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Speech recognition
• Google 
• Apple 
• Baidu 
• Achievements: 

• Error rates constantly 
drop since 2009, halved 
or so.. 

• “Speech 2.0”
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Goal: Maximize the total reward collected
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Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

an experience replay mechanism [13] which randomly samples previous transitions, and thereby
smooths the training distribution over many past behaviors.

We apply our approach to a range of Atari 2600 games implemented in The Arcade Learning Envi-
ronment (ALE) [3]. Atari 2600 is a challenging RL testbed that presents agents with a high dimen-
sional visual input (210 ⇥ 160 RGB video at 60Hz) and a diverse and interesting set of tasks that
were designed to be difficult for humans players. Our goal is to create a single neural network agent
that is able to successfully learn to play as many of the games as possible. The network was not pro-
vided with any game-specific information or hand-designed visual features, and was not privy to the
internal state of the emulator; it learned from nothing but the video input, the reward and terminal
signals, and the set of possible actions—just as a human player would. Furthermore the network ar-
chitecture and all hyperparameters used for training were kept constant across the games. So far the
network has outperformed all previous RL algorithms on six of the seven games we have attempted
and surpassed an expert human player on three of them. Figure 1 provides sample screenshots from
five of the games used for training.

2 Background

We consider tasks in which an agent interacts with an environment E , in this case the Atari emulator,
in a sequence of actions, observations and rewards. At each time-step the agent selects an action
at from the set of legal game actions, A = {1, . . . ,K}. The action is passed to the emulator and
modifies its internal state and the game score. In general E may be stochastic. The emulator’s
internal state is not observed by the agent; instead it observes an image xt 2 Rd from the emulator,
which is a vector of raw pixel values representing the current screen. In addition it receives a reward
rt representing the change in game score. Note that in general the game score may depend on the
whole prior sequence of actions and observations; feedback about an action may only be received
after many thousands of time-steps have elapsed.

Since the agent only observes images of the current screen, the task is partially observed and many
emulator states are perceptually aliased, i.e. it is impossible to fully understand the current situation
from only the current screen xt. We therefore consider sequences of actions and observations, st =
x1, a1, x2, ..., at�1, xt, and learn game strategies that depend upon these sequences. All sequences
in the emulator are assumed to terminate in a finite number of time-steps. This formalism gives
rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct state.
As a result, we can apply standard reinforcement learning methods for MDPs, simply by using the
complete sequence st as the state representation at time t.

The goal of the agent is to interact with the emulator by selecting actions in a way that maximises
future rewards. We make the standard assumption that future rewards are discounted by a factor of
� per time-step, and define the future discounted return at time t as Rt =

PT
t0=t �

t0�t
rt0 , where T

is the time-step at which the game terminates. We define the optimal action-value function Q

⇤
(s, a)

as the maximum expected return achievable by following any strategy, after seeing some sequence
s and then taking some action a, Q⇤

(s, a) = max⇡ E [Rt|st = s, at = a,⇡], where ⇡ is a policy
mapping sequences to actions (or distributions over actions).

The optimal action-value function obeys an important identity known as the Bellman equation. This
is based on the following intuition: if the optimal value Q

⇤
(s

0
, a

0
) of the sequence s

0 at the next
time-step was known for all possible actions a

0, then the optimal strategy is to select the action a

0

2
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B. Rider Breakout Enduro Pong Q*bert Seaquest S. Invaders
Random 354 1.2 0 �20.4 157 110 179

Sarsa [3] 996 5.2 129 �19 614 665 271

Contingency [4] 1743 6 159 �17 960 723 268

DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 �3 18900 28010 3690

HNeat Best [8] 3616 52 106 19 1800 920 1720
HNeat Pixel [8] 1332 4 91 �16 1325 800 1145

DQN Best 5184 225 661 21 4500 1740 1075

Table 1: The upper table compares average total reward for various learning methods by running
an ✏-greedy policy with ✏ = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an ✏-greedy policy with ✏ = 0.05.

types of objects on the Atari screen. The HNeat Pixel score is obtained by using the special 8 color
channel representation of the Atari emulator that represents an object label map at each channel.
This method relies heavily on finding a deterministic sequence of states that represents a successful
exploit. It is unlikely that strategies learnt in this way will generalize to random perturbations;
therefore the algorithm was only evaluated on the highest scoring single episode. In contrast, our
algorithm is evaluated on ✏-greedy control sequences, and must therefore generalize across a wide
variety of possible situations. Nevertheless, we show that on all the games, except Space Invaders,
not only our max evaluation results (row 8), but also our average results (row 4) achieve better
performance.

