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How far did we get”?



IMAGENET Large Scale Visual

Recognition Challenge (ILSVRC) 2010-2014

1000 object classes 1,431,167 images CLS-LOC

Person

http://image-net.org/challenges/LSVRC/
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And the war goes on..

n Andrew Ng

Baidu Research just attained the best computer vision ImageNet
classification resul(rror (vs. GoogLeNet'. The key to this
was our multi-GPU deep learning infrastructure, which by using a mix of
model-parallelism and data-parallelism, allows us to train our model 24.7x
faster than using only a single GPU. This scale also allows us to use
higher-resolution images, and absorb more (synthetic) training data. Paper
here: bit.ly/deepimage
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Speech recognition

* Google

* Apple

e Baidu

* Achievements:

* Error rates constantly
drop since 2009, halved
or So..

e “Speech 2.07
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Are we done”
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Need to make decisions!



RL to the Rescue

Observati®
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RL t0 the Rescue

Goal: Maximize the total reward collected

15



Google DeepMind:
RL meets Deep Learning and
Big Data
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OOy O O < <R
SECTORE 1

B. Rider | Breakout | Enduro | Pong | Q%*bert | Seaquest | S.Invaders
Random 354 1.2 0 —20.4 157 110 179
Sarsa [3] 996 5.2 129 —19 614 665 271
Contingency [4] 1743 6 159 —17 960 723 268
DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 -3 18900 28010 3690
HNeat Best [8] 3616 52 106 19 1800 920 1720
HNeat Pixel [8] 1332 4 91 —16 1325 800 1145
DQN Best 5184 225 661 21 4500 1740 1075

Table 1: The upper table compares average total reward for various learning methods by running
an e-greedy policy with e = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an e-greedy policy with e = 0.05.

Google DeepMind:
RL meets Deep Learning and
Big Data
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Artificial intelligence experts
sign open letter to protect
mankind from machines

The Future of Life Institute wants humanity to tread lightly while developing
really smart machines.

by Nick Statt W @nickstatt / 12 January 2015 12:10 am GMT
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On Data Collection
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A Swimming Lesson

* Reckless data collection: Choose the actions uniformly at
random

* How much data do we need to collect before we see the bounty for
the first time, starting from the middle”

 How does this depend on the number of states?

Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]
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Time betfore bounty Is found
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Time betore bounty is found

e Hitting time for random 91 T andom
oolicy:
O2")
e Hitting time for
‘swimming policy™:

O(n)

tttttt

 Exponential gap on a very simple example!
..could be much worse on a real problem
 How “big” is big enough?
* Will we ever have enough data”? Can we do better?

22
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Changing the game..

* Allow data to be collected by a policy we select

 Can we design more efficient data collection
policies?
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Standard RL Approach

 Repeat:
e Learn a "good” policy
 Add randomness to induce exploration
* Collect more data (multiple episodes)

e “epsilon-greedy”, “Boltzmann exploration”

* "Dithering”

24



What happens with dithering
N Riverswim?
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What happens with dithering
N Riverswim?

What is the policy learned initially®?
How long do we need to wait until the bounty Is
first collected?
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How do we evaluate a data
collection strategy”

« How much data is needed to find a good policy?
..reward collected/lost during data collection does
not matter: “pure exploration” problem

* How much reward Is incurred during data
collection”? “exploitation” problem

Must optimize while learning. Explore or exploit?

Metric: Regret.

20



The Exploitation
Problem
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Optimism in the Face of Uncertainty

Worlds

Repeat:

1.

2.

Find the set S of likely “worlds”
given the observations so far
Find the world Win S with the
maximum payoft:

W = argmax J (W)
wes

. Find the optimal policy for this

world:
m = argmax J (W, £)
3
Use this policy until S
significantly shrinks

Lai and Robbins (1985), Burnetas and Katehakis (1996),
Auer, Cesa-Bianchi and Fischer UCB1 (2002), and many others

S
W

Policles
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[Jaksch-Ortner-Auer,’10]

How good is OFU?

S states, A actions, rewards in [0,1].

Definition: Diameter := maximum of best travel times
between pairs of states. River swim: D= 8§

 Theorem: The regret of an OFU learner satisfies
Rr = O(DSV AT)

* Theorem: For any algorithm,
Ry = Q(VDSAT)

OFU for finite problems: UCRL2

29



Posterior Sampling
Reinforcement Learning

[Thompson, 1933(!), Strens '00]

30



Posterior Sampling
Reinforcement Learning

A Bayesian start:

[Thompson, 1933(!), Strens '00]

30



Posterior Sampling
Reinforcement Learning

A Bayesian start:
e Prior over the worlds

[Thompson, 1933(!), Strens '00]

30



Posterior Sampling
Reinforcement Learning

A Bayesian start:
 Prior over the worlds
e Likelihood model

[Thompson, 1933(!), Strens '00]

