
 1

EVOLUTION OF INTELLIGENT AGENTS: A NEW APPROACH TO
AUTOMATIC PLAN DESIGN

Dániel Kovács László

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest, H-1117, Magyar tudósok körútja 2., Hungary
dkovacs@mit.bme.hu

Abstract: Evolution of intelligent agents, a new approach to automatic planning, is
presented here for the first time as a new technique for evolving systems capable of
generating “optimal” plans without any prior knowledge of the environment, or any
method (i.e. schemata) concerning plan design. The classical model of system-
environment interaction is extended by making it more “natural”. By the use of the
recent gene expression programming (GEP) technique a fully functional, multi-layered
system architecture capable of solving complex tasks is proposed. The power of the
new approach is demonstrated by testing it on several micro-world problems. Copyright
 2003 IFAC

Keywords: Agents, Genetic algorithms, Learning systems, Planning, Problem solvers,
Self-optimizing systems

1. INTRODUCTION

The mathematical model of natural evolution, namely
genetic algorithms (GAs) are globally convergent,
stochastic search methods (Holland, 1975),
discovered in the early ’70’s. The word “agent”
cannot be defined with the same precision. Typically
a system called “agent” is an autonomous, adaptive
entity placed in an environment, where it tries to
satisfy a given task. So far not much success was
shown in connecting the two fields in a natural way,
despite that it would be analogous to the empirical
sense of human evolution and thus potentially
fruitful.

This gap is targeted by the proposed concept of agent
evolution, which is a theoretical approach of how to
find the best possible problem solver for a given task,
i.e. an adaptive system that can automatically
discover the rules of plan design required for solving
complex problems.

The principle is based on the classical system-
environment interaction model, expanding it in a way
by reinterpreting the hitherto used decision-making
mechanisms, the mental representations of the
environment, and other agent components.

The topic becomes more and more vital due to the
growing need for such “intelligent” applications both
in scientific and daily activities. The increased
computer power, the global use of the Internet, and
other issues concerning our everyday life make it
worth, if not indispensable, to design “intelligent
tools”, such as robots, software agents, etc. (IBM,
1999). The need for automatic decision-making is
crucial, when thinking of exploration of such areas
that are inaccessible, or unmanageable for humans.

Our goal was to design a system that – given a class
of problems – can produce an optimal solver. The
present work introduces the agent evolution by
presenting the revised concepts of the agent-
environment relation in detail. The paper then
proceeds with the description of a possible (currently
Prolog-based) implementation, illustrating its
functionality on a set of test cases. Finally it
evaluates the result, and draws its conclusion
concerning the effectiveness of the concept.

2. AN OVERVIEW OF AGENT EVOLUTION

The idea to bring together evolution with agents
within the classical framework of system-
environment interaction model is as follows:

 2

Given an environment, i.e. a problem-space, where a
population of agents is being developed via an
unsupervised evolution, every agent evolves its best
action via an inner, supervised evolution.

Lets us define the meaning of the most important
terms:

- An environment is a problem-space

representing a task, where the solution of the
problem means the solution of the task.

- Evolution is a process, which tends to evolve
elements of the same type within the
environment using natural means of selection.

- An agent is an adaptive, problem solving
system, which – being a part of an evolution –
tends to solve a task.

The conceptual framework of agent evolution is
shown in Figure 1.

Fig. 1. General framework of agent evolution

An agent first samples the environment (1), creating
its picture (2), which then is used by a decision-
making mechanism (3) to evolve the best possible
action (4) toward the environment (5) modifying its
present state (6).

