
Learning to Make Better
Decisions:

Challenges for the 21st Century

Csaba Szepesvári
University of Alberta

Department of Computing Science
!

Based on joint work with:
Yasin-Abbasi Yadkori and Dávid Pál

Making a difference

2

Making a difference
• Autonomous cars: Save lives

of people dying on the road

2

Making a difference
• Autonomous cars: Save lives

of people dying on the road

• Voice-user interface systems:
Humanizing computer-human
interaction

2

Making a difference
• Autonomous cars: Save lives

of people dying on the road

• Voice-user interface systems:
Humanizing computer-human
interaction

• Dynamic treatment regimes:
Save patients. Maximize
treatment efficiency while
avoiding ill effects

2

Making a difference
• Autonomous cars: Save lives

of people dying on the road

• Voice-user interface systems:
Humanizing computer-human
interaction

• Dynamic treatment regimes:
Save patients. Maximize
treatment efficiency while
avoiding ill effects

• Intelligent Tutoring: Bring
education to the masses while
improving it

2

How?

Explosion of data
4

Computation
5

Improved Learning Methods
6

How far did we get?

8

!!!!!!!!!!!!!!!!!!!!!!!!!Large!Scale!Visual!
Recogni1on!Challenge!(ILSVRC)!2010P2014!

20*object*classes * *22,591*images*
200*object*classes * **456,567**images* *DET **
*1000*object*classes * *1,431,167*images* *CLS8LOC*
**

Person!

hNp://image8net.org/challenges/LSVRC/*

Person!

Dog*

Person!
Person!

!!!!!!!!!!!!!!!!!!!!!!!!!Large!Scale!Visual!
Recogni1on!Challenge!(ILSVRC)!2010P2014!

20*object*classes * *22,591*images*
200*object*classes * **456,567**images* *DET **
*1000*object*classes * *1,431,167*images* *CLS8LOC*
**

Person!

hNp://image8net.org/challenges/LSVRC/*

Person!

Dog*

Person!
Person!

Evaluation

9

Output:*
Scale!
TPshirt!

Steel!drum!
Drums1ck!
Mud!turtle!

Steel!drum!

✔! ✗!
Output:*
Scale!
TPshirt!

Giant!panda!
Drums1ck!
Mud!turtle!

ILSVRC!image!classifica1on!task!

Output:*
Scale!
TPshirt!

Steel!drum!
Drums1ck!
Mud!turtle!

Steel!drum!

✔! ✗!
Output:*
Scale!
TPshirt!

Giant!panda!
Drums1ck!
Mud!turtle!

Error!=!!! Σ!
100,000!
images!

1[incorrect!on!image!i]!1!
100,000!

ILSVRC!image!classifica1on!task!

Progress

10

ILSVRC!over!the!years!
on!image!classifica1on!

0.28*
0.26*

0.16*

0.12*

0.07*

1.7x!reduc1on!in!
classifica1on!error!!
since!last!year!
!
4.2x!reduc1on!in!
classifica1on!error!
since!2010!
!
!

And the war goes on..

11

Speech recognition
• Google
• Apple
• Baidu
• Achievements:

• Error rates constantly
drop since 2009, halved
or so..

• “Speech 2.0”

12

Are we done?

13

Are we done?

14

Are we done?

14

Are we done?

14

Are we done?

14

Are we done?

14

Need to make decisions!

RL to the Rescue

15

World

Observation

Action

Reward

RL to the Rescue

15

World

Observation

Action

Reward

Goal: Maximize the total reward collected

Google DeepMind:  
RL meets Deep Learning and  

Big Data
16

Google DeepMind:  
RL meets Deep Learning and  

Big Data
16

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

an experience replay mechanism [13] which randomly samples previous transitions, and thereby
smooths the training distribution over many past behaviors.

We apply our approach to a range of Atari 2600 games implemented in The Arcade Learning Envi-
ronment (ALE) [3]. Atari 2600 is a challenging RL testbed that presents agents with a high dimen-
sional visual input (210 ⇥ 160 RGB video at 60Hz) and a diverse and interesting set of tasks that
were designed to be difficult for humans players. Our goal is to create a single neural network agent
that is able to successfully learn to play as many of the games as possible. The network was not pro-
vided with any game-specific information or hand-designed visual features, and was not privy to the
internal state of the emulator; it learned from nothing but the video input, the reward and terminal
signals, and the set of possible actions—just as a human player would. Furthermore the network ar-
chitecture and all hyperparameters used for training were kept constant across the games. So far the
network has outperformed all previous RL algorithms on six of the seven games we have attempted
and surpassed an expert human player on three of them. Figure 1 provides sample screenshots from
five of the games used for training.

2 Background

We consider tasks in which an agent interacts with an environment E , in this case the Atari emulator,
in a sequence of actions, observations and rewards. At each time-step the agent selects an action
at from the set of legal game actions, A = {1, . . . ,K}. The action is passed to the emulator and
modifies its internal state and the game score. In general E may be stochastic. The emulator’s
internal state is not observed by the agent; instead it observes an image xt 2 Rd from the emulator,
which is a vector of raw pixel values representing the current screen. In addition it receives a reward
rt representing the change in game score. Note that in general the game score may depend on the
whole prior sequence of actions and observations; feedback about an action may only be received
after many thousands of time-steps have elapsed.

Since the agent only observes images of the current screen, the task is partially observed and many
emulator states are perceptually aliased, i.e. it is impossible to fully understand the current situation
from only the current screen xt. We therefore consider sequences of actions and observations, st =
x1, a1, x2, ..., at�1, xt, and learn game strategies that depend upon these sequences. All sequences
in the emulator are assumed to terminate in a finite number of time-steps. This formalism gives
rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct state.
As a result, we can apply standard reinforcement learning methods for MDPs, simply by using the
complete sequence st as the state representation at time t.

