
Explore or Exploit…
Csaba Szepesvári

University of Alberta
Department of Computing Science

!

Based on joint work with:
Yasin-Abbasi Yadkori and Dávid Pál

2

Reinforcement Learning

3

Reinforcement Learning

4

Observation

Action

Environment (state)

Reward

Successes

5

A few more serious
applications

6

• Business strategies
• Hybrid electric vehicles
• Health-care

• Clinical trials
• Adaptive interventions (health)
• Intelligent prosthetics
• …

• Aircraft control
• Elevator control
• Water treatment energy savings
• Smart grid

Observation

Action

Environment (state)

Reward

Planning

Learning

Batch learning

Online learning

Subproblems in RL

Exploration
vs. exploitation

Off-policy learning

Scaling

Observation

Action

Environment (state)

Reward

Planning

Learning

Batch learning

Online learning

Subproblems in RL

Exploration
vs. exploitation

Off-policy learning

Scaling

Explore or Exploit
in

Bandits

One-armed bandit

9
Goal: maximize the total reward incurred

One-armed bandit

9
Goal: maximize the total reward incurred

Wins so far:
$0, $1, $0, $0
Which arm to

pull?

Very brief history

10

Very brief history

10

1933 Williams R. Thompson

Very brief history

10

1933 Williams R. Thompson
1952 Herbert E. Robbins

Very brief history

10

1933 Williams R. Thompson
1952 Herbert E. Robbins
1979 John C. Gittins

Very brief history

10

1933 Williams R. Thompson
1952 Herbert E. Robbins
1979 John C. Gittins
1985 Tze Lai and H.E. Robbins

Very brief history

10

1933 Williams R. Thompson
1952 Herbert E. Robbins
1979 John C. Gittins
1985 Tze Lai and H.E. Robbins
1997 A. Burnetas, M. Katehakis

Very brief history

10

1933 Williams R. Thompson
1952 Herbert E. Robbins
1979 John C. Gittins
1985 Tze Lai and H.E. Robbins
1997 A. Burnetas, M. Katehakis
2002 P. Auer, N. Cesa-Bianchi, P. Fischer

Very brief history

10

1933 Williams R. Thompson
1952 Herbert E. Robbins
1979 John C. Gittins
1985 Tze Lai and H.E. Robbins
1997 A. Burnetas, M. Katehakis
2002 P. Auer, N. Cesa-Bianchi, P. Fischer
2002 P. Auer, N. Cesa-Bianchi, Y. Freund,  
 R.E.Schapire

Very brief history

10

1933 Williams R. Thompson
1952 Herbert E. Robbins
1979 John C. Gittins
1985 Tze Lai and H.E. Robbins
1997 A. Burnetas, M. Katehakis
2002 P. Auer, N. Cesa-Bianchi, P. Fischer
2002 P. Auer, N. Cesa-Bianchi, Y. Freund,  
 R.E.Schapire
2005- E-commerce applications; boom!

Very brief history

10

1933 Williams R. Thompson
1952 Herbert E. Robbins
1979 John C. Gittins
1985 Tze Lai and H.E. Robbins
1997 A. Burnetas, M. Katehakis
2002 P. Auer, N. Cesa-Bianchi, P. Fischer
2002 P. Auer, N. Cesa-Bianchi, Y. Freund,  
 R.E.Schapire
2005- E-commerce applications; boom!

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

20
00
	
20
01
	
20
02
	
20
03
	
20
04
	
20
05
	
20
06
	
20
07
	
20
08
	
20
09
	
20
10
	
20
11
	
20
12
	
20
13
	
20
14
	
20
15
	

google scholar hits on
>>bandit algorithms<<

Very brief history

10

1933 Williams R. Thompson
1952 Herbert E. Robbins
1979 John C. Gittins
1985 Tze Lai and H.E. Robbins
1997 A. Burnetas, M. Katehakis
2002 P. Auer, N. Cesa-Bianchi, P. Fischer
2002 P. Auer, N. Cesa-Bianchi, Y. Freund,  
 R.E.Schapire
2005- E-commerce applications; boom!

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

20
00
	
20
01
	
20
02
	
20
03
	
20
04
	
20
05
	
20
06
	
20
07
	
20
08
	
20
09
	
20
10
	
20
11
	
20
12
	
20
13
	
20
14
	
20
15
	

google scholar hits on
>>bandit algorithms<<

0	

100,000	

200,000	

300,000	

400,000	

500,000	

600,000	

700,000	

800,000	

20
00
	
20
01
	
20
02
	
20
03
	
20
04
	
20
05
	
20
06
	
20
07
	
20
08
	
20
09
	
20
10
	
20
11
	
20
12
	
20
13
	
20
14
	
20
15
	

google scholar hits on
>>machine learning<<

Bandit theory

11

Stochastic bandit problems

12

Prior
knowledge:
(⌫a)a2A 2 P

Stochastic bandit problems

12

Prior
knowledge:
(⌫a)a2A 2 P

Example:
Rewards lie
in [0,1]

Stochastic bandit problems

12

At 2 A

Prior
knowledge:
(⌫a)a2A 2 P

Rt ⇠ ⌫At(·)

A1, R1, . . . , At�1, Rt�1

Example:
Rewards lie
in [0,1]

UCB1

13

Arm 1

Upper
confidence
bound

Arm 2 Arm 3

Empirical
mean

Reward

Pull the arm with largest UCB value!

Optimism in the Face of Uncertainty

Repeat:
1. Find the set St of likely “worlds”

given the observations so far
2. Find the “world” in St with the

maximum payoff:  
 

3. Find the optimal action for this
world:  
 

4. Use this action

14

“All worlds”

OFU

Actions
Lai and Robbins (1985), Burnetas and Katehakis (1996),  
Auer, Cesa-Bianchi and Fischer UCB1 (2002), and many others

W ⇤
t = arg max

w2St

max

a
r(w, a)

St

W ⇤
t

A⇤
t

A⇤
t = argmax

a
r(W ⇤

t , a)

Regret of UCB1

15

Sebastien Bubeck and Nicolo Cesa-Bianchi. Regret Analysis of Stochastic and
Nonstochastic Multi-armed Bandit Problems. Foundations and Trends in Machine
Learning. Now Publishers, 2012.

Rn = nmax

a
r(a)�

nX

t=1

r(At) =

X

a

�(a)| {z }
r⇤�r(a)

Tn(a)

Regret of UCB1

15

Sebastien Bubeck and Nicolo Cesa-Bianchi. Regret Analysis of Stochastic and
Nonstochastic Multi-armed Bandit Problems. Foundations and Trends in Machine
Learning. Now Publishers, 2012.

