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 Reminder

 Bayesian network extensions
◦ Canonical local models

◦ Decision tree/graph local models

◦ Dynamic Bayesian networks



IP(X;Y|Z) or (X⫫Y|Z)P denotes that X is independent of Y 
given Z defined as follows

for all x,y and z with P(z)>0:  P(x;y|z)=P(x|z) P(y|z) 

(Almost) alternatively, IP(X;Y|Z) iff

P(X|Z,Y)= P(X|Z) for all z,y with P(z,y)>0.

Other notations: DP(X;Y|Z) =def= ┐IP(X;Y|Z)

Direct dependence: DP(X;Y|V/{X,Y})



The independence map (model) M of a 
distribution P is the set of the valid 
independence triplets:

MP={IP,1(X1;Y1|Z1),..., IP,K(XK;YK|ZK)}

X Y ZIf P(X,Y,Z) is a Markov chain, then 

MP={D(X;Y), D(Y;Z), I(X;Z|Y)}

Normally/almost always: D(X;Z)

Exceptionally: I(X;Z)



MP={IP,1(X1;Y1|Z1),...}
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3. Concise representation of joint 
distributions

2. Graphical representation of 

(in)dependencies

1. Causal model



 A simple, graphical notation for conditional 
independence assertions and hence for compact 
specification of full joint distributions

 Syntax:
◦ a set of nodes, one per variable
◦
◦ a directed, acyclic graph (link ≈ "directly influences")
◦ a conditional distribution for each node given its parents:

P (Xi | Parents (Xi))

 In the simplest case, conditional distribution 
represented as a conditional probability table (CPT) 
giving the distribution over Xi for each combination 
of parent values



 I'm at work, neighbor John calls to say my alarm is ringing, but 
neighbor Mary doesn't call. Sometimes it's set off by minor 
earthquakes. Is there a burglar?

 Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

 Network topology reflects "causal" knowledge:
◦ A burglar can set the alarm off

◦ An earthquake can set the alarm off

◦ The alarm can cause Mary to call

◦ The alarm can cause John to call





 A CPT for Boolean Xi with k Boolean parents has 2k rows for the 
combinations of parent values

 Each row requires one number p for Xi = true
(the number for  Xi = false is just 1-p)

 If each variable has no more than k parents, the complete network 
requires O(n · 2k) numbers

 I.e., grows linearly with n, vs. O(2n) for the full joint distribution

 For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)



Tfh: 5 szülő csomópont bináris értékű

2 szülő csomópont 3-as értékű

1 szülő csomópont 4-es értékű és

az eredmény csomópont 5-ös értékű ?????

A multinomiális általános eset I.



Sz1 Sz2 Sz3 Sz4 Sz5 Sz6 Sz7 Sz8 Kimeneti változó

e1  e2  e3  e4  e5

.        .       .     .      .      .      .      .       P    P    P   P    P

.        .       .     .      .      .      .      .          P    P    P   P    P

1      1      1     1    1      .      .      .          P    P    P   P    P
0      0      0     0    0      e1  e1    .          P    P    P   P    P

.        .       .     .      .      e2  e2    .          P    P    P   P    P

.        .       .     .      .      e3  e3    .          P    P    P   P    P

.        .       .     .      .      .      .      e1       P    P    P   P    P

.        .       .     .      .      .      .      e2       P    P    P   P    P

.        .       .     .      .      .      .      e3       P    P    P   P    P

.        .       .     .      .      .      .      e4       P    P    P   P    P

.        .       .     .      .      .      .      .          P    P    P   P    P

.        .       .     .      .      .      .      .          P    P    P   P    P

Minden kombináció

A multinomiális általános eset II.

25 x 32 x 4 szülői feltétel van (FVT sor) és 4 (független érték) 

(FVT oszlop) = összesen: (32 x 9 x 4) x 4 = 4608

együttes eloszláshoz kell: 25 x 32 x 4 x 5 – 1 = 5759



 1. Choose an ordering of variables X1, … ,Xn

 2. For i = 1 to n
◦ add Xi to the network

◦ select parents from X1, … ,Xi-1 such that

P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)

This choice of parents guarantees:

P (X1, … ,Xn) = πi =1 P (Xi | X1, … , Xi-1) //(chain rule)

= πi =1P (Xi | Parents(Xi)) //(by construction)

n

n



 Construct a general BN for the example using 
the ordering M, J, A, B, E.

 Construct a Naïve-BN for a reverse ordering 
when the central variable Y is the last one 
(and not the first).
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The full joint distribution is defined as the product of the local 
conditional distributions:

P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi))

e.g., P(j  m  a  b  e)

= P (j | a) P (m | a) P (a | b, e) P (b) P (e)

n



IP(X;Y|Z=z) or (X⫫Y|Z=z)P denotes that X is independent of 
Y for a specific value z of Z:

for z and for all x,y: P(x;y|z)=P(x|z) P(y|z)
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Problem: decide whether to wait for a table at a restaurant, 
based on the following attributes:
1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($, $$, $$$)
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)



 Examples described by attribute values (Boolean, discrete, continuous)
 E.g., situations where I will/won't wait for a table:

 Classification of examples is positive (T) or negative (F)




 One possible representation for hypotheses

 E.g., here is the “true” tree for deciding whether to 
wait:



 Decision trees can express any function of the input attributes.

 E.g., for Boolean functions, truth table row → path to leaf:

 Trivially, there is a consistent decision tree for any training set with 
one path to leaf for each example (unless f nondeterministic in x) 
but it probably won't generalize to new examples

 Prefer to find more compact decision trees



How many distinct decision trees with n Boolean attributes?

= number of Boolean functions

= number of distinct truth tables with 2n rows = 22n

 E.g., with 6 Boolean attributes, there are 
18,446,744,073,709,551,616 trees



How many distinct decision trees with n Boolean attributes?
= number of Boolean functions
= number of distinct truth tables with 2n rows = 22n

 E.g., with 6 Boolean attributes, there are 
18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry 
Rain)?

 Each attribute can be in (positive), in (negative), or out
 3n distinct conjunctive hypotheses

 More expressive hypothesis space
◦ increases chance that target function can be expressed
◦ increases number of hypotheses consistent with training set

 may get worse predictions



Mutation

Onset

Bleeding

absent

P(D|a,l,m)

Regularity

weak

Onset=early Onset=late

h.wild

regular irregular

mutated

P(D|a,l,h.w.)

P(D|a,e)

strong

P(D|Bleeding=strong)

Mutation

P(D|w,i,m)

h.wild mutated

P(D|w,i,h.w.)

P(D|w,r)

Decision tree: Each internal node represent a (univariate) test, the leafs contains 

the conditional probabilities given the values along the path.

Decision graph: If conditions are equivalent, then subtrees can be merged.

E.g. If (Bleeding=absent,Onset=late) ~ (Bleeding=weak,Regularity=irreg)

A.I.: BN homework guide
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IG(X;Y|Z) denotes that X is d-separated 
(directed separated) from Y by Z in directed 
graph G.





 Conditional independencies allows:
◦ efficient representation of the joint probabilitity distribution,

◦ efficient inference to compute conditional probabilites.

 Bayesian networks use directed acyclic graphs to represent
◦ conditional independencies,

◦ conditional probability distributions,

◦ causal mechanisms.

 Design of variables and order of the variables can drastically influence structure

 Suggested reading:
◦ Charniak: Bayesian networks without tears, 1991

◦ Koller, Daphne, et al. "Graphical models in a nutshell." Introduction to statistical relational 
learning (2007): 13-55.


