TK) 
library for creating a Graphical User Interface (GUI). 

The particular implementation of the general architecture 
is not complete, and is problem specific to facilitate the 
testing. The interpretation mechanism of agents works with a 
complete model of the environment, i.e. the models 
representing inner and outer representations are equivalent, 
and so an agent mustn’t yet explore the effects of its actions, 
etc. Consequently, only contingency problems can thus be 
solved generally in an “optimal” way. The implementation is 
problem (or domain) specific in a sense, that it was 
implemented only for some test-worlds. 

V. TESTING 

The DINA was tested in several micro-worlds. The so 
called Wumpus-world [9] and Table world [14] were used to 
estimate the goodness of the approach. Though seemingly 
simple, even these grid worlds hold a very special challenge 
for intelligent agents. 

A. Wumpus world 

In Wumpus-world agents must confine themselves to a 
relatively simple local reality. They have only five binary 
feelings, nonetheless they must survive in a global reality that 
is much more complex and even dangerous. This difference 
between the complexity of the global and local reality makes 
it hard for them to succeed, i.e. to eliminate all Wumpuses, to 
find all the gold and to escape via the entry point. Tests have 
shown, that DINA was comparable to human performance 
almost in every test. Fig. 7 shows a typical example of a 5x3 
Wumpus world, where the agent (lower left corner) can only 
feel perceptions depending on the state of the neighboring 
four squares. 
 

 
Fig. 7. An example of Wumpus world 

Smell is felt, if a Wumpus (middle of lower row) is close 
by. Similarly wind is felt, if an abyss is in the neighborhood. 
Both are deadly for the agent to encounter. Agents have a 

limited number of shots to eliminate Wumpuses, which 
scream if being shot. A scream can be heard in the whole 
Wumpus world. If an agent finds gold by stepping onto it, 
then it can see it shine. Also an agent can feel a push, if being 
crashed into a wall. 

B. Table world 

In Table world, though the difference between global and 
local reality is smaller, agents have to cooperate to 
accomplish the task. Tests have shown, that even a 
heterogeneous cooperation could be achieved, i.e. a 
cooperation emerging from different agent-behaviors, where 
agents were able to work together on a task by executing 
different plans. Fig. 8 shows a typical example of a Table 
world, where Ai are the agents that have to bring table T to its 
destination D. 
 

 
Fig. 8. An example of Table world 

The table is too heavy for a single agent, so agents have to 
cooperate (by homing around the table and bringing it down 
to its destination) to accomplish the task. 

VI. TEST RESULTS 

Despite the fact that large computational resources were 
needed for relevant testing (checking all parameter 
combinations) the effective AND-parallelism of the approach 
enabled to run different tests, agents, fantasies or even agent-
doubles simultaneously. This way the time for a relevant 
testing was reduced drastically, i.e. from months to days. 

In Table world agents were competing (or cooperating) 
with each other. Agent-doubles were coded with two-genic 
chromosomes, which – representing only two plan steps – 
were “lengthened” by executing them cyclically, i.e. they 
actually coded cyclic plans. Every agent had four-four (same) 
agent-doubles in its fantasies, where every gene of the 
chromosome (thus responsible for the joint behavior of the 
agent-doubles) was evaluated with a different fitness 



function. One gene was responsible for homing, the other for 
herding. A composition of these fitness functions was used to 
calculate the overall fitness value of the chromosome 
(depending on the collective activity of the four agent-
doubles). Thus, by evolving agent-doubles, homogeneous 
cooperation was achieved, i.e. agent-doubles cooperated by 
using the same plan. Agents evolving their actions thus 
separately achieved heterogeneous cooperation. 

In Wumpus world human adversaries were asked to 
compare their skills against the approach. Several tests were 
made. Human participants played separately, once on every 
test. After a human player finished, an agent was tested with 
the same initial conditions. The number of steps made by the 
human opponent limited the agent’s steps. Fig. 9 shows a 
comparison of “thinking” times in a typical test situation. 
 