E [Rn] =

X

a:�(a)>0

c log n

�(a)
+O(1)

Rn = nmax

a
r(a)�

nX

t=1

r(At) =

X

a

�(a)| {z }
r⇤�r(a)

Tn(a)

Regret of UCB1

15

Sebastien Bubeck and Nicolo Cesa-Bianchi. Regret Analysis of Stochastic and
Nonstochastic Multi-armed Bandit Problems. Foundations and Trends in Machine
Learning. Now Publishers, 2012.

E [Rn] 
p

c|A|n log n

E [Rn] =

X

a:�(a)>0

c log n

�(a)
+O(1)

Both results are
essentially

unimprovable!

Rn = nmax

a
r(a)�

nX

t=1

r(At) =

X

a

�(a)| {z }
r⇤�r(a)

Tn(a)

Bandit Zoo
• Bayesian

• Adversarial

• Nonstationary

• Linear

• Contextual

• Semi-

• Budgeted

16

• Combinatorial

• Restless

• Infinite-armed

• X-armed

• Gaussian process

• Nonparametric

• Kernelized

• Mortal

• Delayed

• Convex

• Dueling

• Cascading

• Conservative

• Risk-sensitive

• Resourceful

• Side-observed

• Partially observed

• Generalized linear

• Distributed

• …

Bandit Zoo
• Bayesian

• Adversarial

• Nonstationary

• Linear

• Contextual!

• Semi-

• Budgeted

17

• Combinatorial!

• Restless

• Infinite-armed !

• X-armed

• Gaussian process

• Nonparametric!

• Kernelized!

• Mortal

• Delayed

• Convex!

• Dueling

• Cascading

• Conservative

• Risk-sensitive

• Resourceful

• Side-observed

• Partially observed

• Generalized linear!

• Distributed

• …

Linear Bandits

18

1

0.5

0.5

0.2

0.1

1

0.7

0.1

Linear Bandits

18

1

0.5

0.5

0.2

0.1

1

0.7

0.1

?

?

?

?

?

?

?

?

Linear Bandits

18

1

0.5

0.5

0.2

0.1

1

0.7

0.1

?

?

?

?

?

?

?

?

e1

e2

e3

e4

e5

e6

e7

e8

Linear Bandits

18

1

0.5

0.5

0.2

0.1

1

0.7

0.1

?

?

?

?

?

?

?

?

e1

e2

e3

e4

e5

e6

e7

e8

e1 e2 e3 e4 e5 e6 e7 e8

Linear Bandits

18

1

0.5

0.5

0.2

0.1

1

0.7

0.1

?

?

?

?

?

?

?

?

e1

e2

e3

e4

e5

e6

e7

e8

e1 e2 e3 e4 e5 e6 e7 e8

Actions 
=paths

1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1

1 0 0 1 0 0 1 0

0 1 0 0 1 1 1 0

1 0 1 0 1 0 0 1

1 0 1 0 0 1 1 0

Linear Bandits

18

1

0.5

0.5

0.2

0.1

1

0.7

0.1

?

?

?

?

?

?

?

?

e1

e2

e3

e4

e5

e6

e7

e8

e1 e2 e3 e4 e5 e6 e7 e8

Actions 
=paths

1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1

1 0 0 1 0 0 1 0

0 1 0 0 1 1 1 0

1 0 1 0 1 0 0 1

1 0 1 0 0 1 1 0

1 0.5 0.2 0.5 0.1 1 0.7 0.1 ✓⇤

Linear Bandits

18

1

0.5

0.5

0.2

0.1

1

0.7

0.1

?

?

?

?

?

?

?

?

e1

e2

e3

e4

e5

e6

e7

e8

e1 e2 e3 e4 e5 e6 e7 e8

Actions 
=paths

1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1

1 0 0 1 0 0 1 0

0 1 0 0 1 1 1 0

1 0 1 0 1 0 0 1

1 0 1 0 0 1 1 0

1 0.5 0.2 0.5 0.1 1 0.7 0.1 ✓⇤

Linear Bandits

19

(P. Auer 2003)

Linear Bandits

19

(P. Auer 2003)

Linear Bandits
• Actions are elements of a vector space:  
 

19

A ⇢ Rd

(P. Auer 2003)

Linear Bandits
• Actions are elements of a vector space:  
 

• Reward:

19

Rt = hAt, ✓⇤i+ Zt

A ⇢ Rd
subgaussian
noise

(P. Auer 2003)

Linear Bandits
• Actions are elements of a vector space:  
 

• Reward:

• L2 problem:

19

k✓k2  1, kak2  1

Rt = hAt, ✓⇤i+ Zt

A ⇢ Rd
subgaussian
noise

(P. Auer 2003)

Why linear bandits?
• Linear payoff structure naturally occurs in many

practical combinatorial problems

• “Featurizing” —> a way of adding prior information
about structure

• Contextual bandits is a special case

20

Context
generator

Bandit
algorithm

Ct At

Rt = h'(a, Ct)| {z }
't(a)

, ✓⇤i+ Zt

Linear Bandits

21

Linear Bandits
• Theorem [Dani et al ’08]: For subgaussian

noise, OFU’s regret for the L2 problem is

21

RT = Õ(d
p
T)

Linear Bandits
• Theorem [Dani et al ’08]: For subgaussian

noise, OFU’s regret for the L2 problem is

21

RT = Õ(d
p
T)

How to choose the actions?
R1 = hA1, ✓⇤i+ Z1

...

Rt�1 = hAt�1, ✓⇤i+ Zt�1

Linear
prediction
problem

Linear Bandits
• Theorem [Dani et al ’08]: For subgaussian

noise, OFU’s regret for the L2 problem is

21

RT = Õ(d
p
T)

How to choose the actions?
R1 = hA1, ✓⇤i+ Z1

...

Rt�1 = hAt�1, ✓⇤i+ Zt�1

Linear
prediction
problem

Least-
squares

✓̂t�1 = (I +
t�1X

s=1

AsA
>
s)

�1
t�1X

s=1

As(Zs

| {z }
martingale

+A>
s ✓⇤)

Linear Bandits
• Theorem [Dani et al ’08]: For subgaussian

noise, OFU’s regret for the L2 problem is

21

RT = Õ(d
p
T)

Confidence set: Empirical processes

How to choose the actions?
R1 = hA1, ✓⇤i+ Z1

...

