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Agenda

* Reminder:
* Last lecture: general Bayesian networks
* Now: axiomatic approaches to causal inference (~causality)

* Limits of conditional predictive machine learning
* From associations to direct dependencies

* The ultimate limit of observational learning

e Causal inference

* Learning causal relations and models

 Counterfactual inference



Limits of conditional machine learning



On the validity of conditional (Bayesian)
approach
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Limits of conditional modelling

Incomplete data (incompleteinput)

Unsupervised learning (missing output)

* Learning the joint distribution
* Dimensionality reduction
* Clustering

Multitask learning (complete or partial output)
Transfer learning

Interpretation (feature subset selection, effect strength)
* Prior incorporation
* Bias (ethical machine learning?)
* Confounding: effect strength (causal factors?)

Interventionist data, mixed observational and interventionist data (health!)
Structured data: temporal, dyadic, relational



Inference by enumeration

Every question about a domain can be answered by the joint distribution.

Typically, we are interested in the posterior joint distribution of the query variablesY given specific
values e for the evidence variables E

Let the hidden variablesbe H=X-Y -E
Then the required summation of joint entries is done by summing out the hidden variables:
PY| E=¢e)=oP(Y,E=e)=a>P(Y,E=e,H = h)

» The terms in the summation are joint entries because Y, E and H together exhaust the set of
random variables

» Obvious problems:
1. Worst-case time complexity O(d")where dis the largest arity
2. Space complexity O(d")to store the joint distribution
3. How to find the numbers for O(@")entries?




Motivation: from observational inference...

* In a joint distribution , any query can be answered
corresponding to passive observations: p(Q=q|E=e).
 What is the (conditional) probability of Q=g given that E=e.
* Note that Q can preceed temporally E.

@ Specification: p(X), p(Y|X)
Joint distribution: p(X,Y)

@ Inferences: p(X), p(Y), p(Y|X), p(X]Y)



Motivation: to interventional inference...

* Perfect intervention: do(X=x) as set X to x.
 What is the relation of p(Q=q|E=e) and p(Q=q|do(E=€))?

@ Specification: p(X), p(Y|X)
Joint distribution: p(X,Y)

Inferences:
() (Y [ X=x)=p(Y | do(X=x))
p(X]Y=y)zp(X]|do(Y=y))

 Whatis a formal knowledge representation of a causal model?

e Whatis the formal inference method?



Motivation: and to counterfactual inference

* Imagery observations and interventions:
* We observed X=x, but imagine that x” would have been observed: denoted as X'=x".
* We set X=x, but imagine that x’ would have been set: denoted as do(X’'=x’).

What is the relation of
* Observational p(Q=q|E=e, X=x)

* Interventional p(Q=q|E=e, do(X=x"))
* Counterfactual p(Q'=g’|Q=q, E=e, do(X=x), do(X'=x"))

O: What is the probability that the patientrecovers if he takes the drug x.

I: What is the probability that the patientrecovers if we prescribe* the drug x’.

C: Given that the patienthad not recovered for the drug x, what would have been the probability
that patientrecovers if we had prescribed* the drug x’, instead of x.

*: Assume that the patientis fully compliant.

**” expected to neither he will.
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Challenges in a complex domain

The domain is defined by the joint distribution
P(X,,..., X, |Structure,parameters)

1. Representation of parameteres
,small number of parameters”

2. Representation of independencies
,what is relevant for diagnosis”

3. Representation of causal relations
,what is the effect of a treatment”

4. Representation of possible worlds

guantitave

passive

qualitative (observational)

Active
(interventional)
Imagery
(counterfactual)



Probabilistic inference



Reminder: Naive Bayesian network

* Definition: conditional independence of ,effects” X; given ,cause” Y.

* Properties:

 Number of parameters (“model complexity): linear
 Complexity of inference: linear



Naive Bayesian network

Assumptions:

1, Two types of nodes: a cause and effects.