The goal of the agent is to interact with the emulator by selecting actions in a way that maximises
future rewards. We make the standard assumption that future rewards are discounted by a factor of
� per time-step, and define the future discounted return at time t as Rt =

PT
t0=t �

t0�t
rt0 , where T

is the time-step at which the game terminates. We define the optimal action-value function Q

⇤
(s, a)

as the maximum expected return achievable by following any strategy, after seeing some sequence
s and then taking some action a, Q⇤

(s, a) = max⇡ E [Rt|st = s, at = a,⇡], where ⇡ is a policy
mapping sequences to actions (or distributions over actions).

The optimal action-value function obeys an important identity known as the Bellman equation. This
is based on the following intuition: if the optimal value Q

⇤
(s

0
, a

0
) of the sequence s

0 at the next
time-step was known for all possible actions a

0, then the optimal strategy is to select the action a

0

2

Google DeepMind:  
RL meets Deep Learning and  

Big Data
16

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

an experience replay mechanism [13] which randomly samples previous transitions, and thereby
smooths the training distribution over many past behaviors.

We apply our approach to a range of Atari 2600 games implemented in The Arcade Learning Envi-
ronment (ALE) [3]. Atari 2600 is a challenging RL testbed that presents agents with a high dimen-
sional visual input (210 ⇥ 160 RGB video at 60Hz) and a diverse and interesting set of tasks that
were designed to be difficult for humans players. Our goal is to create a single neural network agent
that is able to successfully learn to play as many of the games as possible. The network was not pro-
vided with any game-specific information or hand-designed visual features, and was not privy to the
internal state of the emulator; it learned from nothing but the video input, the reward and terminal
signals, and the set of possible actions—just as a human player would. Furthermore the network ar-
chitecture and all hyperparameters used for training were kept constant across the games. So far the
network has outperformed all previous RL algorithms on six of the seven games we have attempted
and surpassed an expert human player on three of them. Figure 1 provides sample screenshots from
five of the games used for training.

2 Background

We consider tasks in which an agent interacts with an environment E , in this case the Atari emulator,
in a sequence of actions, observations and rewards. At each time-step the agent selects an action
at from the set of legal game actions, A = {1, . . . ,K}. The action is passed to the emulator and
modifies its internal state and the game score. In general E may be stochastic. The emulator’s
internal state is not observed by the agent; instead it observes an image xt 2 Rd from the emulator,
which is a vector of raw pixel values representing the current screen. In addition it receives a reward
rt representing the change in game score. Note that in general the game score may depend on the
whole prior sequence of actions and observations; feedback about an action may only be received
after many thousands of time-steps have elapsed.

Since the agent only observes images of the current screen, the task is partially observed and many
emulator states are perceptually aliased, i.e. it is impossible to fully understand the current situation
from only the current screen xt. We therefore consider sequences of actions and observations, st =
x1, a1, x2, ..., at�1, xt, and learn game strategies that depend upon these sequences. All sequences
in the emulator are assumed to terminate in a finite number of time-steps. This formalism gives
rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct state.
As a result, we can apply standard reinforcement learning methods for MDPs, simply by using the
complete sequence st as the state representation at time t.

The goal of the agent is to interact with the emulator by selecting actions in a way that maximises
future rewards. We make the standard assumption that future rewards are discounted by a factor of
� per time-step, and define the future discounted return at time t as Rt =

PT
t0=t �

t0�t
rt0 , where T

is the time-step at which the game terminates. We define the optimal action-value function Q

⇤
(s, a)

as the maximum expected return achievable by following any strategy, after seeing some sequence
s and then taking some action a, Q⇤

(s, a) = max⇡ E [Rt|st = s, at = a,⇡], where ⇡ is a policy
mapping sequences to actions (or distributions over actions).

The optimal action-value function obeys an important identity known as the Bellman equation. This
is based on the following intuition: if the optimal value Q

⇤
(s

0
, a

0
) of the sequence s

0 at the next
time-step was known for all possible actions a

0, then the optimal strategy is to select the action a

0

2

B. Rider Breakout Enduro Pong Q*bert Seaquest S. Invaders
Random 354 1.2 0 �20.4 157 110 179

Sarsa [3] 996 5.2 129 �19 614 665 271

Contingency [4] 1743 6 159 �17 960 723 268

DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 �3 18900 28010 3690

HNeat Best [8] 3616 52 106 19 1800 920 1720
HNeat Pixel [8] 1332 4 91 �16 1325 800 1145

DQN Best 5184 225 661 21 4500 1740 1075

Table 1: The upper table compares average total reward for various learning methods by running
an ✏-greedy policy with ✏ = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an ✏-greedy policy with ✏ = 0.05.

types of objects on the Atari screen. The HNeat Pixel score is obtained by using the special 8 color
channel representation of the Atari emulator that represents an object label map at each channel.
This method relies heavily on finding a deterministic sequence of states that represents a successful
exploit. It is unlikely that strategies learnt in this way will generalize to random perturbations;
therefore the algorithm was only evaluated on the highest scoring single episode. In contrast, our
algorithm is evaluated on ✏-greedy control sequences, and must therefore generalize across a wide
variety of possible situations. Nevertheless, we show that on all the games, except Space Invaders,
not only our max evaluation results (row 8), but also our average results (row 4) achieve better
performance.

Finally, we show that our method achieves better performance than an expert human player on
Breakout, Enduro and Pong and it achieves close to human performance on Beam Rider. The games
Q*bert, Seaquest, Space Invaders, on which we are far from human performance, are more chal-
lenging because they require the network to find a strategy that extends over long time scales.