30



Posterior Sampling
Reinforcement Learning

A Bayesian start:
e Prior over the worlds

e Likelihood model
» Posterior: p(W|D) o pw (W)p(D|W)

[Thompson, 1933(!), Strens '00]

30



Posterior Sampling
Reinforcement Learning

A Bayesian start:

e Prior over the worlds

e |ikelihood model

* Posterior: p(W|[D) o< pw (W)p(D|W)
Repeat:

[Thompson, 1933(!), Strens '00]

30



Posterior Sampling
Reinforcement Learning

A Bayesian start:

* Prior over the worlds

e Likelihood model

» Posterior: p(W|D) o< pw (W)p(D|W)
Repeat:
1. Sample a world W from the posterior:

W ~ P(W = -|D)

[Thompson, 1933(!), Strens '00]

30



Posterior Sampling
Reinforcement Learning

A Bayesian start:

* Prior over the worlds

e Likelihood model

» Posterior: p(W|D) o< pw (W)p(D|W)
Repeat:
1. Sample a world W from the posterior: Worlds

W~ P(W = |D)

[Thompson, 1933(!), Strens '00] .



Posterior Sampling
Reinforcement Learning

A Bayesian start:

* Prior over the worlds

e Likelihood model

» Posterior: p(W|D) o< pw (W)p(D|W)
Repeat:
1. Sample a world W from the posterior: Worlds

W~ P(W = |D)

[Thompson, 1933(!), Strens '00] Policies .



Posterior Sampling
Reinforcement Learning

A Bayesian start: ;
* Prior over the worlds D
 Likelihood model C__*;'
e Posterior: p(W|D) o< pw (W)p(D|W) Q
Repeat:
1. Sample a world W from the posterior: Worlds

W ~ P(W = -|D)

[Thompson, 1933(!), Strens '00] Policies .



Posterior Sampling
Reinforcement Learning

A Bayesian start: ;
* Prior over the worlds D
 Likelihood model C__*;'
e Posterior: p(W|D) o< pw (W)p(D|W) Q
Repeat:
1. Sample a world W from the posterior: Worlds

W ~ P(W = -|D)

[Thompson, 1933(!), Strens '00] Policies .



Posterior Sampling
Reinforcement Learning

A Bayesian start: ;
* Prior over the worlds D
 Likelihood model C__*;'
» Posterior: p(W|D) o< pw (W )p(D|W) S
Repeat: -
1. Sample a world W from the posterior: Worlds

W ~ P(W = -|D)
2. Find the optimal policy for this world:

m = argmax J (W, &)
§

[Thompson, 1933(!), Strens '00] Policies .



Posterior Sampling
Reinforcement Learning

A Bayesian start: ;
* Prior over the worlds D
 Likelihood model C__*;'
» Posterior: p(W|D) o< pw (W )p(D|W) S
Repeat: -
1. Sample a world W from the posterior: Worlds

W ~ P(W = -|D)
2. Find the optimal policy for this world:

m = argmax J (W, &)
§

[Thompson, 1933(!), Strens '00] Policies .



Nl

Posterior Sampling
Reinforcement Learning

A Bayesian start: ;
* Prior over the worlds 0]
 Likelihood model g
» Posterior: p(W|D) o< pw (W )p(D|W) S
Repeat: -
1. Sample a world W from the posterior: Worlds

W ~ P(W = -|D)
2. Find the optimal policy for this world:

m = argmax J (W, &)
§

[Thompson, 1933(!), Strens '00] Policies .



Nl

Posterior Sampling
Reinforcement Learning

A Bayesian start: ;
* Prior over the worlds 0]
 Likelihood model g
» Posterior: p(W|D) o< pw (W )p(D|W) S
Repeat: -
1. Sample a world W from the posterior: Worlds

W ~ P(W = -|D)
2. Find the optimal policy for this world:

m = argmax J (W, &)
§
3. Use this policy a “little while” —

[Thompson, 1933(!), Strens '00] Policies .
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algorithm

14000 ~

— —PSEL Regret .--rfufﬁ-'rsﬂ-aﬁ;'.q-_b_,;.u_.
12000 0 —-— | JCRL2 Regret i R e

B k], S T

10000

P

2000
el
L
-
T G000
i
o
000
2000
2000 l L L l l 1 I I I I
] 1 2 it < L £ E L= g 10
3
Time elapsed %10

Russo '13]

31



Scaling up ﬁ"ﬁ



Scaling up

4

* Large state-action spaces:
need to generalize across states and actions

32



Scaling up

4

* Large state-action spaces:
need to generalize across states and actions

 Model based approach:

32



Scaling up

4

* Large state-action spaces:
need to generalize across states and actions

 Model based approach:

Tir1 — f(ajta at, 0, Zt—l—l)

