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Reinforcement Learning




Reinforcement Learning

Observation

Action
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A few more serious
applications _ &

* Business strategies

* RHybrid electric vehicles

* Health-care
* Clinical trials 2
» Adaptive interventions (health) 1
« Intelligent prosthetics

e Aircraft control

* Elevator control

* Water treatment energy savings

e Smart grid
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One-armed bandit

Lever 1 Lever 2
Known payout Unknown payout
S0.25 bet $0.25 bet
$0.30 win! S? win
EXPLOITATION EXPLORATION

Goal: maximize the total reward incurred



One-armed bandit

Wins so far:

$0, $1, $0, $0

Which arm to
oull?

Lever 1 Lever 2
Known payout Unknown payout
S0.25 bet ) ‘ | S0.25 bet
S0.30 win! S? win
EXPLOITATION EXPLORATION

Goal: maximize the total reward incurred
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2002 P. Auer,
2002 P. Auer,

Very brief history
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952 Herbert E. Robbins
979 John C. Gittins

985 Tze Lal and H.E. Robbins
997 A. Burnetas, M. Katehakis

N. Cesa-Bianchi, P. Fischer
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Bandait theory

B AT
—

Optimism is the best
way to see life
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Stochastic bandit problems

Prior
knowledge:

(Va)aEA c P
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Stochastic bandit problems

Ry ~ VAt(°)

Prior
knowledge:

(Va)aEA cP

Example:
Rewards lie
in [0,1]

12



Upper
. confidence
. bound

.........................................................

................ “.
L E———m——— pea
Empﬁcm
mean
Arm 1 Arm 2 Arm 3

Pull the arm with largest UCB value!

13



Optimism in the Face of Uncertainty

"All worlds”
Repeat:

1. Find the set S; of likely “worlds” St
given the observations so far
2. Find the “world” in §; with the

maximum payoff:
" = arg max maxr(w, a)
weES: a
3. Find the optimal action for this

world:

W' e

. =argmaxr(W,, a)
a @

4. Use this action _
Actions

Lai and Robbins (1985), Burnetas and Katehakis (1996),

Auer, Cesa-Bianchi and Fischer UCB1 (2002), and many others
14



Regret of UCB

n

R, =nmaxr(a) — » r(A)=>» a@ T, (a)

* t=1
N r*—r(a)

Sebastien Bubeck and Nicolo Cesa-Bianchi. Regret Analysis of Stochastic and
Nonstochastic Multi-armed Bandit Problems. Foundations and Trends in Machine
Learning. Now Publishers, 2012,
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Regret of UCB

n

R, =nmaxr(a) — » r(A)=>» a@ T, (a)

t=1
r*—r(a)

(Rl= Y SE O
a:A(a)>0

Sebastien Bubeck and Nicolo Cesa-Bianchi. Regret Analysis of Stochastic and
Nonstochastic Multi-armed Bandit Problems. Foundations and Trends in Machine
Learning. Now Publishers, 2012,
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Regret of UCBT

n

R, = nmaxr(a) — Zr(At) = Z é(/al T, (a)

* t=1
N r*—r(a)

i B clogn
(R]= Y 00
a:A(a)>0

Both results are

2 [R,] < \/c|A|lnlogn essentially
unimprovable!

Sebastien Bubeck and Nicolo Cesa-Bianchi. Regret Analysis of Stochastic and
Nonstochastic Multi-armed Bandit Problems. Foundations and Trends in Machine
Learning. Now Publishers, 2012,
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Bayesian
Adversarial
Nonstationary
Linear
Contextual
Semi-

Budgeted

Bandit Z00

Combinatorial
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Infinite-armed
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Gaussian process
Nonparametric
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Mortal

Delayed

Convex

Dueling
Cascading
Conservative
Risk-sensitive
Resourceful
Side-observed
Partially observed
Generalized linear

Distributed
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Bayesian
Adversarial
Nonstationary
Linear
Contextual
Semi-

Budgeted

Bandit Z00

- Combinatorial

Restless

- Infinite-armed

X-armed

Gaussian process

- Nonparametric

- Kernelized

Mortal

Delayed

- Convex

* Dueling

e Cascading

» Conservative

* Risk-sensitive

* Resourceful

* Side-observed

* Partially observed
- Generalized linear

e Distributed

17
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| Inear Bandadits
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(P. Auer 2003)
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| Inear Bandits

e Actions are elements of a vector space:
A C R?

