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A few more serious 
applications

6

• Business strategies 
• Hybrid electric vehicles 
• Health-care 

• Clinical trials 
• Adaptive interventions (health) 
• Intelligent prosthetics 
• … 

• Aircraft control 
• Elevator control 
• Water treatment energy savings 
• Smart grid
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Explore or Exploit  
in 

Bandits



One-armed bandit

9
Goal: maximize the total reward incurred



One-armed bandit

9
Goal: maximize the total reward incurred

Wins so far: 
$0, $1, $0, $0 
Which arm to  

pull?
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Bandit theory
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Stochastic bandit problems
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Stochastic bandit problems
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At 2 A

Prior  
knowledge:
(⌫a)a2A 2 P

Rt ⇠ ⌫At(·)

A1, R1, . . . , At�1, Rt�1

Example:  
Rewards lie 
in [0,1]



UCB1

13

Arm 1

Upper  
confidence  
bound

Arm 2 Arm 3

Empirical 
mean

Reward

Pull the arm with largest UCB value!



Optimism in the Face of Uncertainty

Repeat: 
1. Find the set St of likely “worlds” 

given the observations so far 
2. Find the “world” in St with the 

maximum payoff:  
 

3. Find the optimal action for this 
world:  
 

4. Use this action

14

“All worlds”

OFU

Actions
Lai and Robbins (1985), Burnetas and Katehakis (1996),  
Auer, Cesa-Bianchi and Fischer UCB1 (2002), and many others

W ⇤
t = arg max

w2St

max

a
r(w, a)

St

W ⇤
t

A⇤
t

A⇤
t = argmax

a
r(W ⇤

t , a)



Regret of UCB1

15

Sebastien Bubeck and Nicolo Cesa-Bianchi. Regret Analysis of Stochastic and 
Nonstochastic Multi-armed Bandit Problems. Foundations and Trends in Machine 
Learning. Now Publishers, 2012.

Rn = nmax

a
r(a)�

nX

t=1

r(At) =

X

a

�(a)| {z }
r⇤�r(a)

Tn(a)
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Regret of UCB1

15

Sebastien Bubeck and Nicolo Cesa-Bianchi. Regret Analysis of Stochastic and 
Nonstochastic Multi-armed Bandit Problems. Foundations and Trends in Machine 
Learning. Now Publishers, 2012.

E [Rn] 
p

c|A|n log n

E [Rn] =

X

a:�(a)>0

c log n

�(a)
+O(1)

Both results are 
essentially 

unimprovable!

Rn = nmax

a
r(a)�

nX

t=1

r(At) =

X

a

�(a)| {z }
r⇤�r(a)

Tn(a)



Bandit Zoo
• Bayesian 

• Adversarial  

• Nonstationary 

• Linear  

• Contextual 

• Semi-  

• Budgeted
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• Combinatorial 

• Restless  

• Infinite-armed  

• X-armed  

• Gaussian process 

• Nonparametric 

• Kernelized 

• Mortal 

• Delayed

• Convex 

• Dueling  

• Cascading 

• Conservative 

• Risk-sensitive 

• Resourceful  

• Side-observed 

• Partially observed 

• Generalized linear 

• Distributed 

• …
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• Actions are elements of a vector space:  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Linear Bandits
• Actions are elements of a vector space:  
 

• Reward:

• L2 problem: 

19

k✓k2  1, kak2  1

Rt = hAt, ✓⇤i+ Zt

A ⇢ Rd
subgaussian 
noise

(P. Auer 2003)



Why linear bandits?
• Linear payoff structure naturally occurs in many 

practical combinatorial problems 

• “Featurizing” —> a way of adding prior information 
about structure 

• Contextual bandits is a special case

20

Context  
generator

Bandit 
algorithm

Ct At

Rt = h'(a, Ct)| {z }
't(a)

, ✓⇤i+ Zt



Linear Bandits
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• Theorem [Dani et al ’08]: For subgaussian 

noise, OFU’s regret for the L2 problem is 

21

RT = Õ(d
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p
T )

How to choose the actions?
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...
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Linear 
prediction 
problem

Least- 
squares

✓̂t�1 = (I +
t�1X

s=1

AsA
>
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�1
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As(Zs
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Linear Bandits
• Theorem [Dani et al ’08]: For subgaussian 

noise, OFU’s regret for the L2 problem is 

21

RT = Õ(d
p
T )

Confidence set: Empirical processes

How to choose the actions?
R1 = hA1, ✓⇤i+ Z1

...