Finally, we show that our method achieves better performance than an expert human player on
Breakout, Enduro and Pong and it achieves close to human performance on Beam Rider. The games
Q*bert, Seaquest, Space Invaders, on which we are far from human performance, are more chal-
lenging because they require the network to find a strategy that extends over long time scales.

6 Conclusion
This paper introduced a new deep learning model for reinforcement learning, and demonstrated its
ability to master difficult control policies for Atari 2600 computer games, using only raw pixels
as input. We also presented a variant of online Q-learning that combines stochastic minibatch up-
dates with experience replay memory to ease the training of deep networks for RL. Our approach
gave state-of-the-art results in six of the seven games it was tested on, with no adjustment of the
architecture or hyperparameters.
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• Reckless data collection: Choose the actions uniformly at 
random!

• How much data do we need to collect before we see the bounty for 
the first time, starting from the middle? 

• How does this depend on the number of states?
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Time before bounty is found
• Hitting time for random 

policy: 

• Hitting time for 
“swimming policy”:

22

⇥(2n)

⇥(n)

• Exponential gap on a very simple example!  
..could be much worse on a real problem

• How “big” is big enough? 
• Will we ever have enough data? Can we do better?
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Changing the game..

• Allow data to be collected by a policy we select

• Can we design more efficient data collection 
policies?
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Standard RL Approach
• Repeat:

• Learn a “good” policy

• Add randomness to induce exploration

• Collect more data (multiple episodes)

• “epsilon-greedy”, “Boltzmann exploration”

• “Dithering”
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What is the policy learned initially? 
How long do we need to wait until the bounty is 
first collected?

Dithering is NOT sufficient 

Need smart exploration methods
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How do we evaluate a data 
collection strategy?

• How much data is needed to find a good policy?
..reward collected/lost during data collection does 
not matter: “pure exploration” problem  
 

• How much reward is incurred during data 
collection? “exploitation” problem
Must optimize while learning. Explore or exploit? 
Metric: Regret.

26
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How good is OFU?
S states, A actions, rewards in [0,1].
Definition: Diameter := maximum of best travel times 
between pairs of states. River swim: D = S
• Theorem: The regret of an OFU learner satisfies

• Theorem: For any algorithm, 

29

RT = Õ(DS
p
AT )

RT = ⌦(
p
DSAT )

[Jaksch-Ortner-Auer,’10]

OFU for finite problems: UCRL2
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A Bayesian start: 
• Prior over the worlds
• Likelihood model
• Posterior: 

Repeat:
1. Sample a world W from the posterior: 
 

2. Find the optimal policy for this world:  
 

3. Use this policy a “little while”
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Table 1: Total regret in simulation. PSRL outperforms UCRL2 over di�erent environments.

Random MDP Random MDP RiverSwim RiverSwim

Algorithm · -episodes Œ-horizon · -episodes Œ-horizon

PSRL 1.04 ◊ 104 7.30 ◊ 103 6.88 ◊ 101 1.06 ◊ 102

UCRL2 5.92 ◊ 104 1.13 ◊ 105 1.26 ◊ 103 3.64 ◊ 103

6.1 Learning in MDPs without episodic resets

The majority of practical problems in reinforcement learning can be mapped to repeated
episodic interactions for some length · . Even in cases where there is no actual reset of
episodes, one can show that PSRL’s regret is bounded against all policies which work over
horizon · or less [6]. Any setting with discount factor – can be learned for · Ã (1 ≠ –)≠1.
One appealing feature of UCRL2 [4] and REGAL [5] is that they learn this optimal timeframe
· . Instead of computing a new policy after a fixed number of periods, they begin a new
episode when the total visits to any state-action pair is doubled. We can apply this same
rule for episodes to PSRL in the Œ-horizon case, as shown in Figure 2. Using optimism
with KL-divergence instead of L1 balls has also shown improved performance over UCRL2
[22], but its regret remains orders of magnitude more than PSRL on RiverSwim.