The agent evolves the best possible action via an
“inner” evolution. This means, that it must possess a
fitness function to classify the goodness of a given
action, and this implies, that it must construct the
fitness function all by itself. The agent constructs a
fitness function during the sampling stage, which
then is used to evaluate the goodness of an action by
evaluating the final state of the inner representation,
generated by that action. Secondly, the agent must
generate populations of such actions, to be able to
run an evolution. For this purpose an extension of
genetic programming (GP) (Koza, 1992), namely
gene expression programming (GEP) (Ferreira, 2002)
is used, to make the evolution of actions possible.
Actions are coded as multi-genic GEP chromosomes,
and can be considered as conditional action-chains,
i.e. programs. The developed framework, which
extends the standard approach, can be seen in Figure
2.

Fig. 2. Detailed framework of agent evolution

The outer representation of the environment consists
of objects, other agents, possible elementary actions,
relationships between objects and agents, as well as
dynamic processes. The agent interprets the outer
representation (1) and constructs its inner equivalent
(2). The inner representation consists of pictures of
objects, agents, possible elementary actions and a
fitness function to evaluate them. The agent then
generates an initial population of conditional action-
chains, consisting of interpreted elementary actions
(3), and evolves them using a fitness function, to get
the best possible variant (4). This is then used as an
action toward the outer representation (5), modifying
its present state (6). The agent continues this loop,
until it stops by itself, or is externally interrupted.

Many question arise by examining the above
concept:

1. What is the difference between the outer,
and the inner representation?

2. On what basis does the agent construct the
inner representation?

3. In what way are actions tested and evolved?
4. How does the agent know, how to calculate

the fitness of a given action, how to interpret
the environment, how to run, and
parameterize the inner evolution?

Let us answer the questions one-by-one:
Interpretation can be any linear, or non-linear
transformation, so the inner representation can differ
from its outer equivalent depending upon the specific
realization of its functionality. The inner and the
outer representations are rarely equal, usually only a
“surface” of the outer is “projected” into the inner.

Agents use only a part of the outer representation to
construct the inner, i.e. that part, which is sensed by
them at the moment. Consequently agents can only
interpret their local environment. This leads us to an
extension of our model, and thus some more
definitions:

- The complete environment, i.e. the outer

representation is the global reality of an agent.

 3

- The part of the global reality sensed by an agent
is the agent’s local reality.

Agents use their local reality to construct the inner
representation of the global reality, i.e. the outer
representation.

It is evident, that actions can only be tested on inner
representations of the environment, before they are
used. At first an agent senses the global reality. The
resulting local reality is then interpreted by the agent.
There may be several global realities producing the
same sensual impression, i.e. the same local reality,
so the agent constructs alternative global realities,
called fantasies. Fantasies are global realities
“thought” to be possible by an agent (similarly to the
possible worlds in models of modal logic). It then
continues by generating an initial population of
conditional action-chains, which are executed – one
after the other – within every fantasy, so that the
goodness of an action is calculated as its average
goodness on all the fantasies. An action being part of
a fantasy is called an agent’s double. A double can
only sense a local fantasy, analogously to the local
reality in the real environment. The extended concept
of the agent-environment relation is shown in Figure
3.

Fig. 3. Extended agent-environment relation

The last question is the “how” of the above concept.
The answer is quite simple: An agent’s double is a
GEP chromosome, i.e. a conditional action-chain. At
a meta-level every agent can be represented with a
set of such GEP chromosomes. One of them is
responsible for representing production-rules, which
can produce a fitness-function in interaction with the
environment; the other can be responsible for
representing the interpretation mechanism, etc. Every
agent holds its chromosome-package, waiting for an
other agent to make an exchange, crossover, or any
other genetic manipulation.

This way the agent evolution works from top to
bottom. The only uncovered theoretical aspect is the

make-up of the inner and outer evolutions. The paper
continues with a brief overview of the GEP theory,
that makes the program evolution possible.

3. USE OF THE GEP THEORY

As mentioned before, gene expression programming
(GEP) (Ferreira, 2002) is an extension to genetic
programming. It was used because it is “more
natural” and in some cases considerably faster than
other genetic programming methods (Koza et al.,
1999).