Rt�1 = hAt�1, ✓⇤i+ Zt�1

Linear 
prediction 
problem

Least- 
squares

✓̂t�1 = (I +
t�1X

s=1

AsA
>
s )

�1
t�1X

s=1

As(Zs

| {z }
martingale

+A>
s ✓⇤)
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Avoids empirical process techniques —> tighter!



Confidence sets matter!

23

Empirical Results: The Influence of
Confidence Sets

OFUL using the confidence set of [AYPS11] – “New bound”
OFUL using the confidence set of [DHK08] – “Old bound”
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23 / 40• “New bound” = self-normalized bound 
• “Old bound”  = empirical process bound (Dani-Hayes-Kakade ’08) 
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Sparse Bandits
• Sparsity:       has p nonzero components only.

• Let (At) satisfy the RIP property. Then, for LASSO:

• Can we design confidence sets with this scaling?

• Good algorithms select good actions frequently 
—> No RIP 
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Sparse Bandits
• Sparsity:       has p nonzero components only.

• Let (At) satisfy the RIP property. Then, for LASSO:

• Can we design confidence sets with this scaling?

• Good algorithms select good actions frequently 
—> No RIP 

• Covariates are highly correlated

24
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Yet….
• Given the observations  

where 
 
and 
and              , find a set      
 
 
such that                                  .  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Yet….
• Given the observations  

where 
 
and 
and              , find a set      
 
 
such that                                  .  

• Note:               are chosen by a bandit algorithm, 
they are far from independent!

• How to exploit the structure of    ?

25

. . . , Rt = hAt, ✓⇤i+ Zt, . . .

At 2 Rd

Ct = Ct(�, R1, A1, . . . , Rt, At) ⇢ Rd
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P (✓⇤ 2 Ct) � 1� �
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A reduction
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Abbasi-Pal-Sz ’12

Predictor
Adversary

At R̂t

Bt

Rt+1, At+1

��1

tX

s=1

(Rs � R̂s)
2  inf

✓2⇥
(Rs � hAs, ✓, )i2 +Bt



A reduction

Theorem: With probability         ,              holds for all               
  ,  
where: 

26

1� � ✓⇤ 2 Cn

n � 1
Cn =

(
✓ 2 Rd :

nX

t=1
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�
p
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p
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Sparse Linear Bandits
• Theorem [YPSz ’12]: The regret of OFUL enjoys

• Theorem [Gerchinowitz ’11]: There exist a 
predictor that achieves  
 
for linear regression with p-sparse parameter 
vectors belonging to the hypercube.

• Corollary [YPSz ’12]: For such problems, 

• Theorem [YPSz’12]: For all algorithms,

27

RT = Õ(
p
dTBT )

BT = O(p log(dT ))

RT = Õ(
p
dpT )

RT = ⌦(
p
dT )



Still.. does it work?

28
d = 100, p = 10

(a) (b)

(c) (d)

Figure 4.18: Comparing the OFUL-EG and the OFUL-LS algorithms on synthetic data.
The action set is k = 200 randomly generated vectors in {�1,+1}200. The parameter vector
✓⇤ has only 10 non-zero elements, each being equal to 0.1. The algorithm observes h✓⇤, ati
corrupted by a Gaussian noise drawn from N (0, 0.12). The time horizon is T = 1000. We set
the least-squares regularizer to � = 1, and the EG learning rate to ⌘ = 1. (a) The OFUL-
LS algorithm outperforms the OFUL-EG algorithm (b) The OFUL-EG algorithm with
the improved confidence width (4.20) outperforms the OFUL-LS algorithm (c) Improving
the regret of the OFUL-EG algorithm with confidence width (4.21) (d) Experimenting with
a problem with a smaller dimensionality and action set, k = 100, d = 100.