Rt�1 = hAt�1, ✓⇤i+ Zt�1

Linear
prediction
problem

Least-
squares

✓̂t�1 = (I +
t�1X

s=1

AsA
>
s)

�1
t�1X

s=1

As(Zs

| {z }
martingale

+A>
s ✓⇤)

Tighter confidence sets

22

Abbasi-Pal-Sz’11

Tighter confidence sets

22

Abbasi-Pal-Sz’11

Vt =
tX

s=1

AsA
>
s

Tighter confidence sets

22

Abbasi-Pal-Sz’11

Vt =
tX

s=1

AsA
>
s V̄t = I + Vt

Tighter confidence sets

22

Abbasi-Pal-Sz’11

Vt =
tX

s=1

AsA
>
s V̄t = I + Vt

M�
t = exp

✓
h�, Sti �

1

2

k�k2Vt

◆

Tighter confidence sets

22

Abbasi-Pal-Sz’11

Vt =
tX

s=1

AsA
>
s V̄t = I + Vt

M�
t = exp

✓
h�, Sti �

1

2

k�k2Vt

◆

St =
tX

s=1

ZtAt

Method of
mixtures

Tighter confidence sets

22

Abbasi-Pal-Sz’11

Vt =
tX

s=1

AsA
>
s V̄t = I + Vt

M�
t = exp

✓
h�, Sti �

1

2

k�k2Vt

◆

St =
tX

s=1

ZtAt ⇤ ⇠ N(0, I)

Method of
mixtures

Tighter confidence sets

22

Abbasi-Pal-Sz’11

Vt =
tX

s=1

AsA
>
s V̄t = I + Vt

M�
t = exp

✓
h�, Sti �

1

2

k�k2Vt

◆

St =
tX

s=1

ZtAt ⇤ ⇠ N(0, I)

E [M⇤]  1

Method of
mixtures

Tighter confidence sets

22

Abbasi-Pal-Sz’11

Vt =
tX

s=1

AsA
>
s V̄t = I + Vt

M�
t = exp

✓
h�, Sti �

1

2

k�k2Vt

◆

St =
tX

s=1

ZtAt ⇤ ⇠ N(0, I)

E [M⇤]  1

E
⇥
M⇤

t |F1
⇤
=

exp

⇣
1
2 kStk2V̄ �1

t

⌘

det(

¯Vt)
1
2

Method of
mixtures

Tighter confidence sets

22

Abbasi-Pal-Sz’11

Vt =
tX

s=1

AsA
>
s V̄t = I + Vt

M�
t = exp

✓
h�, Sti �

1

2

k�k2Vt

◆

St =
tX

s=1

ZtAt ⇤ ⇠ N(0, I)

E [M⇤]  1

E
⇥
M⇤

t |F1
⇤
=

exp

⇣
1
2 kStk2V̄ �1

t

⌘

det(

¯Vt)
1
2

Method of
mixtures

Avoids empirical process techniques —> tighter!

Confidence sets matter!

23

Empirical Results: The Influence of
Confidence Sets

OFUL using the confidence set of [AYPS11] – “New bound”
OFUL using the confidence set of [DHK08] – “Old bound”

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

Time

R
e
g
re

t

New bound

Old bound

New bound with rare switching

23 / 40• “New bound” = self-normalized bound
• “Old bound” = empirical process bound (Dani-Hayes-Kakade ’08)

Sparse Bandits

24

Sparse Bandits
• Sparsity: has p nonzero components only.

24

✓⇤

Sparse Bandits
• Sparsity: has p nonzero components only.

• Let (At) satisfy the RIP property. Then, for LASSO:

24

���ˆ✓n � ✓⇤
���
2
⇠

p
p log(d)/n

Candes, Tao 2006 and Bickel, Ritov, Tsybakov 2009

✓⇤

Sparse Bandits
• Sparsity: has p nonzero components only.

• Let (At) satisfy the RIP property. Then, for LASSO:

• Can we design confidence sets with this scaling?

24

���ˆ✓n � ✓⇤
���
2
⇠

p
p log(d)/n

Candes, Tao 2006 and Bickel, Ritov, Tsybakov 2009

✓⇤

Sparse Bandits
• Sparsity: has p nonzero components only.

• Let (At) satisfy the RIP property. Then, for LASSO:

• Can we design confidence sets with this scaling?

• Good algorithms select good actions frequently
—> No RIP

24

���ˆ✓n � ✓⇤
���
2
⇠

p
p log(d)/n

Candes, Tao 2006 and Bickel, Ritov, Tsybakov 2009

✓⇤

Sparse Bandits
• Sparsity: has p nonzero components only.

• Let (At) satisfy the RIP property. Then, for LASSO:

• Can we design confidence sets with this scaling?

• Good algorithms select good actions frequently
—> No RIP

• Covariates are highly correlated

24

���ˆ✓n � ✓⇤
���
2
⇠

p
p log(d)/n

Candes, Tao 2006 and Bickel, Ritov, Tsybakov 2009

✓⇤

Yet….

25

Yet….
• Given the observations  

where 
 
and 
and , find a set  
 
 
such that .  

25

. . . , Rt = hAt, ✓⇤i+ Zt, . . .

Ct = Ct(�, R1, A1, . . . , Rt, At) ⇢ Rd

0  �  1

P (✓⇤ 2 Ct) � 1� �

R1, A1, . . . , Rt, At

✓⇤ 2 ⇥ = {✓ 2 Rd : k✓k0  p, k✓k2  1}

Yet….
• Given the observations  

where 
 
and 
and , find a set  
 
 
such that .  

• Note: are chosen by a bandit algorithm,
they are far from independent!

25

. . . , Rt = hAt, ✓⇤i+ Zt, . . .

At 2 Rd

Ct = Ct(�, R1, A1, . . . , Rt, At) ⇢ Rd

0  �  1

P (✓⇤ 2 Ct) � 1� �

R1, A1, . . . , Rt, At

✓⇤ 2 ⇥ = {✓ 2 Rd : k✓k0  p, k✓k2  1}

Yet….
• Given the observations  

where 
 
and 
and , find a set  
 
 
such that .  

• Note: are chosen by a bandit algorithm,
they are far from independent!

• How to exploit the structure of ?

25

. . . , Rt = hAt, ✓⇤i+ Zt, . . .

At 2 Rd

Ct = Ct(�, R1, A1, . . . , Rt, At) ⇢ Rd

0  �  1

P (✓⇤ 2 Ct) � 1� �

R1, A1, . . . , Rt, At

✓⇤ 2 ⇥ = {✓ 2 Rd : k✓k0  p, k✓k2  1}

⇥

A reduction

26

Abbasi-Pal-Sz ’12

Predictor
Adversary

At R̂t

Bt

Rt+1, At+1

��1

tX

s=1

(Rs � R̂s)
2  inf

✓2⇥
(Rs � hAs, ✓,)i2 +Bt

A reduction

Theorem: With probability , holds for all
 ,  
where:

26

1� � ✓⇤ 2 Cn

n � 1
Cn =

(
✓ 2 Rd :

nX

t=1

(R̂t � hAt, ✓i)2

 1 + 2Bn + 32�2 ln

�
p
8 +

p
1 +Bn

�

!)