In genetic programming the genotype, on which the
genetic operators work, is the same as the phenotype,
which is evaluated by the fitness function (like in
classical genetic algorithms), while in gene
expression programming these two concepts are
different. That’s why it is called “more natural” in
the first place.

A GEP chromosome (genome) consists of genes,
which can be “expressed” to be equivalent with a GP
program-tree. A gene is a string, consisting of
terminals and functions. Functions have a number of
arguments, where an argument can be either a
function, or a terminal. Terminals are the leaves of
the program-tree, while functions are its inner
vertices. For example F={+, -, *} can be a function-
set, with decimal numbers as terminals. Figure 4
shows a program-tree build from the above example.

Fig. 4. Example of a program-tree

There are many ways to describe such a tree. The
above program tree is +(-(8,5),*(1,7)) in prefix
notation, and ((8-5)+(1*7)) in infix notation. By
evaluating this tree, a decimal value of 10 is
calculated. In gene expression programming the gene
for the above tree is shown in Figure 5.

Fig. 5. GEP gene example

When coding a tree, its layers are simply put beside
each other. By knowing the functions’ arity a gene
can be easily decoded into a program tree.

In general a gene has two parts. The first part consists
of functions and terminals and is called the “head” of
the gene. The other part consists only of terminals,

 4

and is called the “tail”. Given the length of the head
(h), and the maximal number of arguments (n) for a
function, the maximal length of the tail is

1)1(+−nh , and so the length of the gene is 1+hn .
Given a set of functions, terminals, and the length of
the head, the length of the gene follows.

Usually when decoding a GEP gene, not all of the
genetic material is transferred into the program tree.
The end of the tail may be left untouched, because
the head does not contain enough functions. For
example, by changing the second position of the gene
shown in Figure 5 to a constant, a very different
program tree will arise, which does not possess all
the genetic material the genome had. The modified
genome and its program tree are shown in Figure 6.

Fig. 6. Modified GEP example

By evolving, selecting, crossing, mutating GEP genes
it is possible sometimes to achieve a “neutral
change”, i.e. when a genes’ non-coding region is
changed. This is the second reason, why gene
expression programming is called “more natural”
than any of its predecessors.

In the above examples functions with only numeric
arguments were shown, and so program trees had to
be evaluated BOTTOM-UP. In robotics and other fields
of application the function set usually consists of
conditional functions, while the terminal set consists
of functions representing actions, movements, etc. In
that case a program tree is more like a decision tree –
which has conditions as its inner vertices and actions
as its leaves – so it is evaluated TOP-DOWN.

4. IMPLEMENTATION ISSUES

Sicstus Prolog 3.9.1 (Szeredi and Benkő, 2000) was
used for implementing the theory in particular, and so
the TOP-DOWN method was preferred for evaluating
program trees. The function set consisted of cognitive
and perceptive actions, while the terminal set
consisted of modifying actions.

- Perceptive actions are those, which evoke other
actions on a given condition of the local reality.

- Cognitive actions evoke other actions on a given
condition concerning the state of the global
reality.

- Modifying actions modify the global reality.

Perceptive actions are like IF-THEN statements, which
call other actions depending on the perception being
present in the sensed environment (i.e. the local
reality). Cognitive actions are much the same, but
they have conditions concerning the state of the
global reality, i.e. the outer representation. For
instance, if a given action is a logical deduction,
which – by knowing some things of the environment
– can deduce some things till then unknown, then it is
called a cognitive action. Modifying actions are
those, which can modify the state of the
surroundings, the state, or the position of its user, or
any other aspect of the global reality. A program tree,
consisting of the above-mentioned action types is
shown in Figure 7.