55



Summary so far
• Explore-exploit in bandit problems: 

• It helps to be (reasonably) optimistic 

• Finite armed bandits: UCB1 

• Linear bandits:  

• Fundamental to addressing structured 
information 

• Confidence set design is critical

29



Back to  
reinforcement learning

Observation

Action

Environment (state)

Reward



How far did we get?

31see Fig. 3, Supplementary Discussion and Extended Data Table 2). In
additional simulations (see Supplementary Discussion and Extended
Data Tables 3 and 4), we demonstrate the importance of the individual
core components of the DQN agent—the replay memory, separate target
Q-network and deep convolutional network architecture—by disabling
them and demonstrating the detrimental effects on performance.

We next examined the representations learned by DQN that under-
pinned the successful performance of the agent in the context of the game
Space Invaders (see Supplementary Video 1 for a demonstration of the
performance of DQN), by using a technique developed for the visual-
ization of high-dimensional data called ‘t-SNE’25 (Fig. 4). As expected,
the t-SNE algorithm tends to map the DQN representation of percep-
tually similar states to nearby points. Interestingly, we also found instances
in which the t-SNE algorithm generated similar embeddings for DQN
representations of states that are close in terms of expected reward but

perceptually dissimilar (Fig. 4, bottom right, top left and middle), con-
sistent with the notion that the network is able to learn representations
that support adaptive behaviour from high-dimensional sensory inputs.
Furthermore, we also show that the representations learned by DQN
are able to generalize to data generated from policies other than its
own—in simulations where we presented as input to the network game
states experienced during human and agent play, recorded the repre-
sentations of the last hidden layer, and visualized the embeddings gen-
erated by the t-SNE algorithm (Extended Data Fig. 1 and Supplementary
Discussion). Extended Data Fig. 2 provides an additional illustration of
how the representations learned by DQN allow it to accurately predict
state and action values.

It is worth noting that the games in which DQN excels are extremely
varied in their nature, from side-scrolling shooters (River Raid) to box-
ing games (Boxing) and three-dimensional car-racing games (Enduro).
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Figure 3 | Comparison of the DQN agent with the best reinforcement
learning methods15 in the literature. The performance of DQN is normalized
with respect to a professional human games tester (that is, 100% level) and
random play (that is, 0% level). Note that the normalized performance of DQN,
expressed as a percentage, is calculated as: 100 3 (DQN score 2 random play
score)/(human score 2 random play score). It can be seen that DQN

outperforms competing methods (also see Extended Data Table 2) in almost all
the games, and performs at a level that is broadly comparable with or superior
to a professional human games tester (that is, operationalized as a level of
75% or above) in the majority of games. Audio output was disabled for both
human players and agents. Error bars indicate s.d. across the 30 evaluation
episodes, starting with different initial conditions.
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• Repeat:

• Learn a “good” policy

• Add randomness to induce exploration

• Collect more data (multiple episodes)

• “epsilon-greedy”, “Boltzmann exploration”

• “Dithering”
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• Reckless data collection: Choose the actions uniformly at 
random! (epsilon-greedy does the same)

• How much data do we need to collect to learn about the bounty? 
That is, what is the hitting time when we start in the middle.

• How does this depend on the number of states?
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Time before bounty is found
• Hitting time for random 

policy: 

• Hitting time for 
“swimming policy”:

35

⇥(2n)

⇥(n)

• Exponential gap on a very simple example!  
..could be much worse on a real problem

• Will we ever have enough data? Can we do better?