 
Fig. 9. “Thinking”-times of a typical Agent vs. Human test 

The dark line shows the “thinking” times of DINA, the 
light line shows the thinking-times of a human opponent. 
There seems to be no correlation between them because, in 
contrary to humans, agents weren’t yet “remembering” the 
solutions evolved in previous steps. 

Fig. 10 shows a summary of the average performance of 
DINA compared to the performance of human players in 
Wumpus world. DINA resulted in less deaths, it collected a 
similar amount of gold, eliminated more Wumpuses, but 
somehow didn’t manage to escape as well, as human players. 
This can be traced to a fault in the current implementation. 
 

 
Fig. 10. Average results of Agent vs. Human tests on Wumpus world 

VII. CONCLUSIONS 

A new approach to design a competitive AI system was 
introduced. The main idea, i.e. two-level evolution was 
applied to planning. One evolutional level was responsible 
for “optimal” contingency planning, while the other (meta-
level) was responsible for evolving such planners (extended 
with the ability to explore their environment), thus producing 
an “optimal” exploration planner. Although there is no formal 
description (or verification) of the agent-architecture yet, 
simulations show convergence and improvement in the utility 
of the produced solutions. 

Future investigations are oriented at making the 
description of the approach more formal, mainly the 
interpretation mechanism and the languages describing the 
models of the environment and agents. A full, problem 
independent implementation is planned, with real-world tests, 
where DINA could be responsible for the actions of a robot 
situated in the physical environment. 

It can be concluded, that a general, robust and scalable 
heuristic method was found for solving the difficult task of 
“optimal” exploration planning, i.e. the task of intelligent 
exploratory behavior in any chosen environment. Moreover, 
test results have shown that it is possible to achieve 
heterogeneous cooperation as an emergent behavior with a 
performance comparable to human. These benefits make 
DINA a promising alternative for solving complex tasks 
concerning future AI research. 

REFERENCES 

[1] IBM, Journal on Pervasive Computing, vol. 38, no. 4, 1999 
URL: www.research.ibm.com/journal/sj38-4.html 

[2] D. L. Kovács, “Evolution of Intelligent Agents: a new approach to 
automatic planning” in Proc. of the IFAC Workshop on Control 
Applications of Optimization (CAO’2003), Visegrád, Hungary, 2003. 

[3] R. Dawkins, The selfish gene. Oxford University Press. 1989. 
[4] M. F. Barnsley, Fractals everywhere. Academic Press. 1988. 
[5] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and 

Machine Learning. Addison-Wesley. 1989. 
[6] J. H. Holland, Adaptation in Natural and Artificial Systems: An 

Introductory Analysis with Applications to Biology, Control, and 
Artificial Intelligence. MIT Press. 1975. 

[7] J. R. Koza, Genetic Programming: On the Programming of Computers 
by Means of Natural Selection. MIT Press. 1992. 

[8] C. Ferreira, “Gene Expression Programming: A New Adaptive 
Algorithm for Solving Problems”, Complex Systems, vol. 13, no. 2, 
pp. 87-129, 2001. 

[9] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern 
Approach. Prentice Hall. 1995. 

[10] P. Blackburn, M. de Rijke and Y. Venema, Modal Logic, Cambridge 
University Press, 2001. 

[11] P. Szeredi and T. Benkő, Introduction to logical programming. 
Budapest University of Technology and Economics Press. 2000. 

[12] P. Van Hentenryck, Constraint satisfaction in logic programming. MIT 
Press. 1989. 

[13] A. Colmerauer, Les Grammaires de Metamorphos, Technical Report, 
Groupe d’Intelligence Artificielle, Marseille-Luminy, Nov. 1975. 

[14] Zhang Byouk-Tak and Cho Dong-Yeon, “Co-evolutionary Fitness 
Switching: Learning Complex Collective Behaviours Using Genetic 
Programming”, Advances in Genetic Programming, vol. 3, pp. 425-
445, 1999. 


