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Abstract: Evolution of intelligent agents, a new approach to automatic planning, is 
presented here for the first time as a new technique for evolving systems capable of 
generating “optimal” plans without any prior knowledge of the environment, or any 
method (i.e. schemata) concerning plan design. The classical model of system-
environment interaction is extended by making it more “natural”. By the use of the 
recent gene expression programming (GEP) technique a fully functional, multi-layered 
system architecture capable of solving complex tasks is proposed. The power of the 
new approach is demonstrated by testing it on several micro-world problems. Copyright 
 2003 IFAC 
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1. INTRODUCTION 

 
The mathematical model of natural evolution, namely 
genetic algorithms (GAs) are globally convergent, 
stochastic search methods (Holland, 1975), 
discovered in the early ’70’s. The word “agent” 
cannot be defined with the same precision. Typically 
a system called “agent” is an autonomous, adaptive 
entity placed in an environment, where it tries to 
satisfy a given task. So far not much success was 
shown in connecting the two fields in a natural way, 
despite that it would be analogous to the empirical 
sense of human evolution and thus potentially 
fruitful. 
 
This gap is targeted by the proposed concept of agent 
evolution, which is a theoretical approach of how to 
find the best possible problem solver for a given task, 
i.e. an adaptive system that can automatically 
discover the rules of plan design required for solving 
complex problems. 
 
The principle is based on the classical system-
environment interaction model, expanding it in a way 
by reinterpreting the hitherto used decision-making 
mechanisms, the mental representations of the 
environment, and other agent components. 
 

The topic becomes more and more vital due to the 
growing need for such “intelligent” applications both 
in scientific and daily activities. The increased 
computer power, the global use of the Internet, and 
other issues concerning our everyday life make it 
worth, if not indispensable, to design “intelligent 
tools”, such as robots, software agents, etc. (IBM, 
1999). The need for automatic decision-making is 
crucial, when thinking of exploration of such areas 
that are inaccessible, or unmanageable for humans. 
 
Our goal was to design a system that – given a class 
of problems – can produce an optimal solver. The 
present work introduces the agent evolution by 
presenting the revised concepts of the agent-
environment relation in detail. The paper then 
proceeds with the description of a possible (currently 
Prolog-based) implementation, illustrating its 
functionality on a set of test cases. Finally it 
evaluates the result, and draws its conclusion 
concerning the effectiveness of the concept. 
 
 

2. AN OVERVIEW OF AGENT EVOLUTION 
 
The idea to bring together evolution with agents 
within the classical framework of system-
environment interaction model is as follows: 
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Given an environment, i.e. a problem-space, where a 
population of agents is being developed via an 
unsupervised evolution, every agent evolves its best 
action via an inner, supervised evolution. 
 
Lets us define the meaning of the most important 
terms: 
 
- An environment is a problem-space 

representing a task, where the solution of the 
problem means the solution of the task. 

- Evolution is a process, which tends to evolve 
elements of the same type within the 
environment using natural means of selection. 

- An agent is an adaptive, problem solving 
system, which – being a part of an evolution – 
tends to solve a task. 

 
The conceptual framework of agent evolution is 
shown in Figure 1. 
 

 
 
Fig. 1. General framework of agent evolution 
 
An agent first samples the environment (1), creating 
its picture (2), which then is used by a decision-
making mechanism (3) to evolve the best possible 
action (4) toward the environment (5) modifying its 
present state (6). 
 
The agent evolves the best possible action via an 
“inner” evolution. This means, that it must possess a 
fitness function to classify the goodness of a given 
action, and this implies, that it must construct the 
fitness function all by itself. The agent constructs a 
fitness function during the sampling stage, which 
then is used to evaluate the goodness of an action by 
evaluating the final state of the inner representation, 
generated by that action. Secondly, the agent must 
generate populations of such actions, to be able to 
run an evolution. For this purpose an extension of 
genetic programming (GP) (Koza, 1992), namely 
gene expression programming (GEP) (Ferreira, 2002) 
is used, to make the evolution of actions possible. 
Actions are coded as multi-genic GEP chromosomes, 
and can be considered as conditional action-chains, 
i.e. programs. The developed framework, which 
extends the standard approach, can be seen in Figure 
2.  

 
 

Fig. 2. Detailed framework of agent evolution 
 
The outer representation of the environment consists 
of objects, other agents, possible elementary actions, 
relationships between objects and agents, as well as 
dynamic processes. The agent interprets the outer 
representation (1) and constructs its inner equivalent 
(2). The inner representation consists of pictures of 
objects, agents, possible elementary actions and a 
fitness function to evaluate them. The agent then 
generates an initial population of conditional action-
chains, consisting of interpreted elementary actions 
(3), and evolves them using a fitness function, to get 
the best possible variant (4). This is then used as an 
action toward the outer representation (5), modifying 
its present state (6). The agent continues this loop, 
until it stops by itself, or is externally interrupted. 
 