Dithering is NOT sufficient 

Need smart exploration methods



Smart exploration in 
reinforcement learning



OFU in Bandits
Repeat: 
1. Find the set St of likely “worlds” 

given the observations so far 
2. Find the “world” in St with the 

maximum payoff:  
 

3. Find the optimal action for this 
world:  
 

4. Use this action

37

“All worlds”

Actions

W ⇤
t = arg max

w2St

max

a
r(w, a)

St

W ⇤
t

A⇤
t

A⇤
t = argmax

a
r(W ⇤

t , a)



OFU in RL
Repeat: 
1. Find the set St of likely “worlds” 

given the observations so far 
2. Find the “world” in St with the 

maximum payoff:  
 

3. Find the optimal policy for this 
world:  
 

4. Use this policy until St 
significantly shrinks

38

Policies

W ⇤
t = argmax

w2St

max

⇡
J(w,⇡)

St

W ⇤
t

“All worlds”

⇡⇤
t

⇡⇤
t = argmax

⇡
J(W ⇤

t ,⇡)

Burnetas and Katehakis; Ortner and Auer, Tewari and Bartlett
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OFU in finite MDPs: UCRL

S states, A actions, rewards in [0,1].
Definition: Diameter := maximum of best travel times 
between pairs of states. River swim: D = S
• Theorem: The regret of an OFU learner satisfies

• Theorem: For any algorithm, 

39

RT = Õ(DS
p
AT )

RT = ⌦(
p
DSAT )

[Jaksch-Ortner-Auer,’10]



Posterior Sampling 
Reinforcement Learning

40
[Thompson, 1933(!), Strens ’00]



Posterior Sampling 
Reinforcement Learning

A Bayesian start: 

40
[Thompson, 1933(!), Strens ’00]



Posterior Sampling 
Reinforcement Learning

A Bayesian start: 
• Prior over the worlds

40
[Thompson, 1933(!), Strens ’00]



Posterior Sampling 
Reinforcement Learning

A Bayesian start: 
• Prior over the worlds
• Likelihood model

40
[Thompson, 1933(!), Strens ’00]



Posterior Sampling 
Reinforcement Learning

A Bayesian start: 
• Prior over the worlds
• Likelihood model
• Posterior: 

40

p(W |D) / pW (W )p(D|W )

[Thompson, 1933(!), Strens ’00]



Posterior Sampling 
Reinforcement Learning

A Bayesian start: 
• Prior over the worlds
• Likelihood model
• Posterior: 

Repeat:

40

p(W |D) / pW (W )p(D|W )

[Thompson, 1933(!), Strens ’00]



Posterior Sampling 
Reinforcement Learning

A Bayesian start: 
• Prior over the worlds
• Likelihood model
• Posterior: 

Repeat:
1. Sample a world W from the posterior: 
 

40

p(W |D) / pW (W )p(D|W )

W ⇠ P (W = ·|D)

[Thompson, 1933(!), Strens ’00]



Posterior Sampling 
Reinforcement Learning

A Bayesian start: 
• Prior over the worlds
• Likelihood model
• Posterior: 

Repeat:
1. Sample a world W from the posterior: 
 

40

Worlds

p(W |D) / pW (W )p(D|W )

W ⇠ P (W = ·|D)

[Thompson, 1933(!), Strens ’00]



Posterior Sampling 
Reinforcement Learning

A Bayesian start: 
• Prior over the worlds
• Likelihood model
• Posterior: 

Repeat:
1. Sample a world W from the posterior: 
 

40

Worlds

p(W |D) / pW (W )p(D|W )

W ⇠ P (W = ·|D)

Policies[Thompson, 1933(!), Strens ’00]



Posterior Sampling 
Reinforcement Learning

A Bayesian start: 
• Prior over the worlds
• Likelihood model
• Posterior: 

Repeat:
1. Sample a world W from the posterior: 
 

40

Worlds

p(W |D) / pW (W )p(D|W )

W ⇠ P (W = ·|D)