(P. Auer 2003)
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| Inear Bandits

e Actions are elements of a vector space:
A C R?

e Reward: R; = (A;,0,)

(P. Auer 2003)

subgaussian
NoIse

= 5O \\=<Z)
Sub Gaussian (K=-1)
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| Inear Bandits

e Actions are elements of a vector space:
A C R?

e Reward: R; = (A4, 0.) + Z,

(P. Auer 2003)

e L2 problem: [|0|], <1, |al, <1

= 5O \\=<Z)
Sub Gaussian (K=-1)

19



Why linear bandits”

Linear payoff structure naturally occurs in many
oractical combinatorial problems

‘Featurizing” —> a way of adding prior information
apout structure

Contextual bandits is a special case

Context
generator

20
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| Inear Bandits

 Theorem [Dani et al ’08]: For subgaussian )
noise, OFU’s regret for the L2 problem is Ry = O(dV'T)
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 Theorem [Dani et al ’08]: For subgaussian

noise, OFU’s regret for the L2 problem is Ry = O(dV'T)

How to choose the actions?
Ry = (A41,0,) + 74 h

Rt—l — <At—179*> + Zt—l -

near
rediction

T T I

roblem
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-~ prediction
' problem
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| Inear Bandits

 Theorem [Dani et al ’08]: For subgaussian )
noise, OFU’s regret for the L2 problem is Ry = O(dV'T)

How to choose the actions?

Ry = (A1, 04) + Z; Cnear
- prediction
' poroblem
Least- Rt—l — <At_1, 6*> -+ Zt—l _
squares
A t—1 t—1
el =T+ AAN)TIY A(Z+A]6,)
s=1 s=1
H/_/
martingale

Confidence set: Empirical processes

21
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. Springer

22



Abbasi-Pal-Sz'11

Tighter confidence sets

Vt — Z ASA;_
s=1

. Springer

22



Abbasi-Pal-Sz'11

Tighter confidence sets

Vi=) AAl V=14V,
s=—1

. Springer

22



Abbasi-Pal-Sz'11

Tighter confidence sets

Vi=) AAl V=14V,
s=—1

) Springer

22



Abbasi-Pal-Sz'11

Tighter confidence sets

Vi=) AAl V=14V,
s=—1

1
Krhalead A\ 2
=0 — e (050 - 3 IR, ) metnod o
ﬂ t mixtures
St = Z Zi Ay PR
s—1

22



Abbasi-Pal-Sz'11

Tighter confidence sets

Vi=) AAl V=14V,
s=—1

1
Krhalead A\ 2
=0 — e (050 - 3 IR, ) metnod o
ﬁ t mixtures
Si=Y %A A~NOI) e
s—1

22



Abbasi-Pal-Sz'11

Tighter confidence sets

Vi=) AAl V=14V,
s=—1

1
Krhalead A\ 2
=0 — e (050 - 3 IR, ) metnod o
ﬁ t mixtures
Si=Y %A A~NOI) e
s—1

22



Abbasi-Pal-Sz'11

Tighter confidence sets

Vi=) AAl V=14V,
s=—1

Self-N 1
Processes )\ 2
| e — ((A, S - 5 HAHVt> Method of
MixXtures

. Springer

t .
St :ZZtAt ANN(O,])< -----
s—=1

L[ M) <1 $ [MA\]-‘ } - exp (% ||StH%/t_l)
ST et (V)2
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Abbasi-Pal-Sz'11

Tighter confidence sets

Vi=) AAl V=14V,
s=—1

=0 — e (050 - 5 IR, ) metnod o
ﬁ mixtures

&) Springer

t .
St :ZZtAt ANN(O,])< -----
s—=1

JIUNESI — (211002, +)
ST et (V)2

Avoids empirical process technigues —> tighter!
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Confidence sets matter!

