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Outline

» Reminder

» Bayesian network extensions
- Canonical local models
- Decision tree/graph local models
- Dynamic Bayesian networks
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Independence,
Conditional independence

I,(X;Y|Z) or (X1Y|Z), denotes that X is independent of Y
given Z defined as follows

for all x,y and z with P(z)>0: P(x;y|z)=P(x|z) P(y|z)

(Almost) alternatively, I,(X;Y|2) iff

P(X|Z,Y)= P(X|2Z) for all z,y with P(z,y)>0.
Other notations: Dp(X;Y|Z) =def= 4 1,(X;Y|2)
Direct dependence: Dp(X;Y|V/{X,Y})




The independence model of a
distribution

The independence map (model) M of a
distribution P is the set of the valid
independence triplets:

Mp={lp1 (X1;Y11Z1),..s 1pXii; Yk Zi0)}

If P(X,Y,Z) is a Markov chain, then O-O-@
Mp={D(X;Y), D(Y;2), 1(X;Z[Y)}
Normally/almost always: D(X;Z)
Exceptionally: 1(X;Z)




Bayesian networks: three facets

3. Concise representation of joint

Istributions
P(M,0,D,S,T)=

P(IM)P(OIM)P(D|O,M)P(S|D)P(T|S,M)

A&
Mp={l P,1(X1;Y1|Zl_)\’ o}
2. Graphical representation of
(in)dependencies

1. Causal model




Bayesian networks

» A simple, graphical notation for conditional
independence assertions and hence for compact
specification of full joint distributions

» Syntax:
- a set of nodes, one per variable

- a directed, acyclic %raph (link =~ "directly influences")
- a conditional distribution for each node given its parents:
P (Xi| Parents (X)))

» In the simplest case, conditional distribution
represented as a cqndltlonal)éorobablllty table (CPT)
giving the distribution over X;
of parent values

for each combination




Example

» I'm at work, neighbor John calls to say my alarm is ringing, but
neighbor Mary doesn't call. Sometimes it's set off by minor
earthquakes. Is there a burglar?

v Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

» Network topology reflects "causal” knowledge:
> A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
> The alarm can cause John to call
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Compactness

» A CPT for Boolean X; with A Boolean parents has 2% rows for the
combinations of parent values

®
» Each row requires one number p for X; = true @
(the number for X;= false is just 7-p) .x
T ©®

» If each variable has no more than k& parents, the complete network
requires O(n - 2¥) numbers

» l.e., grows linearly with n, vs. O(2”) for the full joint distribution

» For burglarynet, 1T+ 1+ 4+ 2 + 2 =10 numbers (vs. 2°-1 = 31)




V &

A multinomialis altalanos eset|l.

Tfh: 5 szulé csomopont binaris értéki
2 szulé csomopont 3-as értéki
1 szuld csomopont 4- es erteku es

(@ 009@)




A multinomialis altalanos eset Il.

Sz1 Sz2 Sz3 Sz4 Sz5 Sz6 Sz7 Sz8 Kimeneti valtozo

el e2 e3 e4 e5,
P P P P |P
P P P P |P
1 1 1 1 1 . . P P P P |P
O O O 0 O el el P P P P P
e2 e2 P P P P
e3 e3 . P P PP
el P P P P
ez P P P P
e3 P P P P
e4 P P P P
P P P P
P P P P

Minden kombinacio

1

2% x 32 x 4 szll6i feltétel vanXEVT sor) és 4 (figgetlen érték)
(FVT oszlop) = 0sszesen: (32 x
Jttes eloszlashoz kell: 25x 32 x4 x5 -1 = 5759

\‘-.'\:‘




Constructing Bayesian networks

» 1. Choose an ordering of variables X;, ... , X,

» 2. For/i=1ton
- add X;to the network
- select parents from X;, ... ,X;_; such that

P (X; | Parents(X;)) = P (X; | X;, ... Xi_1)

This choice of parents guarantees:

PX,, .. X) =1_,PX;/X,, ..., X..)  //chainrule)
= ,:,?’()(,/Parents()(,)) //(by construction)




Effect of ordering

» Construct a general BN for the example using
the ordering M, J, A, B, E.

» Construct a Naive-BN for a reverse ordering
when the central variable Yis the last one
(and not the first).
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Semantics

The full joint distribution is defined as the product of the local
conditional distributions:

n

o
P, ..., X,)=rm_,; P(X;/ Parents(X)) A
o o

e.g.,Pfrmnaan—-bns—e)

=PG/a)P(m/a)P@/-b, —e)P(=b)P(-e)




Context-specific independence

I,(X;Y|Z=2) or (X1LY|Z=2), denotes that X is independent of
Y for a specific value z of Z:

for z and for all x,y: P(x;y|z)=P(x|z) P(y|Zz)

Boutilier, C., Friedman, N., Goldszmidt, M. and Kaoller, D., 2013. Context-specific
independence in Bayesian networks. arXiv preprint arXiv:1302.3562.

Fierens, Daan. "Context-Specific Independence in Directed Relational Probabilistic
Models and its Influence on the Efficiency of Gibbs Sampling." ECAI. 2010.

Ma, Saisal, et al. "Discovering context specific causal relationships." Intelligent
Data Analysis 23.4 (2019): 917-931.