Posterior

Policies[Thompson, 1933(!), Strens ’00]



Posterior Sampling 
Reinforcement Learning

A Bayesian start: 
• Prior over the worlds
• Likelihood model
• Posterior: 

Repeat:
1. Sample a world W from the posterior: 
 

40

Worlds
W

p(W |D) / pW (W )p(D|W )

W ⇠ P (W = ·|D)

Posterior

Policies[Thompson, 1933(!), Strens ’00]



Posterior Sampling 
Reinforcement Learning

A Bayesian start: 
• Prior over the worlds
• Likelihood model
• Posterior: 

Repeat:
1. Sample a world W from the posterior: 
 

2. Find the optimal policy for this world:  
 

40

Worlds

⇡ = argmax

⇠
J(W, ⇠)

W
p(W |D) / pW (W )p(D|W )

W ⇠ P (W = ·|D)

Posterior

Policies[Thompson, 1933(!), Strens ’00]



Posterior Sampling 
Reinforcement Learning

A Bayesian start: 
• Prior over the worlds
• Likelihood model
• Posterior: 

Repeat:
1. Sample a world W from the posterior: 
 

2. Find the optimal policy for this world:  
 

40

Worlds

⇡ = argmax

⇠
J(W, ⇠)

⇡

W
p(W |D) / pW (W )p(D|W )

W ⇠ P (W = ·|D)

Posterior

Policies[Thompson, 1933(!), Strens ’00]



Posterior Sampling 
Reinforcement Learning

A Bayesian start: 
• Prior over the worlds
• Likelihood model
• Posterior: 

Repeat:
1. Sample a world W from the posterior: 
 

2. Find the optimal policy for this world:  
 

40

Worlds

⇡ = argmax

⇠
J(W, ⇠)

⇡

W

PSRL

p(W |D) / pW (W )p(D|W )

W ⇠ P (W = ·|D)

Posterior

Policies[Thompson, 1933(!), Strens ’00]



Posterior Sampling 
Reinforcement Learning

A Bayesian start: 
• Prior over the worlds
• Likelihood model
• Posterior: 

Repeat:
1. Sample a world W from the posterior: 
 

2. Find the optimal policy for this world:  
 

3. Use this policy for a “little while”

40

Worlds
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⇠
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Table 1: Total regret in simulation. PSRL outperforms UCRL2 over di�erent environments.

Random MDP Random MDP RiverSwim RiverSwim

Algorithm · -episodes Œ-horizon · -episodes Œ-horizon

PSRL 1.04 ◊ 104 7.30 ◊ 103 6.88 ◊ 101 1.06 ◊ 102

UCRL2 5.92 ◊ 104 1.13 ◊ 105 1.26 ◊ 103 3.64 ◊ 103

6.1 Learning in MDPs without episodic resets

The majority of practical problems in reinforcement learning can be mapped to repeated
episodic interactions for some length · . Even in cases where there is no actual reset of
episodes, one can show that PSRL’s regret is bounded against all policies which work over
horizon · or less [6]. Any setting with discount factor – can be learned for · Ã (1 ≠ –)≠1.
One appealing feature of UCRL2 [4] and REGAL [5] is that they learn this optimal timeframe
· . Instead of computing a new policy after a fixed number of periods, they begin a new
episode when the total visits to any state-action pair is doubled. We can apply this same
rule for episodes to PSRL in the Œ-horizon case, as shown in Figure 2. Using optimism
with KL-divergence instead of L1 balls has also shown improved performance over UCRL2
[22], but its regret remains orders of magnitude more than PSRL on RiverSwim.

(a) PSRL outperforms UCRL2 by large margins (b) PSRL learns quickly despite misspecified prior

Figure 2: Simulated regret on the Œ-horizon RiverSwim environment.