3000
55001 ---New bound
—0ld bound
2000r | New bound with rare switching
5
> 1500
oC
1000/
500!
% = 2000 4000 6000 8000 10000

Time

e “New bound” = self-normalized bound
 “Old bound” = empirical process bound (paniHayes-kakade 08)
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Sparse Bandits

e Sparsity: 6. has p nonzero components only.

v )
71
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Sparse Bandits

e Sparsity: 6. has p nonzero components only.

o Let (A satisfy the Rl
0,, — 0,

P property. Then, for LASSO:

|2 ~ v/plog(d)/n

Candes, Tao 2006 and Bickel, Ritov, Tsybakov 2009
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 Can we design confidence sets with this scaling”

24



Sparse Bandits

e Sparsity: 6. has p nonzero components only.

o Let (Ay) satisfy the RIP property. Then, for LASSO:

A

b, — 0. | ~ /plog(d)/n
2

Candes, Tao 2006 and Bickel, Ritov, Tsybakov 2009

 Can we design confidence sets with this scaling”

* Good algorithms select good actions frequently
—> No RIP

24



Sparse Bandits

Sparsity: 0, has p nonzero components only.

Let (A;) satisfy the RIP property. Then, for LASSO:

A

b, — 0. | ~ /plog(d)/n
2

Candes, Tao 2006 and Bickel, Ritov, Tsybakov 2009

Can we design confidence sets with this scaling?

* Good algorithms select good actions frequently
—> No RIP

* Covariates are highly correlated

24
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Yet....

* Given the observations Ry, A1, ..., Ry, Ay

where
..,Rt — <At,(9*>—|—Zt,...

and 0, € © = {0 €R? : ||6]|, <p, 0], < 1}
and 0 < < 1 find a set

Ct — Ct(é, Rl,Al,. . .,Rt,At) C Rd
suchthat P(6., € Cy) > 1 —9.

|
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Yet....

* Given the observations Ry, A1, ..., Ry, Ay

where
..,Rt — <At,6)*>—|—Zt,...

and 0, € © = {0 €R? : ||6]|, <p, 0], < 1}
and 0 < < 1 find a set

Ct — Ct(é, Rl,Al,. . .,Rt,At) C Rd
suchthat P(6., € Cy) > 1 —9.

|

 Note: A; € R are chosen by a bandit algorithm,
they are far from independent!

* How to exploit the structure of 7

25



A red u CtiO n Abbasi-Pal-Sz '12

—R)% <] — (A, 0.\ + B
Z(RS R;) Selgé(Rs ( )) t
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A red u CtiO n Abbasi-Pal-Sz '12

o 5\ 2 < 3 o 2
Z(RS Rs) _ng(g)(RS <A87‘97)> _|_Bt

s=1

Theorem: With probabilityl — 9,0, € C,, holds for all

T Z 1, n
where: C, = {9 c R - Z(Rt — <At79>>2

0

< 1—|—23n+32v21n(

20
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oredictor that achieves
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vectors belonging to the hypercube.
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Sparse Linear Bandits

Theorem [YPSz ’12]: The regret of OFUL enjoys
Ry = O(+\/dT By)

Theorem [Gerchinowitz ’11]: There exist a
oredictor that achieves

Br = O(plog(dT’))
for linear regression with p-sparse parameter
vectors belonging to the hypercube.

Corollary [YPSZz °12]: For such problems,

Ry = O(\/dpT)

Theorem [YPSZ2’12]: For all algorithms,
R = Q(VdT)

27



Still.. does it work™

OFUL+EG (Circles) vs. OFUL+LS (Squares)

600

500¢

Regret
W
o
o

200

400 600
Time

d =100, p = 10

500

1000

28



Summary so far

* Explore-exploit in bandit problems:
* |t helps to be (reasonably) optimistic
* Finite armed bandits: UCB1
e Linear bandits:

 Fundamental to addressing structured
information

* Confidence set design is critical

29
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How far did we get”?

Video Pinball | 2538%
Boxing T 1707% —

Breakout : 1327% e

Star Gunner | 598% — LI
Robotank | l508% — ® .
Atlantis | [449% — ® e .
Crazy Climber | #19% M LI
Gopher |[400% I LI
Demon Attack | 284% B ®
Name This Game | 278% —
Krull ~| 277% ——
Assault | l246% —
Road Runner | [258% —
Kangaroo | 224% —
James Bond | 145% —
Tennis | 435 -
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Beam Rider | 115% .
Tutankham | #12% -
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Freeway |[102% !
Time Pilot | {So7l———
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Ice Hockey | 7% Tl
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Bank Heist | 575~

River Raid | 572l
Zaxxon |54~
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Double Dunk | fs—=
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Ms. Pac-Man | [} 13%
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Gravitar |E5% cese*”® o
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Mnih et al. (2015)



How far did we get”?