32



Scaling up

4

* Large state-action spaces:
need to generalize across states and actions

 Model based approach:

Tir1 — f(ajta at, 0, Zt—l—l)

A

next
state

32



Scaling up

4

* Large state-action spaces:
need to generalize across states and actions

 Model based approach:

Tir1 — f(ajta at, 0, Zt—l—l)

A A

next current
state state

32



Scaling up

4

* Large state-action spaces:
need to generalize across states and actions

 Model based approach:

Tir1 — f(ajta at, 0, Zt—l—l)

A A A

next current
state state

action



Scaling up

4

* Large state-action spaces:
need to generalize across states and actions

 Model based approach:

Ti41 — f(ajta at, 0, Zt+1)

A A A A

next current unknown
state state parameter

action



Scaling up

4

* Large state-action spaces:
need to generalize across states and actions

 Model based approach:

Ti41 — f(ajta at, 0, Zt+1)
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next current unknown
state state parameter
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| inear Quadratic Regulation

ri11 = Axy + Bay + 2441 9, = (A, B)
Ciy1 = Ty th + a, ! Ray, IS unknown

 Theorem [Abbasi-Sz 2011]: For reachable and
controllable systems, the regret of OFU satisfies

Ry = O(T)

 Key idea: Estimate the unknown parameter using |2

regularized least-squares, develop tight confidence
sets

33
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e Smoothness:

y: f($7a797Z),y/ — f(x7a’79/72)
—

L lly =y 1] < 10 = 0] by (5,0
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* Smoothness:
y = f(r,a,0,2),y = f(x,a,0,2)
-
Ly =yl < 110 = 0|l ar (.0

 Theorem [Abbasi-Sz]: For smooth, “bounded”

systems, If the posterior is “concentrating”, the Bayes
regret of PSRL is bounded by
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Nonlinear systems?

* Smoothness:
y = f(r,a,0,2),y = f(x,a,0,2)
-
Ly =yl < 110 = 0|l ar (.0

 Theorem [Abbasi-Sz]: For smooth, “bounded”

systems, If the posterior is “concentrating”, the Bayes
regret of PSRL is bounded by

~

Ry = O(T)

« Key idea: Use M (x,a) to measure information.

34



Web Server Control

CPU LOAD

CPU LOAD




Web Server Control

e Control variables: . . . . .

CPU LOAD

CPU LOAD




Web Server Control

e Control variables: . . . . .

* How long to keep alive a
connection without traffic on CPU LOAD
It

—

CPU LOAD

35



Web Server Control

e Control variables:

* How long to keep alive a
connection without traffic on
It

e Maximum number of clients
that can be served

CPU LOAD

P R e

CPU LOAD

35



Web Server Control

e Control variables:

* How long to keep alive a
connection without traffic on
It

e Maximum number of clients
that can be served

e State variables:

CPU LOAD

P R e

CPU LOAD

35



Web Server Control

e Control variables:

* How long to keep alive a
connection without traffic on
It

e Maximum number of clients
that can be served

e State variables:

e Processor |load relative to
iIdeal processor load

CPU LOAD

st ot it by

CPU LOAD

35



Web Server Control

e Control variables:

* How long to keep alive a
connection without traffic on
It

e Maximum number of clients
that can be served

e State variables:

e Processor |load relative to
iIdeal processor load

* Memory usage relative to
iIdeal memory usage

CPU LOAD

st ot it by

CPU LOAD

35



120

100

80

60

Regret

40

20

120

100

80

Regret
o
S

40

20

Results

Explore then exploit

6000 8000 10000

2000 4000

6000 8000 10000

Time

Regret

Regret

450

400

350

300

250

200

150

100

50

120

Q-learning w. dithering

2000

4000

6000 8000 10000

Tima

OFULQ prefetch

100

80

60

40

20

2000

4000

6000 8000 10000

Time

36



OFULQ vs. PSRL

he frequency of policy switches is controlled by
a parameter, which ultimate controls the computation time

50 OFULQ 50 _Lazy PSRL
40¢ 1 40t "
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2 30( - 30} -
| - | -
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D D
a'd 201 i o 20! -\-\+//+ i
[ |
10} ] 100 " ]
% 5 10 | 15 20 25 $32 032 036 9.38 0.40 0.42 0.44
Time Time

OFULQ = OFU on LQR

Lazy PSRL = PSRL that switches to new policy
based on M (z, a)
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Bandit Problems

Lever 1 Lever 2
Known payout Unknown payout
$0.25 bet $0.25 bet
$0.30 win! S? win
EXPLOITATION EXPLORATION

Goal: maximize the total reward incurred
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| Inear Bandits

e Actions are elements of a vector space:
ae ACR?

* Reward: Ry = (A, 0,) + Z4
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| Inear Bandits

Actions are elements of a vector space:
ae ACR?