Abbasi-Pal-Sz ’12

Predictor
Adversary

At R̂t

Bt

Rt+1, At+1

��1

tX

s=1

(Rs � R̂s)
2  inf

✓2⇥
(Rs � hAs, ✓,)i2 +Bt

Sparse Linear Bandits

27

Sparse Linear Bandits
• Theorem [YPSz ’12]: The regret of OFUL enjoys

27

RT = Õ(
p
dTBT)

Sparse Linear Bandits
• Theorem [YPSz ’12]: The regret of OFUL enjoys

• Theorem [Gerchinowitz ’11]: There exist a
predictor that achieves  
 
for linear regression with p-sparse parameter
vectors belonging to the hypercube.

27

RT = Õ(
p
dTBT)

BT = O(p log(dT))

Sparse Linear Bandits
• Theorem [YPSz ’12]: The regret of OFUL enjoys

• Theorem [Gerchinowitz ’11]: There exist a
predictor that achieves  
 
for linear regression with p-sparse parameter
vectors belonging to the hypercube.

• Corollary [YPSz ’12]: For such problems,

27

RT = Õ(
p
dTBT)

BT = O(p log(dT))

RT = Õ(
p
dpT)

Sparse Linear Bandits
• Theorem [YPSz ’12]: The regret of OFUL enjoys

• Theorem [Gerchinowitz ’11]: There exist a
predictor that achieves  
 
for linear regression with p-sparse parameter
vectors belonging to the hypercube.

• Corollary [YPSz ’12]: For such problems,

• Theorem [YPSz’12]: For all algorithms,

27

RT = Õ(
p
dTBT)

BT = O(p log(dT))

RT = Õ(
p
dpT)

RT = ⌦(
p
dT)

Still.. does it work?

28
d = 100, p = 10

(a) (b)

(c) (d)

Figure 4.18: Comparing the OFUL-EG and the OFUL-LS algorithms on synthetic data.
The action set is k = 200 randomly generated vectors in {�1,+1}200. The parameter vector
✓⇤ has only 10 non-zero elements, each being equal to 0.1. The algorithm observes h✓⇤, ati
corrupted by a Gaussian noise drawn from N (0, 0.12). The time horizon is T = 1000. We set
the least-squares regularizer to � = 1, and the EG learning rate to ⌘ = 1. (a) The OFUL-
LS algorithm outperforms the OFUL-EG algorithm (b) The OFUL-EG algorithm with
the improved confidence width (4.20) outperforms the OFUL-LS algorithm (c) Improving
the regret of the OFUL-EG algorithm with confidence width (4.21) (d) Experimenting with
a problem with a smaller dimensionality and action set, k = 100, d = 100.

55

Summary so far
• Explore-exploit in bandit problems:

• It helps to be (reasonably) optimistic

• Finite armed bandits: UCB1

• Linear bandits:

• Fundamental to addressing structured
information

• Confidence set design is critical

29

Back to
reinforcement learning

Observation

Action

Environment (state)

Reward

How far did we get?

31see Fig. 3, Supplementary Discussion and Extended Data Table 2). In
additional simulations (see Supplementary Discussion and Extended
Data Tables 3 and 4), we demonstrate the importance of the individual
core components of the DQN agent—the replay memory, separate target
Q-network and deep convolutional network architecture—by disabling
them and demonstrating the detrimental effects on performance.

We next examined the representations learned by DQN that under-
pinned the successful performance of the agent in the context of the game
Space Invaders (see Supplementary Video 1 for a demonstration of the
performance of DQN), by using a technique developed for the visual-
ization of high-dimensional data called ‘t-SNE’25 (Fig. 4). As expected,
the t-SNE algorithm tends to map the DQN representation of percep-
tually similar states to nearby points. Interestingly, we also found instances
in which the t-SNE algorithm generated similar embeddings for DQN
representations of states that are close in terms of expected reward but

perceptually dissimilar (Fig. 4, bottom right, top left and middle), con-
sistent with the notion that the network is able to learn representations
that support adaptive behaviour from high-dimensional sensory inputs.
Furthermore, we also show that the representations learned by DQN
are able to generalize to data generated from policies other than its
own—in simulations where we presented as input to the network game
states experienced during human and agent play, recorded the repre-
sentations of the last hidden layer, and visualized the embeddings gen-
erated by the t-SNE algorithm (Extended Data Fig. 1 and Supplementary
Discussion). Extended Data Fig. 2 provides an additional illustration of
how the representations learned by DQN allow it to accurately predict
state and action values.

It is worth noting that the games in which DQN excels are extremely
varied in their nature, from side-scrolling shooters (River Raid) to box-
ing games (Boxing) and three-dimensional car-racing games (Enduro).

Montezuma's Revenge
Private Eye

Gravitar
Frostbite
Asteroids

Ms. Pac-Man
Bowling

Double Dunk
Seaquest

Venture
Alien

Amidar

River Raid
Bank Heist

Zaxxon

Centipede
Chopper Command

Wizard of Wor
Battle Zone

Asterix
H.E.R.O.

Q*bert
Ice Hockey

Up and Down
Fishing Derby

Enduro
Time Pilot

Freeway
Kung-Fu Master

Tutankham
Beam Rider

Space Invaders
Pong

James Bond
Tennis

Kangaroo
Road Runner

Assault
Krull

Name This Game
Demon Attack

Gopher
Crazy Climber

Atlantis
Robotank

Star Gunner
Breakout

Boxing
Video Pinball

At human-level or above

Below human-level

0 100 200 300 400 4,500%500 1,000600

Best linear learner

DQN

Figure 3 | Comparison of the DQN agent with the best reinforcement
learning methods15 in the literature. The performance of DQN is normalized
with respect to a professional human games tester (that is, 100% level) and
random play (that is, 0% level). Note that the normalized performance of DQN,
expressed as a percentage, is calculated as: 100 3 (DQN score 2 random play
score)/(human score 2 random play score). It can be seen that DQN

outperforms competing methods (also see Extended Data Table 2) in almost all
the games, and performs at a level that is broadly comparable with or superior
to a professional human games tester (that is, operationalized as a level of
75% or above) in the majority of games. Audio output was disabled for both
human players and agents. Error bars indicate s.d. across the 30 evaluation
episodes, starting with different initial conditions.

LETTER RESEARCH

2 6 F E B R U A R Y 2 0 1 5 | V O L 5 1 8 | N A T U R E | 5 3 1

Macmillan Publishers Limited. All rights reserved©2015

Mnih et al. (2015)

How far did we get?