Video Pinball | 2538%
Boxing T 1707% —

Breakout : 1327% e

Star Gunner | 598% — LI
Robotank | l508% — ® .
Atlantis | [449% — ® e .
Crazy Climber | #19% M LI
Gopher |[400% I LI
Demon Attack | 284% B ®
Name This Game | 278% —
Krull ~| 277% ——
Assault | l246% —
Road Runner | [258% —
Kangaroo | 224% —
James Bond | 145% —
Tennis | 435 -
Pong | [i32% !
Space Invaders | 1215 -
Beam Rider | 115% .
Tutankham | #12% -
Kung-Fu Master | [i62% | —
Freeway |[102% !
Time Pilot | {So7l———
Enduro | [97% r
Fishing Derby ~| S35l —
Up and Down | s2ll—
Ice Hockey | 7% Tl
Q'bert | 78w —
H.E.R.O. |76% | At human-level or above
Asterix | 6% — Below human-level
Battle Zone |le7%.—
Wizard of Wor | s7dlll——
Chopper Command | ¢&alll—
Centipede | E2E——
Bank Heist | 575~

River Raid | 572l
Zaxxon |54~
Amidar | [48%—

Alien | 425
Venture | 38—
Seaquest | [J-25%
Double Dunk | fs—=
Bowling | J14%

Ms. Pac-Man | [} 13%

Asteroids || 7% ces®
Frostbite || 6% e o °
Gravitar |E5% cese*”® o

Private Eye | 2% ceee*”® L
Montezuma's Revenge [[0% o o © ® ® ° .
T T T T T T T (T 1
0 100 200 300 400 500 600 1,000 4,500%

Mnih et al. (2015)




Standard RL Approach



Standard RL Approach

 Repeat:



Standard RL Approach

 Repeat:

e Learn a "good” policy



Standard RL Approach

 Repeat:
e Learn a "good” policy

 Add randomness to induce exploration



Standard RL Approach

 Repeat:
e Learn a "good” policy
 Add randomness to induce exploration

* Collect more data (multiple episodes)

32



Standard RL Approach

 Repeat:
e Learn a "good” policy
 Add randomness to induce exploration
* Collect more data (multiple episodes)

e “epsilon-greedy”, “Boltzmann exploration”
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Standard RL Approach

 Repeat:
e Learn a "good” policy
 Add randomness to induce exploration
* Collect more data (multiple episodes)

e “epsilon-greedy”, “Boltzmann exploration”

* "Dithering”

32



Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]



AR R

o 1

Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]



Flumble Fic

o 1

2 5

Lo Moy \

NI O 3

. ¢ ~ 3 F 9

N .

Y )

o o

. b

Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]



Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]



* Reckless data collection: Choose the actions uniformly at
random! (epsilon-greedy does the same)

Slide graphics courtesy of Ben van Roy.
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* Reckless data collection: Choose the actions uniformly at

random! (epsilon-greedy does the same)
* How much data do we need to collect to learn about the bounty?

That is, what Is the hitting time when we start in the middle.

Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]



Need to explore

* Reckless data collection: Choose the actions uniformly at
random! (epsilon-greedy does the same)

* How much data do we need to collect to learn about the bounty?
That is, what Is the hitting time when we start in the middle.

 How does this depend on the number of states?

Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]
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Smart exploration in
reinforcement learning



OFU In Bandits

Repeat:

1. Find the set S; of likely “worlds”
given the observations so far

2. Find the “world” in §; with the

maximum payoff:
>k

" = arg max maxr(w, a)
weES: a
3. Find the optimal action for this
world:

;= argmaxr(W,", a)
a

4. Use this action

“All worlds”

W e

Actions
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OFU in RL

Repeat:
1. Find the set S; of likely “worlds”
given the observations so far
2. Find the “world” in S with the
maximum payoft:
W, = argmax max J(w, )
wWE St W
3. Find the optimal policy for this
world:
m, = argmax J (W, , 7)
7T
4. Use this policy until S;

signiticantly shrinks

Burnetas and Katehakis; Ortner and Auer, Tewari and Bartlett

“All worlds”
St
W, e
® %
Ty
Policies
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OFU in tinite MDPs: UCRL



[Jaksch-Ortner-Auer,’10]

OFU in tinite MDPs: UCRL

S states, A actions, rewards in [0,1].
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[Jaksch-Ortner-Auer,’10]

OFU in tinite MDPs: UCRL

S states, A actions, rewards in [0,1].