7 Conclusion

We establish posterior sampling for reinforcement learning not just as a heuristic, but as a
provably e�cient learning algorithm. We present Õ(·S

Ô
AT ) Bayesian regret bounds, which

are some of the first for an algorithm not motivated by optimism and are close to state of the
art for any reinforcement learning algorithm. These bounds hold in expectation irrespective
of prior or model structure. PSRL is conceptually simple, computationally e�cient and can
easily incorporate prior knowledge. Compared to feasible optimistic algorithms we believe
that PSRL is often more e�cient statistically, simpler to implement and computationally
cheaper. We demonstrate that PSRL performs well in simulation over several domains. We
believe there is a strong case for the wider adoption of algorithms based upon posterior
sampling in both theory and practice.
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Large-scale problems
• Large state-action spaces:  

need to generalize across states and actions

• Model based approach:

42

next 
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unknown 
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noise

xt+1 = f(xt, at, ✓⇤, zt+1)
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First steps: Linear Quadratic Regulation

• Theorem [Abbasi-Sz 2011]: For reachable and 
controllable systems, the regret of OFU satisfies

• Key idea: Estimate the unknown parameter using l2 
regularized least-squares, develop tight confidence 
sets

43
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p
T )

is unknown
✓⇤ = (A,B)



Web Server Control

44



Web Server Control
• Controlled quantities:

• Length of keeping alive a 
connection with no traffic

• Maximum number of clients 
that can be served

44



Web Server Control
• Controlled quantities:

• Length of keeping alive a 
connection with no traffic
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• State variables:
• Processor load relative to 

ideal processor load 
• Memory usage relative to 

ideal memory usage
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Results

45
Figure 5.8: Regret vs time for a web server control problem. (Top-left): regret of the forced-
exploration method. (Top-right): regret of a Q-learning method. (Bottom-left) regret of
the OFULQ algorithm. (Bottom-right): regret of the OFULQ algorithm with the initial
exploration.
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Nonlinear systems?
• Smoothness:

• Theorem [Abbasi-Sz]: For smooth, “bounded” 
systems, if the posterior is “concentrating”, the Bayes 
regret of PSRL is bounded by 

• Key idea: Use                to measure information.
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Figure 3: Regret vs time for a web server control problem. (Top-left) regret of the OFULQ algorithm when � = 0.1.
(Top-right): regret of the LAZY PSRL algorithm when � = 0.1. (Bottom-left) regret of the OFULQ algorithm when
� = 1.0. (Bottom-right): regret of the LAZY PSRL algorithm when � = 1.0.

Figure 4: Regret of the LAZY PSRL algorithm with different priors. The prior is a zero mean Gaussian distribution
with covariance matrix �2I . The horizontal axis is �.

8 Conclusions

We studied the problem of efficient computation of a nearly Bayes-optimal policy in average cost problems with
smoothly parameterized, possibly nonlinear dynamics. In particular, we showed that lazy PSRL, when the same
policy is used until the uncertainty in the posterior is sufficiently reduced leads to an algorithm whose computational
cost depends mainly on the cost of solving the underlying classical (non-Bayesian) optimal control problem, and also
on the cost of sampling from the posterior. Our analysis guarantees that the resulting method is indeed near Bayes
optimal for a large class of systems. We also studied the effect of possibly exploding state and proposed a specific way
to deal with this issue. As opposed to previous analysis of PSRL by Osband et al. [6], our analysis does not rely on a
“UCB type” argument, but it hinges upon the concentration of the posterior, which we showed in two specific cases.

8

OFULQ = OFU on LQR
Lazy PSRL = PSRL that switches to new policy  
based on M(x, a)
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a parameter, which ultimate controls the computation time
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Summary
• At the end, we need to solve decision problems
• This makes a BIG difference

• Passive data collection can be extremely 
ineffective: “big data” !?

• Need smart algorithms for learning and control
• Planning to learn (smart exploration) is critical
• OFU and PSRL: Competing designs

• Current research: Scaling up, fewer assumptions, 
feedback, model-free (=agnostic) exploration, 
limits of adaptation
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Thanks for being here! 
Questions?