31see Fig. 3, Supplementary Discussion and Extended Data Table 2). In
additional simulations (see Supplementary Discussion and Extended
Data Tables 3 and 4), we demonstrate the importance of the individual
core components of the DQN agent—the replay memory, separate target
Q-network and deep convolutional network architecture—by disabling
them and demonstrating the detrimental effects on performance.

We next examined the representations learned by DQN that under-
pinned the successful performance of the agent in the context of the game
Space Invaders (see Supplementary Video 1 for a demonstration of the
performance of DQN), by using a technique developed for the visual-
ization of high-dimensional data called ‘t-SNE’25 (Fig. 4). As expected,
the t-SNE algorithm tends to map the DQN representation of percep-
tually similar states to nearby points. Interestingly, we also found instances
in which the t-SNE algorithm generated similar embeddings for DQN
representations of states that are close in terms of expected reward but

perceptually dissimilar (Fig. 4, bottom right, top left and middle), con-
sistent with the notion that the network is able to learn representations
that support adaptive behaviour from high-dimensional sensory inputs.
Furthermore, we also show that the representations learned by DQN
are able to generalize to data generated from policies other than its
own—in simulations where we presented as input to the network game
states experienced during human and agent play, recorded the repre-
sentations of the last hidden layer, and visualized the embeddings gen-
erated by the t-SNE algorithm (Extended Data Fig. 1 and Supplementary
Discussion). Extended Data Fig. 2 provides an additional illustration of
how the representations learned by DQN allow it to accurately predict
state and action values.

It is worth noting that the games in which DQN excels are extremely
varied in their nature, from side-scrolling shooters (River Raid) to box-
ing games (Boxing) and three-dimensional car-racing games (Enduro).

Montezuma's Revenge
Private Eye

Gravitar
Frostbite
Asteroids

Ms. Pac-Man
Bowling

Double Dunk
Seaquest

Venture
Alien

Amidar

River Raid
Bank Heist

Zaxxon

Centipede
Chopper Command

Wizard of Wor
Battle Zone

Asterix
H.E.R.O.

Q*bert
Ice Hockey

Up and Down
Fishing Derby

Enduro
Time Pilot

Freeway
Kung-Fu Master

Tutankham
Beam Rider

Space Invaders
Pong

James Bond
Tennis

Kangaroo
Road Runner

Assault
Krull

Name This Game
Demon Attack

Gopher
Crazy Climber

Atlantis
Robotank

Star Gunner
Breakout

Boxing
Video Pinball

At human-level or above

Below human-level

0 100 200 300 400 4,500%500 1,000600

Best linear learner

DQN

Figure 3 | Comparison of the DQN agent with the best reinforcement
learning methods15 in the literature. The performance of DQN is normalized
with respect to a professional human games tester (that is, 100% level) and
random play (that is, 0% level). Note that the normalized performance of DQN,
expressed as a percentage, is calculated as: 100 3 (DQN score 2 random play
score)/(human score 2 random play score). It can be seen that DQN

outperforms competing methods (also see Extended Data Table 2) in almost all
the games, and performs at a level that is broadly comparable with or superior
to a professional human games tester (that is, operationalized as a level of
75% or above) in the majority of games. Audio output was disabled for both
human players and agents. Error bars indicate s.d. across the 30 evaluation
episodes, starting with different initial conditions.

LETTER RESEARCH

2 6 F E B R U A R Y 2 0 1 5 | V O L 5 1 8 | N A T U R E | 5 3 1

Macmillan Publishers Limited. All rights reserved©2015

Mnih et al. (2015) Why?

Standard RL Approach

32

Standard RL Approach
• Repeat:

32

Standard RL Approach
• Repeat:

• Learn a “good” policy

32

Standard RL Approach
• Repeat:

• Learn a “good” policy

• Add randomness to induce exploration

32

Standard RL Approach
• Repeat:

• Learn a “good” policy

• Add randomness to induce exploration

• Collect more data (multiple episodes)

32

Standard RL Approach
• Repeat:

• Learn a “good” policy

• Add randomness to induce exploration

• Collect more data (multiple episodes)

• “epsilon-greedy”, “Boltzmann exploration”

32

Standard RL Approach
• Repeat:

• Learn a “good” policy

• Add randomness to induce exploration

• Collect more data (multiple episodes)

• “epsilon-greedy”, “Boltzmann exploration”

• “Dithering”

32

Need to explore

Current

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]

Need to explore

Current

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]

Need to explore

Current

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]

Need to explore

Current

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]

0.5

0.5

Need to explore

Current

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]

• Reckless data collection: Choose the actions uniformly at
random! (epsilon-greedy does the same)

0.5

0.5

Need to explore

Current

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]

• Reckless data collection: Choose the actions uniformly at
random! (epsilon-greedy does the same)

• How much data do we need to collect to learn about the bounty?
That is, what is the hitting time when we start in the middle.

0.5

0.5

Need to explore

Current

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]

• Reckless data collection: Choose the actions uniformly at
random! (epsilon-greedy does the same)

• How much data do we need to collect to learn about the bounty?
That is, what is the hitting time when we start in the middle.

• How does this depend on the number of states?

0.5

0.5

Time before bounty is found

34

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Cu

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Time before bounty is found

35

Time before bounty is found
• Hitting time for random

policy: 

35

⇥(2n)

Time before bounty is found
• Hitting time for random

policy: 

• Hitting time for
“swimming policy”:

35

⇥(2n)

⇥(n)

Time before bounty is found
• Hitting time for random

policy: 

• Hitting time for
“swimming policy”:

35

⇥(2n)

⇥(n)

• Exponential gap on a very simple example!  
..could be much worse on a real problem

Time before bounty is found
• Hitting time for random

policy: 

• Hitting time for
“swimming policy”:

35

⇥(2n)

⇥(n)

• Exponential gap on a very simple example!  
..could be much worse on a real problem

• Will we ever have enough data? Can we do better?

Time before bounty is found
• Hitting time for random

policy: 

• Hitting time for
“swimming policy”:

35

⇥(2n)

⇥(n)

• Exponential gap on a very simple example!  
..could be much worse on a real problem

• Will we ever have enough data? Can we do better?

