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resentatives from the major phytoplankton 

classes in the ocean—diatoms, dinofl agel-

lates, and cyanobacteria—can also produce 

extracellular superoxide ( 6,  9,  10). More-

over, fi eld studies have found elevated super-

oxide concentrations in areas of high phyto-

plankton abundance ( 5,  7). Hence, it is now 

accepted that phytoplankton are the main 

source of particle-associated superoxide in 

the upper, photic, oceanic water column (see 

the fi gure).

Diaz et al. show that extracellular pro-

duction of superoxide is widespread among 

taxonomically divergent heterotrophic bac-

teria from a range of different environments. 

Some of their bacterial cultures are marine 

isolates; these bacteria can potentially gen-

erate superoxide in marine sediments and in 

the vast expanses of the deep ocean that do 

not receive sunlight. Of course, heterotrophic 

bacteria are not restricted to the deep ocean 

and may thus also contribute to particle-asso-

ciated biological superoxide production close 

to the ocean surface (see the fi gure).

Superoxide interacts with many chemi-

cal elements and compounds. For example, 

it alters the redox states of iron, copper, and 

manganese and modulates their chemical 

reactivity, solubility, bioavailability, and tox-

icity ( 8,  9,  13,  14). These metals control the 

abundance and distribution of marine phyto-

plankton, which in turn drive the cycling of 

major nutrients, such as carbon and nitrogen. 

Superoxide also oxidizes dissolved manga-

nese to solid manganese oxides, which are 

effi cient trace metal sorbents and powerful 

oxidants of organic materials ( 12). When 

these minerals settle out of the water col-

umn, they infl uence the distribution of trace 

elements and nutrients. Furthermore, super-

oxide promotes the degradation of dissolved 

organic matter, with implications for the 

marine carbon cycle. Further interactions and 

biogeochemical roles of superoxide in the 

ocean are likely.

Given its functions in other systems, 

superoxide may play a role in the chemical 

interactions among microorganisms at sea. 

Superoxide is potentially toxic to organ-

isms and can be used as a fi rst line of defense 

against viral or bacterial attacks. At low lev-

els, it may also assist communication among 

marine microbes. So far, the only demon-

strated role of superoxide production by 

phytoplankton is of increased iron availabil-

ity, shown for a fi lamentous cyanobacterium 

( 14). However, another study with a diatom 

found that iron acquisition was unaffected by 

superoxide production ( 9).

We are still a long way from a full assess-

ment of superoxide concentrations across 

oceanic environments and their link to bacte-

rial activity. Given the potential infl uence of 

superoxide on trace metal and carbon cycling 

in the ocean, these are exciting times to study 

the dynamics of superoxide in seawater. The 

analytic capabilities exist, correspondence 

with other disciplines provides a good stream 

of ideas and hypotheses, and there are still 

more questions than answers. 
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Bayes’ Theorem in the 21st Century

MATHEMATICS

Bradley Efron

Bayes’ theorem plays an increasingly 
prominent role in statistical applications but 
remains controversial among statisticians.

        T
he term “controversial theorem” 

sounds like an oxymoron, but Bayes’ 

theorem has played this part for two-

and-a-half centuries. Twice it has soared to 

scientifi c celebrity, twice it has crashed, and 

it is currently enjoying another boom. The 

theorem itself is a landmark of logical rea-

soning and the fi rst serious triumph of statis-

tical inference, yet is still treated with suspi-

cion by most statisticians. There are reasons 

to believe in the staying power of its current 

popularity, but also some signs of trouble 

ahead.

Here is a simple but genuine example of 

Bayes’ rule in action (see sidebar) ( 1). A phys-

icist couple I know learned, from sonograms, 

that they were due to be parents of twin boys. 

They wondered what the probability was that 

their twins would be identical rather than fra-

ternal. There are two pieces of relevant evi-

dence. One-third of twins are identical; on 

the other hand, identical twins are twice as 

likely to yield twin boy sonograms, because 

they are always same-sex, whereas the like-

lihood of fraternal twins being same-sex is 

50:50. Putting this together, Bayes’ rule cor-

rectly concludes that the two pieces balance 

out, and that the odds of the twins being iden-

tical are even. (The twins were fraternal.)

Bayes’ theorem is thus an algorithm for 

combining prior experience (one-third of 

twins are identicals) with current evidence 

(the sonogram). Followers of Nate Silver’s 

FiveThirtyEight Web blog got to see the 

rule in spectacular form during the 2012 

U.S. presidential campaign: The algorithm 

updated prior poll results with new data on 

a daily basis, correctly predicting the actual 

vote in all 50 states. “Statisticians beat pun-

dits” was the verdict in the press ( 2).

Bayes’ 1763 paper was an impeccable 

exercise in probability theory. The trouble 

and the subsequent busts came from overen-

thusiastic application of the theorem in the 

absence of genuine prior information, with 

Pierre-Simon Laplace as a prime violator. 

Suppose that in the twins example we lacked 

the prior knowledge that one-third of twins 

are identical. Laplace would have assumed 

a uniform distribution between zero and one 

for the unknown prior probability of identi-

cal twins, yielding 2/3 rather than 1/2 as the 

answer to the physicists’ question. In modern 

parlance, Laplace would be trying to assign 

an “uninformative prior” or “objective prior” 

(2), one having only neutral effects on the 

output of Bayes’ rule ( 3). Whether or not this 
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can be done legitimately has fueled the 250-

year controversy.

Frequentism, the dominant statistical para-

digm over the past hundred years, rejects the 

use of uninformative priors, and in fact does 

away with prior distributions entirely ( 1). In 

place of past experience, frequentism consid-

ers future behavior. An optimal estimator is 

one that performs best in hypothetical repeti-

tions of the current experiment. The resulting 

gain in scientifi c objectivity has carried the 

day, though at a price in the coherent integra-

tion of evidence from different sources, as in 

the FiveThirtyEight example.