Fig. 7. A TOP-DOWN program tree

The above tree may be interpreted as follows: IF the
i-th perception is present at the moment, then modify
the state of the agent, ELSE IF an object of type “B” is
close by, modify the position of the agent by stepping
toward it, ELSE IF the k-th perception is present, etc. It
represents only one action, which is chosen
depending on the current state of the local reality so
it may be called a conditional action. With a given
number of genes representing such program trees
(activated sequentially one after the other), a
conditional action-chain – mentioned in the previous
sections – can be obtained. An action-chain can be
considered a plan, where each gene is a conditional
step of the plan. Thus – by evolving conditional
action-chains – plans are actually evolved. It is
important to see that the methods of plan design are
not preset; agents evolve them by themselves. Thus
by evolving agents, and because of a globally
convergent computational model of evolution
(Goldberg, 1989), systems capable of designing
“optimal” plans for dynamic environments are
evolved.

 5

5. TEST ISSUES

The approach was tested on several different
problems, so called micro-worlds. Because of the
numerous free parameters, testing was limited by
time and machine capacity. For example, working
with 6-7 parameters taking three values each, four
agents, 100 agent steps, three problems and ten runs
(to make an average), would require

8748000103100436 =⋅⋅⋅⋅ evolution-runs. On a
single computer (i.e. Pentium 4 1.5Ghz) it would take
months to do the necessary calculations for a relevant
testing. Luckily tests can be easily parallelized.

Two test cases are shown: Wumpus-world and Table-
world. Wumpus-world (Russell and Norvig, 1995) is
a famous test bed for different agent-architectures. It
is a nk × size grid-world, with two types of
objects: Pit, and Gold. A pit is a place, where the
agent can fall and die, while gold can be picked up.
Except the other agents, there is only a monster
called Wumpus. Meeting Wumpus is deadly.

An agent’s task is to find all the gold scattered
randomly over the grid, to kill the Wumpus, then to
return to the starting coordinate, and climb out. An
agent’s local reality consists of five possible
perceptions: it can feel smell, if being in the explicit
neighbourhood of a Wumpus; wind, if in explicit
neighbourhood of a pit; shine, if being over a gold
piece; push, if being crashed into a wall; scream, if a
Wumpus died recently. Every agent has one shot to
kill a Wumpus. Possible actions for an agent are:
Move-forward, Rotate-left, Rotate-right, Shoot, Pick-
gold and Climb-out. Perceptive actions, such as If-
Smell, If-Wind, If-Shine, If-Push and If-Scream and
cognitive actions such as If-Wumpus-in-Front and If-
Pit-in-Front can also be implemented. An example of
Wumpus world is shown in Figure 8.

Fig. 8. Wumpus World

Wumpus-world is used to test an agent’s “human-
like” intelligence. To survive in this world, an agent
must be able to deduce possible threats, to memorize
places, etc. For being successful it must express a
complex, “human like” behavior.

Table world (Zhang and Cho, 1999) is also a grid
world, but much more simpler, than Wumpus world.
There are also two types of objects: a table and
obstacles. There are four agents, which have the
same task of moving the table to a given destination.
The table is too heavy for less, than four agents, so
they must cooperate in solving the task. An agent has
the following actions: Move-forward, Rotate-
Clockwise-around-the-Table, Move-in-a-Random-
Direction, Turn-toward-the-Table, Turn-toward-the-
Target and Stay. If-Crashed-into-Obstacle, If-
Crashed-into-other-Agent, If-Table-is-Around, and
If-Target-is-Around can also be implemented as
perceptive actions. An example Table world is shown
in Figure 9.

Fig. 9. Table World

Table world is used to test the ability of agents to
cooperate. Collective, emergent behavior is needed to
solve the task.

In Wumpus-world the following fitness function was
used:









⋅+⋅+⋅⋅= C

W
W

G
GLF 4.03.03.0

maxmax

 (1)

L is 1, if the agent is alive, 0, if not. G is the number
of gold pieces collected by the agent, Gmax is their
maximal number. W is the number of Wumpuses
killed by the agent, Wmax is their maximal number. C
is 1, if the agent climbed out successfully, 0, if it is
still on the grid. Agents evaluated 32 genic
chromosomes as their doubles during the inner
evolution.