Dithering is NOT sufficient

Need smart exploration methods

Smart exploration in
reinforcement learning

OFU in Bandits
Repeat:
1. Find the set St of likely “worlds”

given the observations so far
2. Find the “world” in St with the

maximum payoff:  
 

3. Find the optimal action for this
world:  
 

4. Use this action

37

“All worlds”

Actions

W ⇤
t = arg max

w2St

max

a
r(w, a)

St

W ⇤
t

A⇤
t

A⇤
t = argmax

a
r(W ⇤

t , a)

OFU in RL
Repeat:
1. Find the set St of likely “worlds”

given the observations so far
2. Find the “world” in St with the

maximum payoff:  
 

3. Find the optimal policy for this
world:  
 

4. Use this policy until St
significantly shrinks

38

Policies

W ⇤
t = argmax

w2St

max

⇡
J(w,⇡)

St

W ⇤
t

“All worlds”

⇡⇤
t

⇡⇤
t = argmax

⇡
J(W ⇤

t ,⇡)

Burnetas and Katehakis; Ortner and Auer, Tewari and Bartlett

OFU in finite MDPs: UCRL

39

[Jaksch-Ortner-Auer,’10]

OFU in finite MDPs: UCRL

S states, A actions, rewards in [0,1].

39

[Jaksch-Ortner-Auer,’10]

OFU in finite MDPs: UCRL

S states, A actions, rewards in [0,1].
Definition: Diameter := maximum of best travel times
between pairs of states. River swim: D = S

39

[Jaksch-Ortner-Auer,’10]

OFU in finite MDPs: UCRL

S states, A actions, rewards in [0,1].
Definition: Diameter := maximum of best travel times
between pairs of states. River swim: D = S
• Theorem: The regret of an OFU learner satisfies

39

RT = Õ(DS
p
AT)

[Jaksch-Ortner-Auer,’10]

OFU in finite MDPs: UCRL

S states, A actions, rewards in [0,1].
Definition: Diameter := maximum of best travel times
between pairs of states. River swim: D = S
• Theorem: The regret of an OFU learner satisfies

• Theorem: For any algorithm,

39

RT = Õ(DS
p
AT)

RT = ⌦(
p
DSAT)

[Jaksch-Ortner-Auer,’10]

Posterior Sampling 
Reinforcement Learning

40
[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:

40
[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds

40
[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model

40
[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

40

p(W |D) / pW (W)p(D|W)

[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

Repeat:

40

p(W |D) / pW (W)p(D|W)

[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

Repeat:
1. Sample a world W from the posterior: 
 

40

p(W |D) / pW (W)p(D|W)

W ⇠ P (W = ·|D)

[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

Repeat:
1. Sample a world W from the posterior: 
 

40

Worlds

p(W |D) / pW (W)p(D|W)

W ⇠ P (W = ·|D)

[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

Repeat:
1. Sample a world W from the posterior: 
 

40

Worlds

p(W |D) / pW (W)p(D|W)

W ⇠ P (W = ·|D)

Policies[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

Repeat:
1. Sample a world W from the posterior: 
 

40

Worlds

p(W |D) / pW (W)p(D|W)

W ⇠ P (W = ·|D)

Posterior

Policies[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

Repeat:
1. Sample a world W from the posterior: 
 

40

Worlds
W

p(W |D) / pW (W)p(D|W)

W ⇠ P (W = ·|D)

Posterior

Policies[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

Repeat:
1. Sample a world W from the posterior: 
 

2. Find the optimal policy for this world:  
 

40

Worlds

⇡ = argmax

⇠
J(W, ⇠)

W
p(W |D) / pW (W)p(D|W)

W ⇠ P (W = ·|D)

Posterior

Policies[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

Repeat:
1. Sample a world W from the posterior: 
 

2. Find the optimal policy for this world:  
 

40

Worlds

⇡ = argmax

⇠
J(W, ⇠)

⇡

W
p(W |D) / pW (W)p(D|W)

W ⇠ P (W = ·|D)

Posterior

Policies[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

Repeat:
1. Sample a world W from the posterior: 
 

2. Find the optimal policy for this world:  
 

40

Worlds

⇡ = argmax

⇠
J(W, ⇠)

⇡

W

PSRL

p(W |D) / pW (W)p(D|W)

W ⇠ P (W = ·|D)

Posterior

Policies[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

Repeat:
1. Sample a world W from the posterior: 
 

2. Find the optimal policy for this world:  
 

3. Use this policy for a “little while”

40

Worlds

⇡ = argmax

⇠
J(W, ⇠)

⇡

W

PSRL

p(W |D) / pW (W)p(D|W)

W ⇠ P (W = ·|D)

Posterior

Policies[Thompson, 1933(!), Strens ’00]

PSRL vs. UCRL2

41

Table 1: Total regret in simulation. PSRL outperforms UCRL2 over di�erent environments.

Random MDP Random MDP RiverSwim RiverSwim

Algorithm · -episodes Œ-horizon · -episodes Œ-horizon

PSRL 1.04 ◊ 104 7.30 ◊ 103 6.88 ◊ 101 1.06 ◊ 102

UCRL2 5.92 ◊ 104 1.13 ◊ 105 1.26 ◊ 103 3.64 ◊ 103

6.1 Learning in MDPs without episodic resets

The majority of practical problems in reinforcement learning can be mapped to repeated
episodic interactions for some length · . Even in cases where there is no actual reset of
episodes, one can show that PSRL’s regret is bounded against all policies which work over
horizon · or less [6]. Any setting with discount factor – can be learned for · Ã (1 ≠ –)≠1.
One appealing feature of UCRL2 [4] and REGAL [5] is that they learn this optimal timeframe
· . Instead of computing a new policy after a fixed number of periods, they begin a new
episode when the total visits to any state-action pair is doubled. We can apply this same
rule for episodes to PSRL in the Œ-horizon case, as shown in Figure 2. Using optimism
with KL-divergence instead of L1 balls has also shown improved performance over UCRL2
[22], but its regret remains orders of magnitude more than PSRL on RiverSwim.

(a) PSRL outperforms UCRL2 by large margins (b) PSRL learns quickly despite misspecified prior

Figure 2: Simulated regret on the Œ-horizon RiverSwim environment.

7 Conclusion

We establish posterior sampling for reinforcement learning not just as a heuristic, but as a
provably e�cient learning algorithm. We present Õ(·S

Ô
AT) Bayesian regret bounds, which

are some of the first for an algorithm not motivated by optimism and are close to state of the
art for any reinforcement learning algorithm. These bounds hold in expectation irrespective
of prior or model structure. PSRL is conceptually simple, computationally e�cient and can
easily incorporate prior knowledge. Compared to feasible optimistic algorithms we believe
that PSRL is often more e�cient statistically, simpler to implement and computationally
cheaper. We demonstrate that PSRL performs well in simulation over several domains. We
believe there is a strong case for the wider adoption of algorithms based upon posterior
sampling in both theory and practice.

Acknowledgments

Osband and Russo are supported by Stanford Graduate Fellowships courtesy of PACCAR
inc., and Burt and Deedee McMurty, respectively. This work was supported in part by
Award CMMI-0968707 from the National Science Foundation.