Many question arise by examining the above 
concept: 
 

1. What is the difference between the outer, 
and the inner representation? 

2. On what basis does the agent construct the 
inner representation? 

3. In what way are actions tested and evolved? 
4. How does the agent know, how to calculate 

the fitness of a given action, how to interpret 
the environment, how to run, and 
parameterize the inner evolution? 

 
Let us answer the questions one-by-one: 
Interpretation can be any linear, or non-linear 
transformation, so the inner representation can differ 
from its outer equivalent depending upon the specific 
realization of its functionality. The inner and the 
outer representations are rarely equal, usually only a 
“surface” of the outer is “projected” into the inner. 
 
Agents use only a part of the outer representation to 
construct the inner, i.e. that part, which is sensed by 
them at the moment. Consequently agents can only 
interpret their local environment. This leads us to an 
extension of our model, and thus some more 
definitions: 
 
- The complete environment, i.e. the outer 

representation is the global reality of an agent. 
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- The part of the global reality sensed by an agent 
is the agent’s local reality. 

 
Agents use their local reality to construct the inner 
representation of the global reality, i.e. the outer 
representation. 
 
It is evident, that actions can only be tested on inner 
representations of the environment, before they are 
used. At first an agent senses the global reality. The 
resulting local reality is then interpreted by the agent. 
There may be several global realities producing the 
same sensual impression, i.e. the same local reality, 
so the agent constructs alternative global realities, 
called fantasies. Fantasies are global realities 
“thought” to be possible by an agent (similarly to the 
possible worlds in models of modal logic). It then 
continues by generating an initial population of 
conditional action-chains, which are executed – one 
after the other – within every fantasy, so that the 
goodness of an action is calculated as its average 
goodness on all the fantasies. An action being part of 
a fantasy is called an agent’s double. A double can 
only sense a local fantasy, analogously to the local 
reality in the real environment. The extended concept 
of the agent-environment relation is shown in Figure 
3. 
 

 
 
Fig. 3. Extended agent-environment relation 
 
The last question is the “how” of the above concept. 
The answer is quite simple: An agent’s double is a 
GEP chromosome, i.e. a conditional action-chain. At 
a meta-level every agent can be represented with a 
set of such GEP chromosomes. One of them is 
responsible for representing production-rules, which 
can produce a fitness-function in interaction with the 
environment; the other can be responsible for 
representing the interpretation mechanism, etc. Every 
agent holds its chromosome-package, waiting for an 
other agent to make an exchange, crossover, or any 
other genetic manipulation. 
 
This way the agent evolution works from top to 
bottom. The only uncovered theoretical aspect is the 

make-up of the inner and outer evolutions. The paper 
continues with a brief overview of the GEP theory, 
that makes the program evolution possible. 
 

3. USE OF THE GEP THEORY 
 
As mentioned before, gene expression programming 
(GEP) (Ferreira, 2002) is an extension to genetic 
programming. It was used because it is “more 
natural” and in some cases considerably faster than 
other genetic programming methods (Koza et al., 
1999). 
 
In genetic programming the genotype, on which the 
genetic operators work, is the same as the phenotype, 
which is evaluated by the fitness function (like in 
classical genetic algorithms), while in gene 
expression programming these two concepts are 
different. That’s why it is called “more natural” in 
the first place. 
 
A GEP chromosome (genome) consists of genes, 
which can be “expressed” to be equivalent with a GP 
program-tree. A gene is a string, consisting of 
terminals and functions. Functions have a number of 
arguments, where an argument can be either a 
function, or a terminal. Terminals are the leaves of 
the program-tree, while functions are its inner 
vertices. For example F={+, -, *} can be a function-
set, with decimal numbers as terminals. Figure 4 
shows a program-tree build from the above example. 
 

 
 
Fig. 4. Example of a program-tree 
 
There are many ways to describe such a tree. The 
above program tree is +(-(8,5),*(1,7)) in prefix 
notation, and ((8-5)+(1*7)) in infix notation. By 
evaluating this tree, a decimal value of 10 is 
calculated. In gene expression programming the gene 
for the above tree is shown in Figure 5. 
 

 
 
Fig. 5. GEP gene example 
 
When coding a tree, its layers are simply put beside 
each other. By knowing the functions’ arity a gene 
can be easily decoded into a program tree. 
 
In general a gene has two parts. The first part consists 
of functions and terminals and is called the “head” of 
the gene. The other part consists only of terminals, 
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and is called the “tail”. Given the length of the head 
(h), and the maximal number of arguments (n) for a 
function, the maximal length of the tail is 

1)1( +−nh , and so the length of the gene is 1+hn . 
Given a set of functions, terminals, and the length of 
the head, the length of the gene follows. 
 