6 Conclusion
This paper introduced a new deep learning model for reinforcement learning, and demonstrated its
ability to master difficult control policies for Atari 2600 computer games, using only raw pixels
as input. We also presented a variant of online Q-learning that combines stochastic minibatch up-
dates with experience replay memory to ease the training of deep networks for RL. Our approach
gave state-of-the-art results in six of the seven games it was tested on, with no adjustment of the
architecture or hyperparameters.

References

[1] Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In
Proceedings of the 12th International Conference on Machine Learning (ICML 1995), pages
30–37. Morgan Kaufmann, 1995.

[2] Marc Bellemare, Joel Veness, and Michael Bowling. Sketch-based linear value function ap-
proximation. In Advances in Neural Information Processing Systems 25, pages 2222–2230,
2012.

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence

Research, 47:253–279, 2013.

[4] Marc G Bellemare, Joel Veness, and Michael Bowling. Investigating contingency awareness
using atari 2600 games. In AAAI, 2012.

[5] Marc G. Bellemare, Joel Veness, and Michael Bowling. Bayesian learning of recursively fac-
tored environments. In Proceedings of the Thirtieth International Conference on Machine

Learning (ICML 2013), pages 1211–1219, 2013.

8

17

On Data Collection

A Swimming Lesson

Current

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]

A Swimming Lesson

Current

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]

A Swimming Lesson

Current

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]

A Swimming Lesson

Current

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]

0.5

0.5

A Swimming Lesson

Current

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]

• Reckless data collection: Choose the actions uniformly at
random!

0.5

0.5

A Swimming Lesson

Current

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]

• Reckless data collection: Choose the actions uniformly at
random!

• How much data do we need to collect before we see the bounty for
the first time, starting from the middle?

0.5

0.5

A Swimming Lesson

Current

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Slide graphics courtesy of Ben van Roy.
Problem due to [Strehl-Littman,’08]

• Reckless data collection: Choose the actions uniformly at
random!

• How much data do we need to collect before we see the bounty for
the first time, starting from the middle?

• How does this depend on the number of states?

0.5

0.5

Time before bounty is found

21

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Cu

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Time before bounty is found

21

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Cu

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

2 million steps for 19 states!

Time before bounty is found

22

Time before bounty is found
• Hitting time for random

policy: 

22

⇥(2n)

Time before bounty is found
• Hitting time for random

policy: 

• Hitting time for
“swimming policy”:

22

⇥(2n)

⇥(n)

Time before bounty is found
• Hitting time for random

policy: 

• Hitting time for
“swimming policy”:

22

⇥(2n)

⇥(n)

• Exponential gap on a very simple example!  
..could be much worse on a real problem

Time before bounty is found
• Hitting time for random

policy: 

• Hitting time for
“swimming policy”:

22

⇥(2n)

⇥(n)

• Exponential gap on a very simple example!  
..could be much worse on a real problem

• How “big” is big enough?

Time before bounty is found
• Hitting time for random

policy: 

• Hitting time for
“swimming policy”:

22

⇥(2n)

⇥(n)

• Exponential gap on a very simple example!  
..could be much worse on a real problem

• How “big” is big enough?
• Will we ever have enough data? Can we do better?

Changing the game..

23

Changing the game..

• Allow data to be collected by a policy we select

23

Changing the game..

• Allow data to be collected by a policy we select

• Can we design more efficient data collection
policies?

23

Standard RL Approach

24

Standard RL Approach
• Repeat:

24

Standard RL Approach
• Repeat:

• Learn a “good” policy

24

Standard RL Approach
• Repeat:

• Learn a “good” policy

• Add randomness to induce exploration

24

Standard RL Approach
• Repeat:

• Learn a “good” policy

• Add randomness to induce exploration

• Collect more data (multiple episodes)

24

Standard RL Approach
• Repeat:

• Learn a “good” policy

• Add randomness to induce exploration

• Collect more data (multiple episodes)

• “epsilon-greedy”, “Boltzmann exploration”

24

Standard RL Approach
• Repeat:

• Learn a “good” policy

• Add randomness to induce exploration

• Collect more data (multiple episodes)

• “epsilon-greedy”, “Boltzmann exploration”

• “Dithering”

24

What happens with dithering
in RiverSwim?

25

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Curr

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

What happens with dithering
in RiverSwim?

25

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Curr

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

What is the policy learned initially?
How long do we need to wait until the bounty is
first collected?

What happens with dithering
in RiverSwim?

25

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Curr

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

What is the policy learned initially?
How long do we need to wait until the bounty is
first collected?

Dithering is NOT sufficient

Need smart exploration methods

How do we evaluate a data
collection strategy?

26

How do we evaluate a data
collection strategy?

• How much data is needed to find a good policy?

26

How do we evaluate a data
collection strategy?

• How much data is needed to find a good policy?
..reward collected/lost during data collection does
not matter: “pure exploration” problem  
 

26

How do we evaluate a data
collection strategy?

• How much data is needed to find a good policy?
..reward collected/lost during data collection does
not matter: “pure exploration” problem  
 

• How much reward is incurred during data
collection? “exploitation” problem

26

How do we evaluate a data
collection strategy?

• How much data is needed to find a good policy?
..reward collected/lost during data collection does
not matter: “pure exploration” problem  
 

• How much reward is incurred during data
collection? “exploitation” problem
Must optimize while learning. Explore or exploit?
Metric: Regret.