8

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

C

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

[Osband,Van Roy, Russo ’13]

Large-scale problems

42

Large-scale problems
• Large state-action spaces:  

need to generalize across states and actions

42

Large-scale problems
• Large state-action spaces:  

need to generalize across states and actions

• Model based approach:

42

Large-scale problems
• Large state-action spaces:  

need to generalize across states and actions

• Model based approach:

42

xt+1 = f(xt, at, ✓⇤, zt+1)

Large-scale problems
• Large state-action spaces:  

need to generalize across states and actions

• Model based approach:

42

next
state

xt+1 = f(xt, at, ✓⇤, zt+1)

Large-scale problems
• Large state-action spaces:  

need to generalize across states and actions

• Model based approach:

42

next
state

current
state

xt+1 = f(xt, at, ✓⇤, zt+1)

Large-scale problems
• Large state-action spaces:  

need to generalize across states and actions

• Model based approach:

42

next
state

current
state

action

xt+1 = f(xt, at, ✓⇤, zt+1)

Large-scale problems
• Large state-action spaces:  

need to generalize across states and actions

• Model based approach:

42

next
state

current
state

action

unknown
parameter

xt+1 = f(xt, at, ✓⇤, zt+1)

Large-scale problems
• Large state-action spaces:  

need to generalize across states and actions

• Model based approach:

42

next
state

current
state

action

unknown
parameter

noise

xt+1 = f(xt, at, ✓⇤, zt+1)

First steps: Linear Quadratic Regulation

43

First steps: Linear Quadratic Regulation

43

xt+1 = Axt +Bat + zt+1

ct+1 = x

>
t Qxt + a

>
t Rat

First steps: Linear Quadratic Regulation

43

xt+1 = Axt +Bat + zt+1

ct+1 = x

>
t Qxt + a

>
t Rat

is unknown
✓⇤ = (A,B)

First steps: Linear Quadratic Regulation

• Theorem [Abbasi-Sz 2011]: For reachable and
controllable systems, the regret of OFU satisfies

43

xt+1 = Axt +Bat + zt+1

ct+1 = x

>
t Qxt + a

>
t Rat

is unknown
✓⇤ = (A,B)

First steps: Linear Quadratic Regulation

• Theorem [Abbasi-Sz 2011]: For reachable and
controllable systems, the regret of OFU satisfies

43

xt+1 = Axt +Bat + zt+1

ct+1 = x

>
t Qxt + a

>
t Rat

RT = Õ(
p
T)

is unknown
✓⇤ = (A,B)

First steps: Linear Quadratic Regulation

• Theorem [Abbasi-Sz 2011]: For reachable and
controllable systems, the regret of OFU satisfies

• Key idea: Estimate the unknown parameter using l2
regularized least-squares, develop tight confidence
sets

43

xt+1 = Axt +Bat + zt+1

ct+1 = x

>
t Qxt + a

>
t Rat

RT = Õ(
p
T)

is unknown
✓⇤ = (A,B)

Web Server Control

44

Web Server Control
• Controlled quantities:

• Length of keeping alive a
connection with no traffic

• Maximum number of clients
that can be served

44

Web Server Control
• Controlled quantities:

• Length of keeping alive a
connection with no traffic

• Maximum number of clients
that can be served

• State variables:
• Processor load relative to

ideal processor load
• Memory usage relative to

ideal memory usage

44

Results

45
Figure 5.8: Regret vs time for a web server control problem. (Top-left): regret of the forced-
exploration method. (Top-right): regret of a Q-learning method. (Bottom-left) regret of
the OFULQ algorithm. (Bottom-right): regret of the OFULQ algorithm with the initial
exploration.

85

Explore then exploit Q-learning with dithering

OFULQ OFULQ prefetch

Results

45
Figure 5.8: Regret vs time for a web server control problem. (Top-left): regret of the forced-
exploration method. (Top-right): regret of a Q-learning method. (Bottom-left) regret of
the OFULQ algorithm. (Bottom-right): regret of the OFULQ algorithm with the initial
exploration.

85

Explore then exploit Q-learning with dithering

OFULQ OFULQ prefetch

Results

45
Figure 5.8: Regret vs time for a web server control problem. (Top-left): regret of the forced-
exploration method. (Top-right): regret of a Q-learning method. (Bottom-left) regret of
the OFULQ algorithm. (Bottom-right): regret of the OFULQ algorithm with the initial
exploration.

85

Explore then exploit Q-learning with dithering

OFULQ OFULQ prefetch

Results

45
Figure 5.8: Regret vs time for a web server control problem. (Top-left): regret of the forced-
exploration method. (Top-right): regret of a Q-learning method. (Bottom-left) regret of
the OFULQ algorithm. (Bottom-right): regret of the OFULQ algorithm with the initial
exploration.

85

Explore then exploit Q-learning with dithering

OFULQ OFULQ prefetch

Nonlinear systems?

46

Nonlinear systems?
• Smoothness:

46

y = f(x, a, ✓, z), y0 = f(x, a, ✓0, z)

)
E [ky � y0k]  k✓ � ✓0k

M(x,a)

Nonlinear systems?
• Smoothness:

• Theorem [Abbasi-Sz]: For smooth, “bounded”
systems, if the posterior is “concentrating”, the Bayes
regret of PSRL is bounded by

46

y = f(x, a, ✓, z), y0 = f(x, a, ✓0, z)

)
E [ky � y0k]  k✓ � ✓0k

M(x,a)

RT = Õ(
p
T)

Nonlinear systems?
• Smoothness:

• Theorem [Abbasi-Sz]: For smooth, “bounded”
systems, if the posterior is “concentrating”, the Bayes
regret of PSRL is bounded by

• Key idea: Use to measure information.
46

y = f(x, a, ✓, z), y0 = f(x, a, ✓0, z)

)
E [ky � y0k]  k✓ � ✓0k

M(x,a)

RT = Õ(
p
T)

M(x, a)

High noise setting

47

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

Figure 3: Regret vs time for a web server control problem. (Top-left) regret of the OFULQ algorithm when � = 0.1.
(Top-right): regret of the LAZY PSRL algorithm when � = 0.1. (Bottom-left) regret of the OFULQ algorithm when
� = 1.0. (Bottom-right): regret of the LAZY PSRL algorithm when � = 1.0.

Figure 4: Regret of the LAZY PSRL algorithm with different priors. The prior is a zero mean Gaussian distribution
with covariance matrix �2I . The horizontal axis is �.