(a) PSRL outperforms UCRL2 by large margins (b) PSRL learns quickly despite misspecified prior

Figure 2: Simulated regret on the Œ-horizon RiverSwim environment.

7 Conclusion

We establish posterior sampling for reinforcement learning not just as a heuristic, but as a
provably e�cient learning algorithm. We present Õ(·S

Ô
AT ) Bayesian regret bounds, which

are some of the first for an algorithm not motivated by optimism and are close to state of the
art for any reinforcement learning algorithm. These bounds hold in expectation irrespective
of prior or model structure. PSRL is conceptually simple, computationally e�cient and can
easily incorporate prior knowledge. Compared to feasible optimistic algorithms we believe
that PSRL is often more e�cient statistically, simpler to implement and computationally
cheaper. We demonstrate that PSRL performs well in simulation over several domains. We
believe there is a strong case for the wider adoption of algorithms based upon posterior
sampling in both theory and practice.
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Scaling up
• Large state-action spaces:  

need to generalize across states and actions

• Model based approach:

32

next 
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state

action

unknown 
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xt+1 = f(xt, at, ✓⇤, zt+1)
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Linear Quadratic Regulation

• Theorem [Abbasi-Sz 2011]: For reachable and 
controllable systems, the regret of OFU satisfies

• Key idea: Estimate the unknown parameter using l2 
regularized least-squares, develop tight confidence 
sets

33
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ct+1 = x

>
t Qxt + a

>
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RT = Õ(
p
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Nonlinear systems?
• Smoothness:

• Theorem [Abbasi-Sz]: For smooth, “bounded” 
systems, if the posterior is “concentrating”, the Bayes 
regret of PSRL is bounded by 

• Key idea: Use                to measure information.
34

y = f(x, a, ✓, z), y0 = f(x, a, ✓0, z)
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Results

36
Figure 5.8: Regret vs time for a web server control problem. (Top-left): regret of the forced-
exploration method. (Top-right): regret of a Q-learning method. (Bottom-left) regret of
the OFULQ algorithm. (Bottom-right): regret of the OFULQ algorithm with the initial
exploration.
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Explore then exploit Q-learning w. dithering
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Figure 3: Regret vs time for a web server control problem. (Top-left) regret of the OFULQ algorithm when � = 0.1.
(Top-right): regret of the LAZY PSRL algorithm when � = 0.1. (Bottom-left) regret of the OFULQ algorithm when
� = 1.0. (Bottom-right): regret of the LAZY PSRL algorithm when � = 1.0.

Figure 4: Regret of the LAZY PSRL algorithm with different priors. The prior is a zero mean Gaussian distribution
with covariance matrix �2I . The horizontal axis is �.

8 Conclusions

We studied the problem of efficient computation of a nearly Bayes-optimal policy in average cost problems with
smoothly parameterized, possibly nonlinear dynamics. In particular, we showed that lazy PSRL, when the same
policy is used until the uncertainty in the posterior is sufficiently reduced leads to an algorithm whose computational
cost depends mainly on the cost of solving the underlying classical (non-Bayesian) optimal control problem, and also
on the cost of sampling from the posterior. Our analysis guarantees that the resulting method is indeed near Bayes
optimal for a large class of systems. We also studied the effect of possibly exploding state and proposed a specific way
to deal with this issue. As opposed to previous analysis of PSRL by Osband et al. [6], our analysis does not rely on a
“UCB type” argument, but it hinges upon the concentration of the posterior, which we showed in two specific cases.