Definition: Diameter := maximum of best travel times
between pairs of states. River swim: D= 8§

 Theorem: The regret of an OFU learner satisfies
Rr = O(DSVAT)

* Theorem: For any algorithm,
Ry = Q(VDSAT)
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Posterior Sampling
Reinforcement Learning

[Thompson, 1933(!), Strens '00]
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A Bayesian start: S

* Prior over the worlds &
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e Posterior: p(W|D) o pw (W)p(D|W) =
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W ~ P(W = -|D)
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SRL

Posterior Sampling
Reinforcement Learning

A Bayesian start: S

* Prior over the worlds &

+ Likelihood model =

e Posterior: p(W|D) o pw (W)p(D|W) =
Repeat:
1. Sample a world W from the posterior: Worlds
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2. Find the optimal policy for this world:
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SRL

Posterior Sampling
Reinforcement Learning

A Bayesian start: S

* Prior over the worlds &

+ Likelihood model =

e Posterior: p(W|D) o pw (W)p(D|W) =
Repeat:
1. Sample a world W from the posterior: Worlds

W ~ P(W = -|D)
2. Find the optimal policy for this world:

m = argmax J (W, &)
3
3. Use this policy for a “little while” —

[Thompson, 1933(!), Strens '00] Policies .



[Osband,Van Roy,

PSRL vs. UCRL?Z2
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| arge-scale problems M

* Large state-action spaces:
need to generalize across states and actions

 Model based approach:

L1 — f(xtaatae*azt-l-l)

\ noise

next current unknown
state state parameter

action
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First steps: Linear Quadratic Regulation

ri11 = Axy + Bay + 2441 9, = (A, B)
Ciy1 = Ty th + a, ! Ray, IS unknown

 Theorem [Abbasi-Sz 2011]: For reachable and
controllable systems, the regret of OFU satisfies

Ry = O(T)

 Key idea: Estimate the unknown parameter using |2

regularized least-squares, develop tight confidence
sets

43



Web Server Control

CPU LOAD

CPU LOAD




Web Server Control

e Controlled quantities:

CRURCE RO
* Length of keeping alive a

connection with no traffic CPU LOAD

e Maximum number of clients
that can be served

st ot it by

CPU LOAD
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Web Server Control

e Controlled quantities:

CRURCE RO
* Length of keeping alive a

connection with no traffic CPU LOAD

e Maximum number of clients
that can be served

* State variables: IS eSSV
e Processor load relative to
Ideal processor load CPU LOAD

* Memory usage relative to
iIdeal memory usage
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Nonlinear systems?



Nonlinear systems?

e Smoothness:

y: f($7a797Z),y/ — f(x7a’79/72)
—

L lly =y 1] < 10 = 0] by (5,0
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Nonlinear systems?

* Smoothness:
y = f(r,a,0,2),y = f(x,a,0,2)
-
Ly =yl < 110 = 0|l ar (.0

 Theorem [Abbasi-Sz]: For smooth, “bounded”

systems, If the posterior is “concentrating”, the Bayes
regret of PSRL is bounded by
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Nonlinear systems?

* Smoothness:
y = f(r,a,0,2),y = f(x,a,0,2)
-
Ly =yl < 110 = 0|l ar (.0

 Theorem [Abbasi-Sz]: For smooth, “bounded”

systems, If the posterior is “concentrating”, the Bayes
regret of PSRL is bounded by

~

Ry = O(T)

« Key idea: Use M (x,a) to measure information.
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Computation; low noise

he frequency of policy switches is controlled by
a parameter, which ultimate controls the computation time
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summary

* Atthe end, we need to solve decision problems
 This makes a BIG difference

* Passive data collection can be extremely
ineftective: “bi = 1?

 Need smart algorithms for learning and control
* Planning to learn (smart exploration) is critical
 OFU and PSRL: Competing designs

* Current research: Scaling up, fewer assumptions,
feedback, model-free (=agnostic) exploration,
limits of adaptation
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