26

The Exploitation
Problem

Optimism in the Face of Uncertainty

28

Lai and Robbins (1985), Burnetas and Katehakis (1996),  
Auer, Cesa-Bianchi and Fischer UCB1 (2002), and many others

Optimism in the Face of Uncertainty

Repeat:

28

Lai and Robbins (1985), Burnetas and Katehakis (1996),  
Auer, Cesa-Bianchi and Fischer UCB1 (2002), and many others

Optimism in the Face of Uncertainty

Repeat:
1. Find the set S of likely “worlds”

given the observations so far

28

Lai and Robbins (1985), Burnetas and Katehakis (1996),  
Auer, Cesa-Bianchi and Fischer UCB1 (2002), and many others

Optimism in the Face of Uncertainty

Repeat:
1. Find the set S of likely “worlds”

given the observations so far

28

Worlds

S

Lai and Robbins (1985), Burnetas and Katehakis (1996),  
Auer, Cesa-Bianchi and Fischer UCB1 (2002), and many others

Optimism in the Face of Uncertainty

Repeat:
1. Find the set S of likely “worlds”

given the observations so far
2. Find the world W in S with the

maximum payoff:  
 

28

Worlds

W = argmax

W2S
J(W)

S

Lai and Robbins (1985), Burnetas and Katehakis (1996),  
Auer, Cesa-Bianchi and Fischer UCB1 (2002), and many others

Optimism in the Face of Uncertainty

Repeat:
1. Find the set S of likely “worlds”

given the observations so far
2. Find the world W in S with the

maximum payoff:  
 

28

Worlds

W = argmax

W2S
J(W)

W

S

Lai and Robbins (1985), Burnetas and Katehakis (1996),  
Auer, Cesa-Bianchi and Fischer UCB1 (2002), and many others

Optimism in the Face of Uncertainty

Repeat:
1. Find the set S of likely “worlds”

given the observations so far
2. Find the world W in S with the

maximum payoff:  
 

3. Find the optimal policy for this
world:  
 

28

Worlds

W = argmax

W2S
J(W)

⇡ = argmax

⇠
J(W, ⇠)

W

S

Lai and Robbins (1985), Burnetas and Katehakis (1996),  
Auer, Cesa-Bianchi and Fischer UCB1 (2002), and many others

Optimism in the Face of Uncertainty

Repeat:
1. Find the set S of likely “worlds”

given the observations so far
2. Find the world W in S with the

maximum payoff:  
 

3. Find the optimal policy for this
world:  
 

28

Worlds

W = argmax

W2S
J(W)

⇡ = argmax

⇠
J(W, ⇠)

W

S

Policies
Lai and Robbins (1985), Burnetas and Katehakis (1996),  
Auer, Cesa-Bianchi and Fischer UCB1 (2002), and many others

Optimism in the Face of Uncertainty

Repeat:
1. Find the set S of likely “worlds”

given the observations so far
2. Find the world W in S with the

maximum payoff:  
 

3. Find the optimal policy for this
world:  
 

28

Worlds

W = argmax

W2S
J(W)

⇡ = argmax

⇠
J(W, ⇠)

⇡

W

S

Policies
Lai and Robbins (1985), Burnetas and Katehakis (1996),  
Auer, Cesa-Bianchi and Fischer UCB1 (2002), and many others

Optimism in the Face of Uncertainty

Repeat:
1. Find the set S of likely “worlds”

given the observations so far
2. Find the world W in S with the

maximum payoff:  
 

3. Find the optimal policy for this
world:  
 

28

Worlds

W = argmax

W2S
J(W)

⇡ = argmax

⇠
J(W, ⇠)

⇡

W

S

OFU

Policies
Lai and Robbins (1985), Burnetas and Katehakis (1996),  
Auer, Cesa-Bianchi and Fischer UCB1 (2002), and many others

Optimism in the Face of Uncertainty

Repeat:
1. Find the set S of likely “worlds”

given the observations so far
2. Find the world W in S with the

maximum payoff:  
 

3. Find the optimal policy for this
world:  
 

4. Use this policy until S
significantly shrinks

28

Worlds

W = argmax

W2S
J(W)

⇡ = argmax

⇠
J(W, ⇠)

⇡

W

S

OFU

Policies
Lai and Robbins (1985), Burnetas and Katehakis (1996),  
Auer, Cesa-Bianchi and Fischer UCB1 (2002), and many others

How good is OFU?

29

[Jaksch-Ortner-Auer,’10]

How good is OFU?
S states, A actions, rewards in [0,1].

29

[Jaksch-Ortner-Auer,’10]

How good is OFU?
S states, A actions, rewards in [0,1].

29

[Jaksch-Ortner-Auer,’10]

OFU for finite problems: UCRL2

How good is OFU?
S states, A actions, rewards in [0,1].
Definition: Diameter := maximum of best travel times
between pairs of states. River swim: D = S

29

[Jaksch-Ortner-Auer,’10]

OFU for finite problems: UCRL2

How good is OFU?
S states, A actions, rewards in [0,1].
Definition: Diameter := maximum of best travel times
between pairs of states. River swim: D = S
• Theorem: The regret of an OFU learner satisfies

29

RT = Õ(DS
p
AT)

[Jaksch-Ortner-Auer,’10]

OFU for finite problems: UCRL2

How good is OFU?
S states, A actions, rewards in [0,1].
Definition: Diameter := maximum of best travel times
between pairs of states. River swim: D = S
• Theorem: The regret of an OFU learner satisfies

• Theorem: For any algorithm,

29

RT = Õ(DS
p
AT)

RT = ⌦(
p
DSAT)

[Jaksch-Ortner-Auer,’10]

OFU for finite problems: UCRL2

Posterior Sampling 
Reinforcement Learning

30
[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:

30
[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds

30
[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model

30
[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

30

p(W |D) / pW (W)p(D|W)

[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

Repeat:

30

p(W |D) / pW (W)p(D|W)

[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

Repeat:
1. Sample a world W from the posterior: 
 

30

p(W |D) / pW (W)p(D|W)

W ⇠ P (W = ·|D)

[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

Repeat:
1. Sample a world W from the posterior: 
 

30

Worlds

p(W |D) / pW (W)p(D|W)

W ⇠ P (W = ·|D)

[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

Repeat:
1. Sample a world W from the posterior: 
 