8

OFULQ = OFU on LQR
Lazy PSRL = PSRL that switches to new policy  
based on M(x, a)

The frequency of policy switches is controlled by  
a parameter, which ultimate controls the computation time
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8 Conclusions

We studied the problem of efficient computation of a nearly Bayes-optimal policy in average cost problems with
smoothly parameterized, possibly nonlinear dynamics. In particular, we showed that lazy PSRL, when the same
policy is used until the uncertainty in the posterior is sufficiently reduced leads to an algorithm whose computational
cost depends mainly on the cost of solving the underlying classical (non-Bayesian) optimal control problem, and also
on the cost of sampling from the posterior. Our analysis guarantees that the resulting method is indeed near Bayes
optimal for a large class of systems. We also studied the effect of possibly exploding state and proposed a specific way
to deal with this issue. As opposed to previous analysis of PSRL by Osband et al. [6], our analysis does not rely on a
“UCB type” argument, but it hinges upon the concentration of the posterior, which we showed in two specific cases.
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Linear Bandits
• Actions are elements of a vector space:  
 

• Reward:

• L2 problem:  

• Theorem [Dani et al ’08]: For subgaussian 
noise, OFU’s regret for the L2 problem is 

41

a 2 A ⇢ Rd

k✓k2  1, kak2  1

RT = Õ(d
p
T )

Rt = hAt, ✓⇤i+ Zt
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Empirical Results: The Influence of
Confidence Sets

OFUL using the confidence set of [AYPS11] – “New bound”
OFUL using the confidence set of [DHK08] – “Old bound”
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• “New bound”: Abbasi-Pal-Sz’11 
• “Old bound”: Dani-Hayes-Kakade ‘08 
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The challenge
• Linear estimation problem
 The observations are                               , where  
 

• Given                , find a set      
 
 
such that  

• The covariates,              , are chosen by a bandit 
algorithm, they are far from independent!

• We need a honest confidence set!
• How to exploit sparsity of    ?

43

. . . , Rt = hAt, ✓⇤i+ Zt, . . .

At 2 Rd
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A general solution
• If we have a good predictor for an adversarial 

linear regression problem with small regret, the 
predictions                   and the regret bound    
should give us a honest, tight confidence set.

• Theorem [Abbasi-Pal-Sz ’12]: With probability  
         ,                holds for all          , where 

44

R̂1, . . . , R̂t Bt

1� � ✓⇤ 2 Cn n � 1

Cn =

(
✓ 2 Rd :

nX

t=1

(R̂t � hAt, ✓i)2

 1 + 2Bn + 32�2 ln

 
�
p
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p
1 +Bn

�

!)



Sparse Linear Bandits

45



Sparse Linear Bandits
• Theorem [YPSz ’12]: The regret of OFUL enjoys

45

RT = Õ(
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Sparse Linear Bandits
• Theorem [YPSz ’12]: The regret of OFUL enjoys

• Theorem [Gerchinowitz ’11]: There exist an 
algorithm that achieves  
 
 
for linear regression with p-sparse parameter vectors 
belonging to the hypercube.

• Corollary [YPSz ’12]: For such problems, 

• Theorem [YPSz’12]: For all algorithms,
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Why?
• Prediction problems (Candes, Tao 2006 and Bickel, 

Ritov, Tsybakov 2009), under RIP for LASSO:

• What is the difference?

• Good algorithms select good actions frequently 
==> No RIP

• Covariates are highly correlated
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Still.. does it work?

47
d = 100, p = 10

(a) (b)

(c) (d)

Figure 4.18: Comparing the OFUL-EG and the OFUL-LS algorithms on synthetic data.
The action set is k = 200 randomly generated vectors in {�1,+1}200. The parameter vector
✓⇤ has only 10 non-zero elements, each being equal to 0.1. The algorithm observes h✓⇤, ati
corrupted by a Gaussian noise drawn from N (0, 0.12). The time horizon is T = 1000. We set
the least-squares regularizer to � = 1, and the EG learning rate to ⌘ = 1. (a) The OFUL-
LS algorithm outperforms the OFUL-EG algorithm (b) The OFUL-EG algorithm with
the improved confidence width (4.20) outperforms the OFUL-LS algorithm (c) Improving
the regret of the OFUL-EG algorithm with confidence width (4.21) (d) Experimenting with
a problem with a smaller dimensionality and action set, k = 100, d = 100.
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Yes, it does!
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Significant computational, algorithmic and statistical 
challenges remain. Much to be done!!



Thanks for being here! 
Questions?