Learning decision trees

Problem: decide whether to wait for a table at a restaurant,
based on the following attributes:
1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($, $%, $3$9)
7. Raining:is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
1 0. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)




Attribute-based representations

» Examples described by attribute values (Boolean, discrete, continuous)
» E.g., situations where | will/won't wait for a table:

Example Attributes Target

Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | Wait
X, | T[] F [ F ] T [Some| 88 | F | T [French|o-10] T
Xo T | F F T Full $ F F | Thai |30-60 F
X3 F | T F F |Some $ F F | Burger| 0-10 T
Xy T | F T T Full $ F F | Thai |10-30 T
X5 T | F T F Full | $$$ F T |French| =60 F
X F| T |F T |Some| %% T T | ltalian | 0-10 T
X7 F| T F F | None $ T F | Burger| 0-10 F
X3 F| F F T |Some| %% T T | Thai | 0-10 T
Xy F | T T F Full $ T F | Burger| >60 F
X0 T T T T Full | $%% F T | Italian | 10-30 F
Xu |F| F | F | F |None| $ | F | F | Thai |0-10 | F
X1 T T T T Full $ F F | Burger | 30-60 T

» Classification of examples is positive (T) or negative (F)
>




Decision trees

» One possible representation for hypotheses

» E.g., here is the “true” tree for deciding whether to
walit:

| WaitEstimate? |
=60 30 0-10
[ Atemate? | Hungry? |
Ws. No /N Yes
Reservation? Fri'sat? AlRernate?

Yag

Mo Yag No Yag
Raining?

Mo Yeas




Expressiveness

» Decision trees can express any function of the input attributes.
» E.g., for Boolean functions, truth table row — path to leaf:

A B AxorB
F F F
F T T
T F T
T T F

» Trivially, there is a consistent decision tree for any training set with
one path to leaf for each example (unless #nondeterministic in x)
but it probably won't generalize to new examples

» Prefer to find more compact decision trees




Hypothesis spaces

How many distinct decision trees with n Boolean attributes?
= number of Boolean functions

— number of distinct truth tables with 2" rows = 22"

» E.g., with 6 Boolean attributes, there are
18,446,744,073,709,551,616 trees




Hypothesis spaces

How many distinct decision trees with 7 Boolean attributes?
= number of Boolean functions ;
= number of distinct truth tables with 2" rows = 22

3 E.89., with 6 Boolean attributes, there are
18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.q., Hungry »
—Rain)?
» Each attribute can be in (positive), in (negative), or out
— 3" distinct conjunctive hypotheses
» More expressive hypothesis space
> increases chance that target function can be expressed
> increases number of hypotheses consistent with training set
= may get worse predictions




Decision trees, decision graphs

\P’(D|Bleeding:strong)

Nlar
P(Dla,e)
h.wild / h.wild / mutated

P(Dla,l,h.w.) P(Dla,l,m) P(D|w,i,h.w.) P(D|w,i,m)

Onset=eatly Onset

Decision tree: Each internal node represent a (univariate) test, the leafs contains
the condltlonal probabilities given the values along the path.
\ graph If conditions are equivalent, then subtrees can be merged.
mgeabsent,Onset=late) ~ (Bleeding=weak,Regularity=irreg)




Noisy-OR

Noisy-OR distributions model multiple noninteracting causes
1) Parents Uy ... U include all causes (can add leak node)
2) Independent failure probability ¢; for each cause alone

= P(X|Uy...Up,~Ujy...mU) =1-1I_,q

Cold Flu  Malaria| P(Fever)| P(—Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02=0.2x0.1

T F F 0.4 0.6

T F T 0.94 0.06 = 0.6 x 0.1

T T F 0.88 0.12=0.6 x 0.2

T T T 0.988 0.012=0.6 x 0.2 x 0.1

Number of parameters linear in number of parents




Dynamic Bayesian networks

X;, E; contain arbitrarily many variables in a replicated Bayes net

P(Ry)
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DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

RSN
NS
Ny

Sparse dependencies = exponentially fewer parameters;

e.g., 20 state variables, three parents each
DBN has 20 x 2° = 160 parameters, HMM has 22" x 2%V ~ 10'*




Inferring independencies from
structure: d-separation

Ic(X;Y|Z) denotes that X is d-separated
(directed separated) from Y by Z in directed

graph G. .
o | O—1O0+O—+0+0
o | OO0+ 1010
3) O O 'R" O O

O O




d-separation and the global
Markov condition

Definition 7 A distribution F(X1,. .., X, ) obeys the global Markov condition w.r.t. DAG G, if
YX,YZCU (X LY|Z),; = (X WLY|Z)p, (9)

where (X Il Y|Z).; denotes that X andY are d-separated by Z, that is if every path p
between a node in X and a node in Y is blocked by Z as follows

1. either path p contains a node . in Z with non-converging arrows (i.e. — n — or
—n —),

2. or path p contains a node n. not in Z with converging arrows (i.e. — n +) and none of
its descendants of n is in Z.




Summary

Conditional independencies allows:

- efficient representation of the joint probabilitity distribution,

- efficient inference to compute conditional probabilites.

Bayesian networks use directed acyclic graphs to represent

> conditional independencies,

> conditional probability distributions,

> causal mechanisms.

Design of variables and order of the variables can drastically influence structure

v

v

v

v

Suggested reading:
Charniak: Bayesian networks without tears, 1991
Koller, Daphne, et al. "Graphical models in a nutshell." /ntroduction to statistical relational
learning (2007): 13-55.