 6

With the above definition tests have shown, that our
approach is close to a human solution on the
described Wumpus world test case. Approximately
90% of solutions generated by the evolution of
agents produced the same result as human opponents
on the average. The remaining 10% differed in both
directions.

It is important to add, that Prolog’s Constraint Logic
Programming on Finite Domains, i.e. CLP(FD)
library was used for creating cognitive actions,
furthermore every agent had a memory map of the
explored area.

In Table world the following fitness function was
used:

21

1
ff

F
+

= (2)

()∑
=

+⋅−⋅+⋅+⋅=
4

1
43211 },max{

a
aaaaa KMcCcScYXcf

()∑
=

⋅ +⋅+⋅−⋅+⋅+⋅=
4

1
543212 },max{

a
aaaaaa KAcMcCcScYXcf

Xa and Ya are the X and Y distances of the ath agent-
double from its current target. Sa are the steps it
made. Ca is the number of collisions it suffered. Ma is
the distance between its start and end-coordinates. Aa
is the penalty for moving away from other agents. ci
is the weight factor for the ith fitness component. K
serves as a normalizing factor.

The four agents used the above fitness function in the
following way: a 2-genic chromosome, i.e. action-
chain was generated, whose F fitness value was
calculated after every agent double in a given agent
used the same action chain for 20 times. This meant,
that the four doubles (generated in an agent) did the
same conditional action. This lead to their
cooperation within every of the agents. Because of
the fact that they were using the same conditional
action-chain, it is called a homogeneous cooperation.

The astonishing fact is that agents – evolving their
respective actions thus separately – cooperated in a
heterogeneous way. This means, that they used
different conditional actions to achieve cooperation,
similarly to human cooperation.

It is important to see, that f1 is responsible for
“homing”, while f2 is responsible for “herding”.
Homing means that agents get round the table, while
herding is when they bring the table down to its
destination. Consequently: cooperation is controlled
by the choice of the fitness function.

6. CONCLUSIONS

The paper introduced a new theoretic approach using
evolutionary computation and its application to an
automatic plan design. It can be concluded, that a
general, scalable and fast algorithm was found for
solving the difficult task of plan design without the
need for any particular preset method, or schemata.
Test results have shown, that a closely “human level”
of competition can be achieved. Moreover, it was
possible to generate heterogeneous cooperation as an
emergent behavior. The above benefits make the new
technique a promising alternative for solving
complex tasks.

REFERENCES

Ferreira C. (2001). Gene Expression Programming:

A New Adaptive Algorithm for Solving
Problems, Complex Systems, Vol.13, issue
2: pp.87-129.

Goldberg D. E. (1989). Genetic Algorithms in

Search, Optimization, and Machine
Learning. Addison-Wesley.

Holland J. H. (1975). Adaptation in Natural and

Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and
Artificial Intelligence. MIT Press.

IBM (1999). Journal on Pervasive Computing Vol.

38, No. 4., www.research.ibm.com/journal/
sj38-4.html

Koza J. R. (1992). Genetic Programming: On the

Programming of Computers by Means of
Natural Selection. MIT Press.

Koza J. R., F. H. Bennett III, Andre D. and M. A.

Keane (1999). Genetic Programming III:
Darwinian Invention and Problem Solving.
Morgan Kaufmann.

Russel S. J., Norvig P. (1995). Artificial Intelligence:

A Modern Approach. Prentice Hall.

Szeredi P., Benkő T. (2000). Introduction into logical

programming. Technical University of
Budapest.

Zhang Byouk-Tak, Cho Dong-Yeon, (1999). Co-

evolutionary Fitness Switching: Learning
Complex Collective Behaviours Using
Genetic Programming, Advances in Genetic
Programming, Vol. 3, 18, pp.425-445.