30

Worlds

p(W |D) / pW (W)p(D|W)

W ⇠ P (W = ·|D)

Policies[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

Repeat:
1. Sample a world W from the posterior: 
 

30

Worlds

p(W |D) / pW (W)p(D|W)

W ⇠ P (W = ·|D)

Likelihood

Policies[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

Repeat:
1. Sample a world W from the posterior: 
 

30

Worlds
W

p(W |D) / pW (W)p(D|W)

W ⇠ P (W = ·|D)

Likelihood

Policies[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

Repeat:
1. Sample a world W from the posterior: 
 

2. Find the optimal policy for this world:  
 

30

Worlds

⇡ = argmax

⇠
J(W, ⇠)

W
p(W |D) / pW (W)p(D|W)

W ⇠ P (W = ·|D)

Likelihood

Policies[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

Repeat:
1. Sample a world W from the posterior: 
 

2. Find the optimal policy for this world:  
 

30

Worlds

⇡ = argmax

⇠
J(W, ⇠)

⇡

W
p(W |D) / pW (W)p(D|W)

W ⇠ P (W = ·|D)

Likelihood

Policies[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

Repeat:
1. Sample a world W from the posterior: 
 

2. Find the optimal policy for this world:  
 

30

Worlds

⇡ = argmax

⇠
J(W, ⇠)

⇡

W

PSRL

p(W |D) / pW (W)p(D|W)

W ⇠ P (W = ·|D)

Likelihood

Policies[Thompson, 1933(!), Strens ’00]

Posterior Sampling 
Reinforcement Learning

A Bayesian start:
• Prior over the worlds
• Likelihood model
• Posterior:

Repeat:
1. Sample a world W from the posterior: 
 

2. Find the optimal policy for this world:  
 

3. Use this policy a “little while”

30

Worlds

⇡ = argmax

⇠
J(W, ⇠)

⇡

W

PSRL

p(W |D) / pW (W)p(D|W)

W ⇠ P (W = ·|D)

Likelihood

Policies[Thompson, 1933(!), Strens ’00]

Beating a near-optimal
algorithm

31

Table 1: Total regret in simulation. PSRL outperforms UCRL2 over di�erent environments.

Random MDP Random MDP RiverSwim RiverSwim

Algorithm · -episodes Œ-horizon · -episodes Œ-horizon

PSRL 1.04 ◊ 104 7.30 ◊ 103 6.88 ◊ 101 1.06 ◊ 102

UCRL2 5.92 ◊ 104 1.13 ◊ 105 1.26 ◊ 103 3.64 ◊ 103

6.1 Learning in MDPs without episodic resets

The majority of practical problems in reinforcement learning can be mapped to repeated
episodic interactions for some length · . Even in cases where there is no actual reset of
episodes, one can show that PSRL’s regret is bounded against all policies which work over
horizon · or less [6]. Any setting with discount factor – can be learned for · Ã (1 ≠ –)≠1.
One appealing feature of UCRL2 [4] and REGAL [5] is that they learn this optimal timeframe
· . Instead of computing a new policy after a fixed number of periods, they begin a new
episode when the total visits to any state-action pair is doubled. We can apply this same
rule for episodes to PSRL in the Œ-horizon case, as shown in Figure 2. Using optimism
with KL-divergence instead of L1 balls has also shown improved performance over UCRL2
[22], but its regret remains orders of magnitude more than PSRL on RiverSwim.

(a) PSRL outperforms UCRL2 by large margins (b) PSRL learns quickly despite misspecified prior

Figure 2: Simulated regret on the Œ-horizon RiverSwim environment.

7 Conclusion

We establish posterior sampling for reinforcement learning not just as a heuristic, but as a
provably e�cient learning algorithm. We present Õ(·S

Ô
AT) Bayesian regret bounds, which

are some of the first for an algorithm not motivated by optimism and are close to state of the
art for any reinforcement learning algorithm. These bounds hold in expectation irrespective
of prior or model structure. PSRL is conceptually simple, computationally e�cient and can
easily incorporate prior knowledge. Compared to feasible optimistic algorithms we believe
that PSRL is often more e�cient statistically, simpler to implement and computationally
cheaper. We demonstrate that PSRL performs well in simulation over several domains. We
believe there is a strong case for the wider adoption of algorithms based upon posterior
sampling in both theory and practice.

Acknowledgments

Osband and Russo are supported by Stanford Graduate Fellowships courtesy of PACCAR
inc., and Burt and Deedee McMurty, respectively. This work was supported in part by
Award CMMI-0968707 from the National Science Foundation.

8

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

C

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

Value Function Randomization NIPS 2014!

Key Insight from Theory of “Efficient RL”

6

[Strehl-Littman, 2008]

[Osband,Van Roy, Russo ’13]

Scaling up

32

Scaling up
• Large state-action spaces:  

need to generalize across states and actions

32

Scaling up
• Large state-action spaces:  

need to generalize across states and actions

• Model based approach:

32

Scaling up
• Large state-action spaces:  

need to generalize across states and actions

• Model based approach:

32

xt+1 = f(xt, at, ✓⇤, zt+1)

Scaling up
• Large state-action spaces:  

need to generalize across states and actions

• Model based approach:

32

next
state

xt+1 = f(xt, at, ✓⇤, zt+1)

Scaling up
• Large state-action spaces:  

need to generalize across states and actions

• Model based approach:

32

next
state

current
state

xt+1 = f(xt, at, ✓⇤, zt+1)

Scaling up
• Large state-action spaces:  

need to generalize across states and actions

• Model based approach:

32

next
state

current
state

action

xt+1 = f(xt, at, ✓⇤, zt+1)

Scaling up
• Large state-action spaces:  

need to generalize across states and actions

• Model based approach:

32

next
state

current
state

action

unknown
parameter

xt+1 = f(xt, at, ✓⇤, zt+1)

Scaling up
• Large state-action spaces:  

need to generalize across states and actions

• Model based approach:

32

next
state

current
state

action

unknown
parameter

noise

xt+1 = f(xt, at, ✓⇤, zt+1)

Linear Quadratic Regulation

33

Linear Quadratic Regulation

33

xt+1 = Axt +Bat + zt+1

ct+1 = x

>
t Qxt + a

>
t Rat

Linear Quadratic Regulation

33

xt+1 = Axt +Bat + zt+1

ct+1 = x

>
t Qxt + a

>
t Rat

is unknown
✓⇤ = (A,B)

Linear Quadratic Regulation

• Theorem [Abbasi-Sz 2011]: For reachable and
controllable systems, the regret of OFU satisfies

33

xt+1 = Axt +Bat + zt+1

ct+1 = x

>
t Qxt + a

>
t Rat

is unknown
✓⇤ = (A,B)

Linear Quadratic Regulation

• Theorem [Abbasi-Sz 2011]: For reachable and
controllable systems, the regret of OFU satisfies

33

xt+1 = Axt +Bat + zt+1

ct+1 = x

>
t Qxt + a

>
t Rat

RT = Õ(
p
T)

is unknown
✓⇤ = (A,B)

Linear Quadratic Regulation

• Theorem [Abbasi-Sz 2011]: For reachable and
controllable systems, the regret of OFU satisfies

• Key idea: Estimate the unknown parameter using l2
regularized least-squares, develop tight confidence
sets

33

xt+1 = Axt +Bat + zt+1

ct+1 = x

>
t Qxt + a

>
t Rat

RT = Õ(
p
T)

is unknown
✓⇤ = (A,B)

Nonlinear systems?

34

Nonlinear systems?
• Smoothness:

34

y = f(x, a, ✓, z), y0 = f(x, a, ✓0, z)

)
E [ky � y0k]  k✓ � ✓0k

M(x,a)

Nonlinear systems?
• Smoothness:

• Theorem [Abbasi-Sz]: For smooth, “bounded”
systems, if the posterior is “concentrating”, the Bayes
regret of PSRL is bounded by

34

y = f(x, a, ✓, z), y0 = f(x, a, ✓0, z)

)
E [ky � y0k]  k✓ � ✓0k

M(x,a)

RT = Õ(
p
T)

Nonlinear systems?
• Smoothness:

• Theorem [Abbasi-Sz]: For smooth, “bounded”
systems, if the posterior is “concentrating”, the Bayes
regret of PSRL is bounded by

• Key idea: Use to measure information.
34

y = f(x, a, ✓, z), y0 = f(x, a, ✓0, z)

)
E [ky � y0k]  k✓ � ✓0k

M(x,a)

RT = Õ(
p
T)

M(x, a)

Web Server Control

35

Web Server Control
• Control variables:

35

Web Server Control
• Control variables:

• How long to keep alive a
connection without traffic on
it

35

Web Server Control
• Control variables:

• How long to keep alive a
connection without traffic on
it

• Maximum number of clients
that can be served

35

Web Server Control
• Control variables:

• How long to keep alive a
connection without traffic on
it

• Maximum number of clients
that can be served

• State variables:

35

Web Server Control
• Control variables:

• How long to keep alive a
connection without traffic on
it

• Maximum number of clients
that can be served

• State variables:
• Processor load relative to

ideal processor load

35

Web Server Control
• Control variables:

• How long to keep alive a
connection without traffic on
it

• Maximum number of clients
that can be served

• State variables:
• Processor load relative to

ideal processor load
• Memory usage relative to

ideal memory usage

35

Results

36
Figure 5.8: Regret vs time for a web server control problem. (Top-left): regret of the forced-
exploration method. (Top-right): regret of a Q-learning method. (Bottom-left) regret of
the OFULQ algorithm. (Bottom-right): regret of the OFULQ algorithm with the initial
exploration.

85

Explore then exploit Q-learning w. dithering

OFULQ OFULQ prefetch

OFULQ vs. PSRL

37

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

Figure 3: Regret vs time for a web server control problem. (Top-left) regret of the OFULQ algorithm when � = 0.1.
(Top-right): regret of the LAZY PSRL algorithm when � = 0.1. (Bottom-left) regret of the OFULQ algorithm when
� = 1.0. (Bottom-right): regret of the LAZY PSRL algorithm when � = 1.0.

Figure 4: Regret of the LAZY PSRL algorithm with different priors. The prior is a zero mean Gaussian distribution
with covariance matrix �2I . The horizontal axis is �.

8 Conclusions

We studied the problem of efficient computation of a nearly Bayes-optimal policy in average cost problems with
smoothly parameterized, possibly nonlinear dynamics. In particular, we showed that lazy PSRL, when the same
policy is used until the uncertainty in the posterior is sufficiently reduced leads to an algorithm whose computational
cost depends mainly on the cost of solving the underlying classical (non-Bayesian) optimal control problem, and also
on the cost of sampling from the posterior. Our analysis guarantees that the resulting method is indeed near Bayes
optimal for a large class of systems. We also studied the effect of possibly exploding state and proposed a specific way
to deal with this issue. As opposed to previous analysis of PSRL by Osband et al. [6], our analysis does not rely on a
“UCB type” argument, but it hinges upon the concentration of the posterior, which we showed in two specific cases.

8

OFULQ = OFU on LQR
Lazy PSRL = PSRL that switches to new policy  
based on M(x, a)

The frequency of policy switches is controlled by
a parameter, which ultimate controls the computation time

Higher noise

38

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

Figure 3: Regret vs time for a web server control problem. (Top-left) regret of the OFULQ algorithm when � = 0.1.
(Top-right): regret of the LAZY PSRL algorithm when � = 0.1. (Bottom-left) regret of the OFULQ algorithm when
� = 1.0. (Bottom-right): regret of the LAZY PSRL algorithm when � = 1.0.