2, Effects are conditionally independent of each other given their cause.

Variables (nodes)
Flu: present/absent
FeverAbove38C: present/absent

Coughing: present/absent P(Flu=present)=0.001
P(Flu=absent)=1-P(Flu=present)

Model

P(Coughing=present|Flu=present)=0.3

(Coughing=absent|Flu=present)=1-0.7

P(Coughing=present|Flu=absent)=0.02
mg=absent|Flu=absent)=1-0.02

P(Fever=present|Flu=present)=0.6



The independence map of a N-BN

 »

If P(Y,X,Z) is a naive Bayesian network, then
Mp={D(X;Y), D(Y;2), I(X;Z]Y)}
Normally/almost always: D(X;Z)
Exceptionally: 1(X;2)




Independence models



Conditional independence

I(X;Y|Z) or (XLLY|Z), denotes that X is independent of Y
given Z: P(X;Y|z)=P(Y|z) P(X|z) for all z with P(z)>0.

(Almost) alternatively, I,(X;Y|Z) iff
P(X|ZY)= P(X|Z) for all z,y with P(z,y)>0.

Other notations: Dy(X;Y|Z) =def=11,(X;Y|Z)
Contextual independence: for not all z.



The independence model of a distribution

The independence map (model) M of a distribution P is
the set of the valid independence triplets:

MPz{IP,l(Xl;Yl | Zl)""' Ip’K(XK;YK | ZK)}

If P(X,Y,Z) is a Markov chain, then O-O-@D
Mp={D(X;Y), D(Y;Z), I(X;Z]Y)}
Normally/almost always: D(X;Z)
Exceptionally: 1(X;Z)



The semi-graphoid axioms

. symmetry: The observational probabilistic conditional independence is symmetric.
I,(X;Y|Z)iff I,(Y; X|Z)

. Decomposition: Any part of an irrelevant information is irrelevant.
L(X;YUWI|Z2)= (XY |Z)and I,( X;W|2Z)

. Weak union: Irrelevant information remains irrelevant after learning (other) irrelevant
information.

L(X;YUW|Z)= L(X;Y|ZUW)

. Contraction: Irrelevant information remains irrelevant after forgetting (other) irrelevant
information.

ILX;Y|Z)and I, ( X;W|ZUY )= I,(X; Y UW|Z)



Graphoids

Graphoids: Semi-graphoids+intersection (holds only in strictly positive distribution)

Intersection: Symmetric irrelevance implies joint irrelevance if there are
no dependencies.

L(X;Y|ZUW) and ,(X; W|ZUY) = L(X;Y UW|Z)

Decomposition

Eagy D,
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Weak Union
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Contraction
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J.Pearl: ProbabilisticReasoninginintelligent systems, 1998
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Separation in undirected graphs

1c(X;Y|Z) denotes that X is separated from Y by Z in undirected graph
G, i.e. every path between X and Y is blocked by Z (it contains a node
from 2).



Directed separation in directed graphs
Ic(X;Y|Z) denotes that X is d-separated from Y by Z in directed acyclic

graph G. .

o | O—FTO1+-@—71T070
o | O—+O0-+O—+010
o | O—TO—0O—C0O70

O O

(X 1L Y|Z); denotes that X andY are d-separated by Z, that is if every path p
between a node in X and a node in'Y is blocked by Z as follows

X Y

1. either path p contains a node . in Z with non-converging arrows (i.e. — n — or
—n =),

2. or path p contains a node n. not in Z with converging arrows (i.e. — n +) and none of
its descendants of n isin Z.