Usually when decoding a GEP gene, not all of the 
genetic material is transferred into the program tree. 
The end of the tail may be left untouched, because 
the head does not contain enough functions. For 
example, by changing the second position of the gene 
shown in Figure 5 to a constant, a very different 
program tree will arise, which does not possess all 
the genetic material the genome had. The modified 
genome and its program tree are shown in Figure 6. 
 

 
 
Fig. 6. Modified GEP example 
 
By evolving, selecting, crossing, mutating GEP genes 
it is possible sometimes to achieve a “neutral 
change”, i.e. when a genes’ non-coding region is 
changed. This is the second reason, why gene 
expression programming is called “more natural” 
than any of its predecessors. 
 
In the above examples functions with only numeric 
arguments were shown, and so program trees had to 
be evaluated BOTTOM-UP. In robotics and other fields 
of application the function set usually consists of 
conditional functions, while the terminal set consists 
of functions representing actions, movements, etc. In 
that case a program tree is more like a decision tree – 
which has conditions as its inner vertices and actions 
as its leaves – so it is evaluated TOP-DOWN. 
 
 

4. IMPLEMENTATION ISSUES 
 
Sicstus Prolog 3.9.1 (Szeredi and Benkő, 2000) was 
used for implementing the theory in particular, and so 
the TOP-DOWN method was preferred for evaluating 
program trees. The function set consisted of cognitive 
and perceptive actions, while the terminal set 
consisted of modifying actions. 
 
 
 

- Perceptive actions are those, which evoke other 
actions on a given condition of the local reality. 

- Cognitive actions evoke other actions on a given 
condition concerning the state of the global 
reality. 

- Modifying actions modify the global reality. 
 
Perceptive actions are like IF-THEN statements, which 
call other actions depending on the perception being 
present in the sensed environment (i.e. the local 
reality). Cognitive actions are much the same, but 
they have conditions concerning the state of the 
global reality, i.e. the outer representation. For 
instance, if a given action is a logical deduction, 
which – by knowing some things of the environment 
– can deduce some things till then unknown, then it is 
called a cognitive action. Modifying actions are 
those, which can modify the state of the 
surroundings, the state, or the position of its user, or 
any other aspect of the global reality. A program tree, 
consisting of the above-mentioned action types is 
shown in Figure 7. 
 

 
 
Fig. 7. A TOP-DOWN program tree 
 
The above tree may be interpreted as follows: IF the 
i-th perception is present at the moment, then modify 
the state of the agent, ELSE IF an object of type “B” is 
close by, modify the position of the agent by stepping 
toward it, ELSE IF the k-th perception is present, etc. It 
represents only one action, which is chosen 
depending on the current state of the local reality so 
it may be called a conditional action. With a given 
number of genes representing such program trees 
(activated sequentially one after the other), a 
conditional action-chain – mentioned in the previous 
sections – can be obtained. An action-chain can be 
considered a plan, where each gene is a conditional 
step of the plan. Thus – by evolving conditional 
action-chains – plans are actually evolved. It is 
important to see that the methods of plan design are 
not preset; agents evolve them by themselves. Thus 
by evolving agents, and because of a globally 
convergent computational model of evolution 
(Goldberg, 1989), systems capable of designing 
“optimal” plans for dynamic environments are 
evolved. 
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5. TEST ISSUES 
 
The approach was tested on several different 
problems, so called micro-worlds. Because of the 
numerous free parameters, testing was limited by 
time and machine capacity. For example, working 
with 6-7 parameters taking three values each, four 
agents, 100 agent steps, three problems and ten runs 
(to make an average), would require 

8748000103100436 =⋅⋅⋅⋅  evolution-runs. On a 
single computer (i.e. Pentium 4 1.5Ghz) it would take 
months to do the necessary calculations for a relevant 
testing. Luckily tests can be easily parallelized. 
 
Two test cases are shown: Wumpus-world and Table-
world. Wumpus-world (Russell and Norvig, 1995) is 
a famous test bed for different agent-architectures. It 
is a nk ×  size grid-world, with two types of 
objects: Pit, and Gold. A pit is a place, where the 
agent can fall and die, while gold can be picked up. 
Except the other agents, there is only a monster 
called Wumpus. Meeting Wumpus is deadly. 
 