8 Conclusions

We studied the problem of efficient computation of a nearly Bayes-optimal policy in average cost problems with
smoothly parameterized, possibly nonlinear dynamics. In particular, we showed that lazy PSRL, when the same
policy is used until the uncertainty in the posterior is sufficiently reduced leads to an algorithm whose computational
cost depends mainly on the cost of solving the underlying classical (non-Bayesian) optimal control problem, and also
on the cost of sampling from the posterior. Our analysis guarantees that the resulting method is indeed near Bayes
optimal for a large class of systems. We also studied the effect of possibly exploding state and proposed a specific way
to deal with this issue. As opposed to previous analysis of PSRL by Osband et al. [6], our analysis does not rely on a
“UCB type” argument, but it hinges upon the concentration of the posterior, which we showed in two specific cases.

8

OFULQ = OFU on LQR
Lazy PSRL = PSRL that switches to new policy  
based on M(x, a)

High noise setting

47

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

Figure 3: Regret vs time for a web server control problem. (Top-left) regret of the OFULQ algorithm when � = 0.1.
(Top-right): regret of the LAZY PSRL algorithm when � = 0.1. (Bottom-left) regret of the OFULQ algorithm when
� = 1.0. (Bottom-right): regret of the LAZY PSRL algorithm when � = 1.0.

Figure 4: Regret of the LAZY PSRL algorithm with different priors. The prior is a zero mean Gaussian distribution
with covariance matrix �2I . The horizontal axis is �.

8 Conclusions

We studied the problem of efficient computation of a nearly Bayes-optimal policy in average cost problems with
smoothly parameterized, possibly nonlinear dynamics. In particular, we showed that lazy PSRL, when the same
policy is used until the uncertainty in the posterior is sufficiently reduced leads to an algorithm whose computational
cost depends mainly on the cost of solving the underlying classical (non-Bayesian) optimal control problem, and also
on the cost of sampling from the posterior. Our analysis guarantees that the resulting method is indeed near Bayes
optimal for a large class of systems. We also studied the effect of possibly exploding state and proposed a specific way
to deal with this issue. As opposed to previous analysis of PSRL by Osband et al. [6], our analysis does not rely on a
“UCB type” argument, but it hinges upon the concentration of the posterior, which we showed in two specific cases.

8

OFULQ = OFU on LQR
Lazy PSRL = PSRL that switches to new policy  
based on M(x, a)

Computation; low noise

48

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

Figure 3: Regret vs time for a web server control problem. (Top-left) regret of the OFULQ algorithm when � = 0.1.
(Top-right): regret of the LAZY PSRL algorithm when � = 0.1. (Bottom-left) regret of the OFULQ algorithm when
� = 1.0. (Bottom-right): regret of the LAZY PSRL algorithm when � = 1.0.

Figure 4: Regret of the LAZY PSRL algorithm with different priors. The prior is a zero mean Gaussian distribution
with covariance matrix �2I . The horizontal axis is �.

8 Conclusions

We studied the problem of efficient computation of a nearly Bayes-optimal policy in average cost problems with
smoothly parameterized, possibly nonlinear dynamics. In particular, we showed that lazy PSRL, when the same
policy is used until the uncertainty in the posterior is sufficiently reduced leads to an algorithm whose computational
cost depends mainly on the cost of solving the underlying classical (non-Bayesian) optimal control problem, and also
on the cost of sampling from the posterior. Our analysis guarantees that the resulting method is indeed near Bayes
optimal for a large class of systems. We also studied the effect of possibly exploding state and proposed a specific way
to deal with this issue. As opposed to previous analysis of PSRL by Osband et al. [6], our analysis does not rely on a
“UCB type” argument, but it hinges upon the concentration of the posterior, which we showed in two specific cases.

8

OFULQ = OFU on LQR
Lazy PSRL = PSRL that switches to new policy  
based on M(x, a)

The frequency of policy switches is controlled by
a parameter, which ultimate controls the computation time

Computation; low noise

48

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

Figure 3: Regret vs time for a web server control problem. (Top-left) regret of the OFULQ algorithm when � = 0.1.
(Top-right): regret of the LAZY PSRL algorithm when � = 0.1. (Bottom-left) regret of the OFULQ algorithm when
� = 1.0. (Bottom-right): regret of the LAZY PSRL algorithm when � = 1.0.

Figure 4: Regret of the LAZY PSRL algorithm with different priors. The prior is a zero mean Gaussian distribution
with covariance matrix �2I . The horizontal axis is �.

8 Conclusions

We studied the problem of efficient computation of a nearly Bayes-optimal policy in average cost problems with
smoothly parameterized, possibly nonlinear dynamics. In particular, we showed that lazy PSRL, when the same
policy is used until the uncertainty in the posterior is sufficiently reduced leads to an algorithm whose computational
cost depends mainly on the cost of solving the underlying classical (non-Bayesian) optimal control problem, and also
on the cost of sampling from the posterior. Our analysis guarantees that the resulting method is indeed near Bayes
optimal for a large class of systems. We also studied the effect of possibly exploding state and proposed a specific way
to deal with this issue. As opposed to previous analysis of PSRL by Osband et al. [6], our analysis does not rely on a
“UCB type” argument, but it hinges upon the concentration of the posterior, which we showed in two specific cases.

8

OFULQ = OFU on LQR
Lazy PSRL = PSRL that switches to new policy  
based on M(x, a)

The frequency of policy switches is controlled by
a parameter, which ultimate controls the computation time

Summary

49

Summary
• At the end, we need to solve decision problems

49

Summary
• At the end, we need to solve decision problems
• This makes a BIG difference

49

Summary
• At the end, we need to solve decision problems
• This makes a BIG difference

• Passive data collection can be extremely
ineffective: “big data” !?

49

Summary
• At the end, we need to solve decision problems
• This makes a BIG difference

• Passive data collection can be extremely
ineffective: “big data” !?

• Need smart algorithms for learning and control

49

Summary
• At the end, we need to solve decision problems
• This makes a BIG difference

• Passive data collection can be extremely
ineffective: “big data” !?

• Need smart algorithms for learning and control
• Planning to learn (smart exploration) is critical

49

Summary
• At the end, we need to solve decision problems
• This makes a BIG difference

• Passive data collection can be extremely
ineffective: “big data” !?

• Need smart algorithms for learning and control
• Planning to learn (smart exploration) is critical
• OFU and PSRL: Competing designs

49

Summary
• At the end, we need to solve decision problems
• This makes a BIG difference

• Passive data collection can be extremely
ineffective: “big data” !?

• Need smart algorithms for learning and control
• Planning to learn (smart exploration) is critical
• OFU and PSRL: Competing designs

• Current research: Scaling up, fewer assumptions,
feedback, model-free (=agnostic) exploration,
limits of adaptation

49

Thanks for being here!
Questions?