Bayesian networks: three facets

3. Concise representation of joint

distributions
P(M,0,D,S,T) =

P(IM)P(OIM)P(D|O,M)P(S|D)P(T|S,M)

\ l 1. Causal model

Mp={lp1(X1;Y1[Zy),...}
2. Graphical representation of
(in)dependencies




Bayesian networks

* A simple, graphical notation for conditional independence assertions and hence
for compact specification of full joint distributions

* Syntax:
* aset of nodes, one per variable
* adirected, acyclic graph (link = "directly influences")
 a conditional distribution for each node given its parents:
P (X; | Parents (X))

* In the simplest case, conditional distribution represented as a
(CPT) giving the distribution over X; for each combination of
parent values



Example contd.
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Constructing Bayesian networks

* 1. Choose an ordering of variables X, ... X,

e 2.Fori=1ton
* add X; to the network

* select parents from X;, ... ,X;; such that
P (X. | Parents(X)) =P (X; | X, ... Xi.1)

This choice of parents guarantees:

P(X,..,X) =m,_;P(X;| X, .., X.;) //(chain rule)
=m,_,P (X | Parents(X;)) //(by construction)



Representation of independencies

D-separation provides a sound and complete, computationally efficient algorithm to read off
an (in)dependency model consisting the independencies that are valid in all distributions
Markov relative to G, thatisv X, Y, Z C V

(X UL Y|Z); (X 1LY|Z)p in all P Markov relative to G). (10)

For certain distributionsexact representationis not possible by Bayesian networks, e.g.:
1. Intransitive Markov chain: X=»Y=>Z

2. Pure multivariate cause: {X,Z}=>Y
3. Diamond structure:

P(X,Y,ZV) with M={D(X;Z), D(X;Y), D(V;X), D(V;2),
I(V;Y[{X,2}), XZ|{V,Y)).. }.




An almost always complete calculus for
independencies

Counterexamples (parametrically encoded independencies)
* Binary XOR
* Intransitive Markov chain



Bayesian network definitions

Theorem 1 Let F(U) a probability distribution and G a DAG, then the conditions above
(repeated below) are equivalent:

F F is Markov relative & or F factorizes w.r.t G,
O F obeys the ordered Markov condition w.r.t. G,
L F obeys the local Markov condition w.r.t. &,

G F obeys the global Markov condition w.r.t. G.

Definition 8 A directed acyclic graph (DAG) G is a Bayesian network Of distribution FP(LT) iff
the variables are represented with nodes in G and (G, F) satisfies any of the conditions

F. O L, G such that &G is minimal (i.e. no edge(s) can be omitted without violating a
condition F, O, L, ).



Markov conditions

Definition 4 A distribution F( X1, ..., Xn) iS Markov relative o DAG G or factorizes w.r.t G, if
P(Xy,...,X,) = ][ P(Xi|Pa(X;)), (6)
i=1

where Fa( X;) denotes the parents of X; inG.
Definition 5 A distribution P(X1, ..., X,,) obeys the ordered Markov condition w.r.t. DAG G,

if
Vi= 1,..,m: [X?rl‘:?) AL {XTT(].)F s X?r(*.l'—lj}KPﬁ[X?r(?']HPa’[X?r(i]))F: (7)
where () is some ancestral ordering w.r.t. G (i.e. compatible with arrows in G).
Definition 6 A distribution P( X1, ..., Xy.) obeys the local (or parental) Markov condition w.r.t.
DAG G, if
vi=1,...,n:(X; 1 Nondescendants(X;)|Pa(X;))s, (8)

where Nondescendants(X; ) denotes the nondescendants of X; in G.



Relativity of the interpretations

hd

The presence of unobserved (hidden) variables as potential confounders.

Selection bias can occur if the observation depends on the joint
combination of otherwise independent events, inducing non-causal
dependencies between them.

The mixture of causal models, if conditionally both X causes Y and vice
versa. A similar problem is the presence of feedback (and indirectly
temporality).

Global physical and semantic constraints between the variables.

Stability can be also questioned, because of deterministic dependencies,
resulting in the lack of guarantee for the uniqueness and exactness of the
representation.