The Bayesian-frequentist argument, unlike 

most philosophical disputes, has immediate 

practical consequences. Consider that after 

a 7-year trial on human subjects, a research 

team announces that drug A has proved bet-

ter than drug B at the 0.05 signifi cance level. 

Asked why the trial took so long, the team 

leader replies “That was the first time the 

results reached the 0.05 level.” Food and Drug 

Administration (FDA) regulators reject the 

team’s submission, on the frequentist grounds 

that interim tests of the data, by taking repeated 

0.05 chances, could raise the false alarm rate 

to (say) 15% from the claimed 5%.

A Bayesian FDA regulator would be more 

forgiving. Starting from a given prior distri-

bution, the Bayesian posterior probability of 

drug A’s superiority depends only on its fi nal 

evaluation, not whether there might have 

been earlier decisions. This is a corollary of 

Bayes’ theorem, convenient but potentially 

dangerous in practice, especially when using 

prior distributions not firmly grounded in 

past experience.

I recently completed my term as editor of 

an applied statistics journal. Maybe a quarter 

of the papers used Bayes’ theorem. Almost 

all of these were based on uninformative 

priors, refl ecting the fact that most cutting-

edge science does not enjoy FiveThirtyEight-

level background information. Are we in for 

another Bayesian bust?

Arguing against this is a change in our sta-

tistical environment. Modern scientifi c equip-

ment pumps out results in fi re hose quanti-

ties, producing enormous data sets bearing on 

complicated webs of interrelated questions. 

In this new scientifi c era, the ability of Bayes-

ian statistics to connect disparate inferences 

counts heavily in its favor.

An example will help here. In a microar-

ray prostate cancer study ( 4), 102 men—52 

patients and 50 healthy controls—each had 

their genetic activity measured for 6033 

genes. The investigators were hoping to fi nd 

genes expressed differently in the patients 

than in the controls. To this end, they calcu-

lated a test statistic z for each gene, with a 

standard normal (“bell-shaped”) distribu-

tion in the null case of no patient/control 

difference, but with bigger values for genes 

expressed more intensely in patients.

The histogram of the 6033 z values (see 

the fi gure) does not look much different than 

the bell-shaped curve that would apply if all 

genes were null. However, there is a sugges-

tion of interesting non-null genes in the heavy 

right tail of the distribution. We have to be 

careful, though. With 6033 genes to consider 

at once, a few of the z’s are bound to look big 

even under the null hypothesis, an example 

of selection bias or regression to the mean. 

These would be “false discoveries.”

False discovery rates (FDRs) ( 5) are a 

recent development that takes multiple test-

ing into account ( 6). Here, it implies that the 

28 genes with z values above 3.40 (red dashes 

in the figure) are indeed interesting, with 

the expected proportion of false discoveries 

among them being less than 10%. This is a fre-

quentist 10%: how many mistakes we would 

average using the algorithm in future studies. 

We expect only 2.8 of the z values exceeding 

3.40 to be null, that is, only 10% of the actual 

number observed. Larger choices of the cutoff 

would yield smaller FDRs.

This brings us back to Bayes. Another 

interpretation of the FDR algorithm is that 

the Bayesian probability of nullness given a 

z value exceeding 3.40 is 10%. What prior 

evidence are we using? None, as it turns out! 

With 6033 parallel situations at hand, we can 

effectively estimate the relevant prior from 

the data itself. “Empirical Bayes” is the name 

for this sort of statistical jujitsu, suggesting a 

fusion of frequentist and Bayesian reasoning 

( 7). Empirical Bayes is an exciting new sta-

tistical idea, well-suited to modern scientifi c 

technology, saying that experiments involv-

ing large numbers of parallel situations carry 

within them their own prior distribution. The 

idea was coined in the 1950s ( 8), but real 

developmental interest awaited the vast data 

sets of the 21st century.

I wish I could report that this resolves the 

250-year controversy and that it is now safe 

to always employ Bayes’ theorem. Sorry. My 

own practice is to use Bayesian analysis in 

the presence of genuine prior information; to 

use empirical Bayes methods in the parallel 

cases situation; and otherwise to be cautious 

when invoking uninformative priors. In the 

last case, Bayesian calculations cannot be 

uncritically accepted and should be checked 

by other methods, which usually means fre-

quentistically. 
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True and false discoveries. Test statistic z for 6033 
genes in a microarray study of prostate cancer. The 
28 genes having z ≥ 3.40 are likely to be “true dis-
coveries,” that is, genes that are more active in pros-
tate cancer patients than in controls. These results 
are based on Bayes’ rule, but with “prior” informa-
tion obtained from the current data, an example of 
empirical Bayes methodology.

If P(A) is the probability of A and P(B) is the 
probability of B, then the conditional probability 
of A given B is P(A|B) and the conditional 
probability of B given A is P(B|A). Bayes’ theorem 
says that

 P(A|B) =

In the twins example, A is “twins identical” and B 
is “sonogram shows twin boys.” The doctor’s prior 
says P(A) = 1/3; genetics implies P(B|A) = 1/2 
and P(B|not A) = 1/4, so P(B) = (1/2)(1/3) + 
(1/4)(2/3) = 1/3. Bayes’ theorem then gives 

 P(A|B) = (1/2)(1/3)/(1/3) = 1/2

The two pieces of evidence thus balance out, and 
the likelihood of the boys being fraternal is equal 
to that of the boys being identical.

 P(B|A)P(A)
P(B)
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