Figure 4: Regret of the LAZY PSRL algorithm with different priors. The prior is a zero mean Gaussian distribution
with covariance matrix �2I . The horizontal axis is �.

8 Conclusions

We studied the problem of efficient computation of a nearly Bayes-optimal policy in average cost problems with
smoothly parameterized, possibly nonlinear dynamics. In particular, we showed that lazy PSRL, when the same
policy is used until the uncertainty in the posterior is sufficiently reduced leads to an algorithm whose computational
cost depends mainly on the cost of solving the underlying classical (non-Bayesian) optimal control problem, and also
on the cost of sampling from the posterior. Our analysis guarantees that the resulting method is indeed near Bayes
optimal for a large class of systems. We also studied the effect of possibly exploding state and proposed a specific way
to deal with this issue. As opposed to previous analysis of PSRL by Osband et al. [6], our analysis does not rely on a
“UCB type” argument, but it hinges upon the concentration of the posterior, which we showed in two specific cases.

8

OFULQ = OFU on LQR
Lazy PSRL = PSRL that switches to new policy  
based on M(x, a)

High dimensional
bandits

Bandit Problems

40
Goal: maximize the total reward incurred

Linear Bandits

41

Linear Bandits

41

Linear Bandits
• Actions are elements of a vector space:  
 

• Reward:

41

a 2 A ⇢ Rd

Rt = hAt, ✓⇤i+ Zt

Linear Bandits
• Actions are elements of a vector space:  
 

• Reward:

• L2 problem:  

41

a 2 A ⇢ Rd

k✓k2  1, kak2  1

Rt = hAt, ✓⇤i+ Zt

Linear Bandits
• Actions are elements of a vector space:  
 

• Reward:

• L2 problem:  

• Theorem [Dani et al ’08]: For subgaussian
noise, OFU’s regret for the L2 problem is

41

a 2 A ⇢ Rd

k✓k2  1, kak2  1

RT = Õ(d
p
T)

Rt = hAt, ✓⇤i+ Zt

Confidence sets matter

42

Empirical Results: The Influence of
Confidence Sets

OFUL using the confidence set of [AYPS11] – “New bound”
OFUL using the confidence set of [DHK08] – “Old bound”

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

Time

R
e
g
re

t

New bound

Old bound

New bound with rare switching

23 / 40
• “New bound”: Abbasi-Pal-Sz’11
• “Old bound”: Dani-Hayes-Kakade ‘08

The challenge

43

The challenge
• Linear estimation problem

43

The challenge
• Linear estimation problem
 The observations are , where  
 

43

. . . , Rt = hAt, ✓⇤i+ Zt, . . .

R1, A1, . . . , Rt, At

The challenge
• Linear estimation problem
 The observations are , where  
 

• Given , find a set  
 
 
such that  

43

. . . , Rt = hAt, ✓⇤i+ Zt, . . .

Ct = Ct(�, R1, A1, . . . , Rt, At) ⇢ Rd

0  �  1

P (✓⇤ 2 Ct) � 1� �

R1, A1, . . . , Rt, At

The challenge
• Linear estimation problem
 The observations are , where  
 

• Given , find a set  
 
 
such that  

• The covariates, , are chosen by a bandit
algorithm, they are far from independent!

• We need a honest confidence set!

43

. . . , Rt = hAt, ✓⇤i+ Zt, . . .

At 2 Rd

Ct = Ct(�, R1, A1, . . . , Rt, At) ⇢ Rd

0  �  1

P (✓⇤ 2 Ct) � 1� �

R1, A1, . . . , Rt, At

The challenge
• Linear estimation problem
 The observations are , where  
 

• Given , find a set  
 
 
such that  

• The covariates, , are chosen by a bandit
algorithm, they are far from independent!

• We need a honest confidence set!
• How to exploit sparsity of ?

43

. . . , Rt = hAt, ✓⇤i+ Zt, . . .

At 2 Rd

Ct = Ct(�, R1, A1, . . . , Rt, At) ⇢ Rd

0  �  1

P (✓⇤ 2 Ct) � 1� �

R1, A1, . . . , Rt, At

✓⇤

A general solution

44

A general solution
• If we have a good predictor for an adversarial

linear regression problem with small regret, the
predictions and the regret bound
should give us a honest, tight confidence set.

44

R̂1, . . . , R̂t Bt

A general solution
• If we have a good predictor for an adversarial

linear regression problem with small regret, the
predictions and the regret bound
should give us a honest, tight confidence set.

• Theorem [Abbasi-Pal-Sz ’12]: With probability  
 , holds for all , where

44

R̂1, . . . , R̂t Bt

1� � ✓⇤ 2 Cn n � 1

Cn =

(
✓ 2 Rd :

nX

t=1

(R̂t � hAt, ✓i)2

 1 + 2Bn + 32�2 ln

�
p
8 +

p
1 +Bn

�

!)

Sparse Linear Bandits

45

Sparse Linear Bandits
• Theorem [YPSz ’12]: The regret of OFUL enjoys

45

RT = Õ(
p
dTBT)

Sparse Linear Bandits
• Theorem [YPSz ’12]: The regret of OFUL enjoys

• Theorem [Gerchinowitz ’11]: There exist an
algorithm that achieves  
 
 
for linear regression with p-sparse parameter vectors
belonging to the hypercube.

45

RT = Õ(
p
dTBT)

BT = O(p log(dT))

Sparse Linear Bandits
• Theorem [YPSz ’12]: The regret of OFUL enjoys

• Theorem [Gerchinowitz ’11]: There exist an
algorithm that achieves  
 
 
for linear regression with p-sparse parameter vectors
belonging to the hypercube.