The (in)dependencies are relative to the set of variables and specifically,
also to the values of the variables



Multimorbidity network

-

Marx, P., Antal, P, Bolgar, B., Bagdy, G., Deakin, B. and Juhasz, G., 2017. Comorbiditiesin the diseasome are more
apparentthan real: What Bayesian filtering reveals about the comorbidities of depression. PLoS computational
biology, 13(6), p.e1005487. AL -



Probabilistic graphical models: Markov
networks, pairwise Markov Random Fields
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o Disorders usually first diagnosed in infancy, childhood or adolescence
0 Delirium, dementia, and amnesia and gthér cognitive disorders
® Vlental disorders due to a general medical condition

o Substance-related disorders o

o Schlzoc!lthenla and other psychotic disorders

B Mood disorders

D@nmety disorders

BSomatoform disorders

B Facitious disorders

0 Dissociative disorders =~

® Sexual and gender identity disorders

B Eating disorders

Sleep disorders ~

mpulse control disorders not elsewhere classified

| |
o
E justment disorders
0]

A
Personality disorders . )
Symptom is featured equally in multiple chapters

Borsboom, D. and Cramer, A.O., 2013. Network analysis: an integrative approach to the
structure of psychopathology. Annual review of clinical psychology, 9, pp.91-121.
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The Markov Blanket

A minimal sufficient set for prediction/diagnosis.

’ A variable can be:
‘ ¢ (1) non-occuring -

¢ (2) parent of Y
D « (3) child of Y

| ¢ (4) pure (other parent)

Relevant

Markov Blanket Sets (MBS) the set of nodes which (strongly)

probabilistically isolate the target from the rest of the model
Markov Blanket Membership (MBM)
(symmetric) pairwise relationship induced by MBS 33



A more detalled language for associations:
typed relevance

« Weakrelevance

« Strong relevance .
- Conditional relevance (pure interaction) = T Tt
- Directrelevancia Y

— With hidden variable
— No hidden variable

« Causalrelevance

o Effect modifier
— Probabilistic, direct, causal 3 . ;

* Typed relevance - “

— Parent, Child

— Direct=Parent or Child

— Ascendant=Parent+, Descendant=Child+

— Markovian=Parent, or Child or Pure interaction

— Confounded

— Associated= Ascendant or Descendant or Confounded

34

Antal, Péter, et al. "A Bayesian view of challengesin feature selection: feature
aggregation, multiple targets, redundancy and interaction." New Challenges for Feature
Selection in Data Mining and Knowledge Discovery. 2008.



A more detalled language for associations:
typed relevance

Relevance
(Weak relevance)

-
Strong Relevance

Association

Pure Confounded

Direct
Pure Relevance

Interactionist Relevance

Relevance Pure Transitive

>< Relevance

Mixed Conditional
Relevance




Towards causal inference



Principles of causality

* strong association,
e X precedes temporally Y,
* plausible explanation without alternative explanations based on confounding,

* necessity (generally: if cause is removed, effect is decreased or actually: y would not
have been occurred with that much probability if x had not been present),

 sufficiency (%enerally: if exposure to cause is increased, effect is increased or actually:y
would have been occurred with larger probability if x had been present).

* Autonomous, transportable mechanism.

* The probabilistic definition of causation formalizes many, but for example not the
counterfactual aspects.



Questions

e Can we represent exactly (in)dependencies by a BN?
* From a causal model? Suff.&nec.?

* Can we interpret
* edges as causal relations
* with no hidden variables?
* in the presence of hidden variables?
* |local models as autonomous mechanisms?

e Can we infer the effect of interventions?



Observational equivalence of causal models

J.Pearl:
A . R w T ~,3D objects”

Causal models:

From passive observations:

P(Xy,-.r Xp)
,2D projection”
M pz{lp']_(X]_;Yl 1Z24),..., |p,|<(X|<;Y|< | Z)}

Different causal models can have the same independence map!

Typically causal models cannot be identified from passive observations, they are
observationally equivalent.