Reward: Ry = (A, 0,) + Z4

L2 problem: [|0]], <1, lall, <1

Theorem [Dani et al ’08]: For subgaussian
noise, OFU’s regret for the L2 problem is

Ry = O(dVT)

41



Confidence sets matter

3000
55001 ---New bound
—0ld bound
2000r | New bound with rare switching
5
> 1500
oC
1000/
500!
% = 2000 4000 6000 8000 10000

Time

 “New bound”: Abbasi-Pal-5z'11
e “Old bound”: Dani-Hayes-Kakade ‘08
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e |Linear estimation problem
The observations are Ry, Ay, ..., R, A, where

..,Rt: <At,(9*>—|—Zt,...
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I'he challenge A

e |Linear estimation problem
The observations are Ry, Ay, ..., R, A, where

..,Rt: <At,(9*>—|—Zt,...

e Given0 <o < 1 find a set
Ct — Ot(é, Rl,Al,. . .,Rt,At) C Rd

suchthat P (0, € Cy) > 1—9
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I'he challenge

Linear estimation problem
The observations are Ry, Ay, ..., R, A, where

LRy = (A, 00+ 72y, ...
Given0 < o < 1, find a set
C, = Cy(8, R, A1, ..., R, Ay) C R?
suchthat P (0, € C,) >1—9

The covariates, A, € RY, are chosen by a bandit
algorithm, they are far from independent!

We need a honest confidence set!
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I'he challenge

Linear estimation problem
The observations are Ry, Ay, ..., R, A, where

LRy = (A, 00+ 72y, ...
Given0 < o < 1, find a set
C, = Cy(8, R, A1, ..., R, Ay) C R?
suchthat P (0, € C,) >1—9

The covariates, A, € RY, are chosen by a bandit
algorithm, they are far from independent!

We need a honest confidence set!
How to exploit sparsity of 6.,
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A general solution

* |t we have a good predictor for an adversarial
inear regression problem with small regret, the
oredictions R4, ..., R; and the regret bound b,
should give us a honest, tight confidence set.
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A general solution

* |f we have a good predictor for an adversarial
inear regression problem with small regret, the
oredictions R4, ..., R; and the regret bound b,
should give us a honest, tight confidence set.

 Theorem [Abbasi-Pal-Sz ’12]: With probability
1 -4, 6, € C, holds for all n > 1, where

n

C, = {9 cRY - Z(ﬁt — (A, 0))°
7\/§‘|‘\/l‘|‘Bn)}
0

< 1—|—QBn—|—32721n(
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Ry = O(+\/dT By)




Sparse Linear Bandits

 Theorem [YPSZz ’12]: The regret of OFUL enjoys
Ry = O(+\/dT By)

 Theorem [Gerchinowitz ’11]: There exist an
algorithm that achieves

Br = O(plog(dT))

for linear regression with p-sparse parameter vectors
belonging to the hypercube.
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 Theorem [YPSZz ’12]: The regret of OFUL enjoys
Ry = O(+\/dT By)

 Theorem [Gerchinowitz ’11]: There exist an
algorithm that achieves

Br = O(plog(dT))

for linear regression with p-sparse parameter vectors
belonging to the hypercube.

 Corollary [YPSZz ’12]: For such problems,

Ry = O(\/dpT)
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Sparse Linear Bandits

Theorem [YPSz ’12]: The regret of OFUL enjoys
Ry = O(+\/dT By)

Theorem [Gerchinowitz ’11]: There exist an
algorithm that achieves

Br = O(plog(dT))

for linear regression with p-sparse parameter vectors
belonging to the hypercube.

Corollary [YPSZz ’12]: For such problems,

Ry = O(+/dpT)

Theorem [YPSZ’12]: For all algorithms,

Ry = Q(/dT)
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Why?

* Prediction problems (Candes, Tao 2006 and Bickel,
Ritov, Tsybakov 2009), under RIP for LASSO:

0, — 0.]| ~ +/plog(d)/n
2
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Why?

* Prediction problems (Candes, Tao 2006 and Bickel,
Ritov, Tsybakov 2009), under RIP for LASSO:

0, — 0.]| ~ +/plog(d)/n
2

e \What is the difference?

* (Good algorithms select good actions frequently
==> No RIP

* Covariates are highly correlated

46



Still.. does it work™

OFUL+EG (Circles) vs. OFUL+LS (Squares)
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summary

0 make impact, we need to solve decision problems
'his makes a BIG difference

* Passive data collection can be extremely ineffective:

small “big data” 1?

Need smart algorithms for learning and control

* Planning to learn is critical
 OFU or PSRL: Competing designs
Current research: Scaling up!

e Sparsity..?

Significant computational, algorithmic and statistical

challenges remain. Much to be done!!
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