An agent’s task is to find all the gold scattered 
randomly over the grid, to kill the Wumpus, then to 
return to the starting coordinate, and climb out. An 
agent’s local reality consists of five possible 
perceptions: it can feel smell, if being in the explicit 
neighbourhood of a Wumpus; wind, if in explicit 
neighbourhood of a pit; shine, if being over a gold 
piece; push, if being crashed into a wall; scream, if a 
Wumpus died recently. Every agent has one shot to 
kill a Wumpus. Possible actions for an agent are: 
Move-forward, Rotate-left, Rotate-right, Shoot, Pick-
gold and Climb-out. Perceptive actions, such as If-
Smell, If-Wind, If-Shine, If-Push and If-Scream and 
cognitive actions such as If-Wumpus-in-Front and If-
Pit-in-Front can also be implemented. An example of 
Wumpus world is shown in Figure 8. 
 

 
 
Fig. 8. Wumpus World 
 

Wumpus-world is used to test an agent’s “human-
like” intelligence. To survive in this world, an agent 
must be able to deduce possible threats, to memorize 
places, etc. For being successful it must express a 
complex, “human like” behavior. 
 
Table world (Zhang and Cho, 1999) is also a grid 
world, but much more simpler, than Wumpus world. 
There are also two types of objects: a table and 
obstacles. There are four agents, which have the 
same task of moving the table to a given destination. 
The table is too heavy for less, than four agents, so 
they must cooperate in solving the task. An agent has 
the following actions: Move-forward, Rotate-
Clockwise-around-the-Table, Move-in-a-Random-
Direction, Turn-toward-the-Table, Turn-toward-the-
Target and Stay. If-Crashed-into-Obstacle, If-
Crashed-into-other-Agent, If-Table-is-Around, and 
If-Target-is-Around can also be implemented as 
perceptive actions. An example Table world is shown 
in Figure 9. 
 

 
 
Fig. 9. Table World 
 
Table world is used to test the ability of agents to 
cooperate. Collective, emergent behavior is needed to 
solve the task. 
 
In Wumpus-world the following fitness function was 
used: 

 









⋅+⋅+⋅⋅= C

W
W

G
GLF 4.03.03.0

maxmax

  (1) 

 
L is 1, if the agent is alive, 0, if not. G is the number 
of gold pieces collected by the agent, Gmax is their 
maximal number. W is the number of Wumpuses 
killed by the agent, Wmax is their maximal number. C 
is 1, if the agent climbed out successfully, 0, if it is 
still on the grid. Agents evaluated 32 genic 
chromosomes as their doubles during the inner 
evolution. 
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With the above definition tests have shown, that our 
approach is close to a human solution on the 
described Wumpus world test case. Approximately 
90% of solutions generated by the evolution of 
agents produced the same result as human opponents 
on the average. The remaining 10% differed in both 
directions. 
 
It is important to add, that Prolog’s Constraint Logic 
Programming on Finite Domains, i.e. CLP(FD) 
library was used for creating cognitive actions, 
furthermore every agent had a memory map of the 
explored area. 
 
In Table world the following fitness function was 
used: 
 

21

1
ff

F
+

=     (2) 

( )∑
=

+⋅−⋅+⋅+⋅=
4

1
43211 },max{

a
aaaaa KMcCcScYXcf

( )∑
=

⋅ +⋅+⋅−⋅+⋅+⋅=
4

1
543212 },max{

a
aaaaaa KAcMcCcScYXcf

 

Xa and Ya are the X and Y distances of the ath agent-
double from its current target. Sa are the steps it 
made. Ca is the number of collisions it suffered. Ma is 
the distance between its start and end-coordinates. Aa 
is the penalty for moving away from other agents. ci 
is the weight factor for the ith fitness component. K 
serves as a normalizing factor. 
 
The four agents used the above fitness function in the 
following way: a 2-genic chromosome, i.e. action-
chain was generated, whose F fitness value was 
calculated after every agent double in a given agent 
used the same action chain for 20 times. This meant, 
that the four doubles (generated in an agent) did the 
same conditional action. This lead to their 
cooperation within every of the agents. Because of 
the fact that they were using the same conditional 
action-chain, it is called a homogeneous cooperation. 
 
The astonishing fact is that agents – evolving their 
respective actions thus separately – cooperated in a 
heterogeneous way. This means, that they used 
different conditional actions to achieve cooperation, 
similarly to human cooperation. 
 
It is important to see, that f1 is responsible for 
“homing”, while f2 is responsible for “herding”. 
Homing means that agents get round the table, while 
herding is when they bring the table down to its 
destination. Consequently: cooperation is controlled 
by the choice of the fitness function. 
 
 
 
 
 

6. CONCLUSIONS 
 
The paper introduced a new theoretic approach using 
evolutionary computation and its application to an 
automatic plan design. It can be concluded, that a 
general, scalable and fast algorithm was found for 
solving the difficult task of plan design without the 
need for any particular preset method, or schemata. 
Test results have shown, that a closely “human level” 
of competition can be achieved. Moreover, it was 
possible to generate heterogeneous cooperation as an 
emergent behavior. The above benefits make the new 
technique a promising alternative for solving 
complex tasks. 
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