Association vs. Causation: Markov chain

Causal models:

OO0 (XD X O 0 O D XD

Markov chain

P(X,...)
Mp={1(X;,1;Xi.1 | X;)}

yfirst order Markov property”

Flow of time?



The building block of causality:
v-structure (arrow of time)

p(X),p(Z|X),p(Y|Z)

O-@-®

p(X[Z),p(Z]Y),p(Y)

p(X),p(Z]X,Y),p(Y)
“transitive” M # ,intransitive” M . .
p(X]2),p(2),p(Y|2)

m V-structure”

Mp={D(X;Z), D(Z;Y), D(X)Y), I(X;Y|Z)} Mp={D(X;Z), D(Y;Z), I(X;Y), D(X;Y|Z) }

Often: present knowledge renders future states conditionallyindependent.
(confounding)

Ever(?): present knowledge renders past states conditionallyindependent.
(backward/atemporal confounding)



Observational equivalence:
total independence

” .
,Causal” model: -y
e
ot
&=
"” ,
)

One-to-onerelation
Dependency map:

P(X,..., X;,)

MPz{IP,l(Xl;XZ)/---}



Observational equivalence:
full dependence

,Causal” models (there is a DAG for each ordering, i.e. n! DAGs):

One-to-many relation
Dependency map:

P(Xy,..., X;)

Mp={Dp;(X1;X5),..}



Observational equivalence of causal models

Definition 11 Two DAGs G, G; are ocbservationally equivalent , if they imply the same set of
independence relations (i.e. (X 1 Y|Z),) & (X 1L Y|Z),).

The implied equivalence classes may contain »! nhumber of DAGs (e.d. all the full networks
representing no independencies) or just 1.

Theorem 2 Two DAGs 1, G2 are observationally equivalent , iff they have the same skeleton
(i.e. the same edges without directions) and the same set of v-structures (i.e. two converging
arrows without an arrow between their tails).

Definition 12 The essential graph representing observationally equivalent DAGs is a partially
oriented DAG (PDAG), that represents the identically oriented edges called compelied edges
of the observationally equivalent DAGS (i.e. in the equivalence class), such a way that in the
common skeleton only the compelled edges are directed (the others are undirected
representing inconclusiveness).



Compelled edges and PDAG

?”=»compelled edges)

elations

we interpret edges as causa

(“can




The Causal Markov Condition

A DAG is called a causal structure over a set of variables, if each node
represents a variable and edges direct influences. A causal model is a
causal structure extended with local probabilistic models.

e A causal structure G and distribution P satisfies the Causal Markov
Condition, if P obeys the local Markov condition w.r.t. G.

e The distribution P is said to stable (or faithful), if there exists a DAG

called perfect map exactly representing its (in)dependencies (i.e.
1c(X;Y|Z) © 1,(X;Y|Z) VXY,ZZS V).

e CMC: of G (there are no extra, acausal dependencies)

 Faithfulness/stability: of G (there are no extra, parametric
independencies)



Interventional inference in causal Bayesian
networks

» (Passive, observational) inference
* P(Query|Observations)

* Interventionist inference
* P(Query|Observations, Interventions)

* Counterfactual inference
e P(Query| Observations, Counterfactual conditionals)



Interventions and graph surgery

If G is a causal model, then compute p(Y|do(X=x)) by
1. deleting the incoming edges to X
2. setting X=x
3. performing standard Bayesian network inference.

-




Learning causal relations and models



Inductive Causation (asymptotic, no hidden)

1. Skeleton: Construct an undirected graph (skeleton), such that variables
X,Y € V are connected with an edge iff VS(X 1 Y|S),, where
SCV\{X,Y}.

2. v-structures: Orient X — Z + Y iff X, Y are nonadjacent, Z is a common
neighbour and —3S that (X 1L Y|S),, where S C V\ {X,Y} and Z € S.

3. propagation: Orient undirected edges without creating new v-structures
and directed cycle.

Theorem
The following four rules are necessary and sufficient.