• Corollary [YPSz ’12]: For such problems,

45

RT = Õ(
p
dTBT)

BT = O(p log(dT))

RT = Õ(
p
dpT)

Sparse Linear Bandits
• Theorem [YPSz ’12]: The regret of OFUL enjoys

• Theorem [Gerchinowitz ’11]: There exist an
algorithm that achieves  
 
 
for linear regression with p-sparse parameter vectors
belonging to the hypercube.

• Corollary [YPSz ’12]: For such problems,

• Theorem [YPSz’12]: For all algorithms,

45

RT = Õ(
p
dTBT)

BT = O(p log(dT))

RT = Õ(
p
dpT)

RT = ⌦(
p
dT)

Why?

46

Why?
• Prediction problems (Candes, Tao 2006 and Bickel,

Ritov, Tsybakov 2009), under RIP for LASSO:

46

���ˆ✓n � ✓⇤
���
2
⇠

p
p log(d)/n

Why?
• Prediction problems (Candes, Tao 2006 and Bickel,

Ritov, Tsybakov 2009), under RIP for LASSO:

• What is the difference?

46

���ˆ✓n � ✓⇤
���
2
⇠

p
p log(d)/n

Why?
• Prediction problems (Candes, Tao 2006 and Bickel,

Ritov, Tsybakov 2009), under RIP for LASSO:

• What is the difference?

• Good algorithms select good actions frequently
==> No RIP

46

���ˆ✓n � ✓⇤
���
2
⇠

p
p log(d)/n

Why?
• Prediction problems (Candes, Tao 2006 and Bickel,

Ritov, Tsybakov 2009), under RIP for LASSO:

• What is the difference?

• Good algorithms select good actions frequently
==> No RIP

• Covariates are highly correlated

46

���ˆ✓n � ✓⇤
���
2
⇠

p
p log(d)/n

Still.. does it work?

47
d = 100, p = 10

(a) (b)

(c) (d)

Figure 4.18: Comparing the OFUL-EG and the OFUL-LS algorithms on synthetic data.
The action set is k = 200 randomly generated vectors in {�1,+1}200. The parameter vector
✓⇤ has only 10 non-zero elements, each being equal to 0.1. The algorithm observes h✓⇤, ati
corrupted by a Gaussian noise drawn from N (0, 0.12). The time horizon is T = 1000. We set
the least-squares regularizer to � = 1, and the EG learning rate to ⌘ = 1. (a) The OFUL-
LS algorithm outperforms the OFUL-EG algorithm (b) The OFUL-EG algorithm with
the improved confidence width (4.20) outperforms the OFUL-LS algorithm (c) Improving
the regret of the OFUL-EG algorithm with confidence width (4.21) (d) Experimenting with
a problem with a smaller dimensionality and action set, k = 100, d = 100.

55

Still.. does it work?

47
d = 100, p = 10

(a) (b)

(c) (d)

Figure 4.18: Comparing the OFUL-EG and the OFUL-LS algorithms on synthetic data.
The action set is k = 200 randomly generated vectors in {�1,+1}200. The parameter vector
✓⇤ has only 10 non-zero elements, each being equal to 0.1. The algorithm observes h✓⇤, ati
corrupted by a Gaussian noise drawn from N (0, 0.12). The time horizon is T = 1000. We set
the least-squares regularizer to � = 1, and the EG learning rate to ⌘ = 1. (a) The OFUL-
LS algorithm outperforms the OFUL-EG algorithm (b) The OFUL-EG algorithm with
the improved confidence width (4.20) outperforms the OFUL-LS algorithm (c) Improving
the regret of the OFUL-EG algorithm with confidence width (4.21) (d) Experimenting with
a problem with a smaller dimensionality and action set, k = 100, d = 100.

55

Yes, it does!

Summary

48

Summary
• To make impact, we need to solve decision problems

48

Summary
• To make impact, we need to solve decision problems
• This makes a BIG difference

48

Summary
• To make impact, we need to solve decision problems
• This makes a BIG difference

• Passive data collection can be extremely ineffective:
small “big data” !?

48

Summary
• To make impact, we need to solve decision problems
• This makes a BIG difference

• Passive data collection can be extremely ineffective:
small “big data” !?

• Need smart algorithms for learning and control

48

Summary
• To make impact, we need to solve decision problems
• This makes a BIG difference

• Passive data collection can be extremely ineffective:
small “big data” !?

• Need smart algorithms for learning and control
• Planning to learn is critical

48

Summary
• To make impact, we need to solve decision problems
• This makes a BIG difference

• Passive data collection can be extremely ineffective:
small “big data” !?

• Need smart algorithms for learning and control
• Planning to learn is critical
• OFU or PSRL: Competing designs

48

Summary
• To make impact, we need to solve decision problems
• This makes a BIG difference

• Passive data collection can be extremely ineffective:
small “big data” !?

• Need smart algorithms for learning and control
• Planning to learn is critical
• OFU or PSRL: Competing designs

• Current research: Scaling up!

48

Summary
• To make impact, we need to solve decision problems
• This makes a BIG difference

• Passive data collection can be extremely ineffective:
small “big data” !?

• Need smart algorithms for learning and control
• Planning to learn is critical
• OFU or PSRL: Competing designs

• Current research: Scaling up!
• S p a r s i t y..?

48

Summary
• To make impact, we need to solve decision problems
• This makes a BIG difference

• Passive data collection can be extremely ineffective:
small “big data” !?

• Need smart algorithms for learning and control
• Planning to learn is critical
• OFU or PSRL: Competing designs

• Current research: Scaling up!
• S p a r s i t y..?

48

Significant computational, algorithmic and statistical
challenges remain. Much to be done!!

Thanks for being here!
Questions?