Ri if (a#4c)AN(a—Db)AN(b—c), thenb — ¢

Ry if (a—c—b)A(a—D>b), thena — b

Ry if(a—b)N(a—c—=>b)AN(a—d— b) A (cAd), thena — b

Ry if (a—b)AN(a—c—d)AN(c—-d—Db)A(c+#b)AN(a—d), thena— b



Assoclation vs. Causation

Causal models:
X causes Y Y causes X M

There isa common cause Causal effect of Y on X
(pure confounding) is confounded by many
factors

From passive observations:
P(X,Y)

M=) — QO—QD

,XandY are associated”

Reichenbach's Common Cause Principle:

a correlation between events X and Y indicates either that X causes Y, or that Y causes X, or that X
and Y have a common cause.



Local Causal Discovery

“can we interpret edges as causal relations in the presence of hidden variables?”

e Canwe learn causal relations from observational datain presence of confounders???

Increas®q propensity

od susceptibility

m  Automated, tabula rasa causal inference from (passive) observation is possible,
i.e. hidden, confounding variables can be excluded

2.



A deterministic concept of causation

* H.Simon
o Xi=fi(Xy,..,X¢) fori=1..n

 Inthe linear case the sytem of equations indicates a natural
causal ordering (flow of time?)

X [ X | X[ X

The probabilistic conceptualization is its generalization:
P(Xi,[X1-,Xi.1) ~ Xi=fi(Xq,-.,Xi1)
A posteriori probability of a ,causal” ordering...



Towards counterfactual inference



Functional (causal) Bayesian network

The axiomatic foundation for the graph surgery semantics of the P(.|do(.), .)
notation.

Definition

Let p(V|do(x) denote an interventional distribution corresponding to setting
variable(s) X C V to value x and P. the set of all interventional distributions
(including p(V|do(0)) the observational target distribution without

intervention). A DAG G is said to be a causal Bayesian network compatible
with P. iff for each p(V|do(x)) € P the following three conditions hold

1. p(V|do(x) is Markov relative to G,
2. VX; € X p(xi|do(x) = 1 if value x; and x is compatible,
3. VXi ¢ X p(xi|pa;,do(x) = p(xi|pa;) if value(s) pa; and x is compatible.



Counterfactuals I.

® Observe X =z and Y =y

¢ What is the probability, that Y would
have attained the value ' if X had
been z'? (here y and ¢’ can be equal but
5 Es)

® Variables A and B can be either
observed or hidden, but the

full model (graph, functions,and P(U)) 4= fa('u'a')
is assumed to be known z = fz(a, Uz)
b:= fo(x,up)
® Interpreting the question: We assume a y = fy(a,z,b uy)

minimal change of mechanism, i.e. we set
X into state z’ without changing anything else, i.e: do(X = ')

® Interpreting the question: We assume that the disturbance variables
U\U, = {U,, U, U,} are persistent, i.e. do not change



Counterfactuals II.

e With these specifications, we have a well
defined probability:

PlYy =% | X=0.¥% =98)

Y:(u) = ‘the value of Y, when the
disturbance variables attain the values u
and X is set to equal ="

S o8 8




Counterfactuals III.

e But, how to calculate

P(Yr":yle:'T?Y:y)? U,
(Pearl theorem 7.1.7) X Us
Three steps: 5)
Uy
l. (‘abduction’): Calculate the
probability distribution over all Y Uy
disturbances, given the evidence e, 0= f.(u,)
.e. P(U | ¢) % = f(a, i)
. ., b:= fu(x,up)
i. (‘action’): Change the model by the y = fyla,x,b,uy)

intervention do(X = '), i.e. remove all
arrows into X and set its value to z’

lii. (‘prediction’) Using the updated model, and the probability
distribution P(U | e), calculate P(Y =)



Summary

* Independence models

* Probabilistic graphical models
e Bayesian networks
e Causal interpretation

e Causal inference

* do-operator
* |ocal causal inference

 Counterfactual inference



