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Abstract-In this paper we discuss how to identify a mathe­
matical model for a (non)linear dynamic system starting from 
experimental data. In the initial step, the frequency response 
function is measured, together with the properties of the disturb­
ing noise and the nonlinear distortions. This uses nonparametric 
preprocessing techniques that require very little user interaction. 
On the basis of this information, the user can decide on an 
objective basis, in an early phase of the modelling process, to 
use either a simple linear approximation framework, or to build 
a more involved nonlinear model. We discuss both options here: 
i) Identification of linear models in the presence of nonlinear 
distortions, including the generation of error bounds; and ii) 
Identification of a nonlinear model. For the latter, a double 
approach is proposed, using either unstructured nonlinear state 
space models, or highly structured block oriented nonlinear 
models. The paper is written from a users perspective. 

Index Terms-linear and nonlinear modeling, best linear ap­

proximation, nonlinear state space models, block oriented models 

I. INTRO DUCTION 

The control community makes use of mathematical models 
intensively to design high-quality controllers. These mathemat­
ical models are often obtained from first principles, making use 
of detailed knowledge about the physical laws that describe 
systems. The major advantage of such an approach is that 
it provides detailed physical models that give much physical 
insight into the problems studied, however, at the cost of a 
long, difficult, and expensive modeling process. Alternatively, 
a data-driven approach can be followed, where all information 
is retrieved from experimental data. These models are called 
black box models, and it is usually less expensive and less 
time-consuming to get them. System identification theory 
addresses the need for good methods to estimate mathematical 
models from noisy data. 

Nowadays, mature and inexpensive tools are available to 
derive good models for linear dynamic systems [1], [2], [3]. 
Unfortunately, many real systems are nonlinear and require 
more advanced modelling tools [4], [26]. Building nonlinear 
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models is much more involved, more expensive, and more 
time consuming when compared to linear modelling. For 
that reason it is important to decide at the beginning of 
the design procedure, whether a simplified linear model or 
a full nonlinear model is most appropriate. In this paper, we 
will guide the reader towards a data-driven solution for this 
problem. 

The paper makes three main contributions. In the first 
part of this presentation it will be shown that it is possible 
to detect, qualify, and quantify the presence of nonlinear 
distortions using simple nonparametric preprocessing methods 
that require very little user interaction. On the basis of this 
information it can be decided whether an inexpensive linear 
model will be good enough for the application in mind, or 
that a more elaborated nonlinear modeling effort should be 
made. In the second part, the impact of nonlinear distortions 
on the linear identification framework will be discussed, so 
that the user gets a better understanding of the potential risks 
and problems when linear models are used in a nonlinear 
setting. Eventually, in the third part of the paper, nonlinear 
modeling strategies will be discussed, considering unstructured 
and highly structured models. 

In this paper, we will focus completely on the basic ideas 
and illustrate them with some figures and experimental results. 
We refer the reader for the full mathematical details and formal 
descriptions to the literature. We also add a set of guidelines 
to each section to help the reader making proper choices. 

II. T HE SYSTEM 

Consider a dynamic (non)linear, time-invariant system: 

Yo (t) = 9 (uo (t) ) . (1) 

with Uo (t) ,Yo (t) E � respectively the input and output 
signals. For simplicity we consider, without loss of generality, 
single-input single-output discrete time systems. 

In this paper we assume that the input signal is exactly 
known, while the output measurements are disturbed by pro­
cess and measurement noise v (t) : 

y (t) = Yo (t) + v (t) . (2) 

The class of nonlinear systems is very general. We will 
consider two overlapping sub-classes (See Figure 1): the 
fading memory (FM) systems and the nonlinear feedback 
(NLFB) systems. 

Fading memory systems: Loosely spoken, the dependency 
of the output of a fading memory system on its past inputs 
decays towards zero [5] for inputs that are further in the past. 



Nonlinear Systems 

Fading Memor Systems 

� �  \ "-. --
Nonlinear Feedbac � SYS:/ 

Figure 1. NL systems considered in this study .. 

We will make intensive use of the following properties of these 
systems: 

• PM-systems have a unique steady state solution, and the 
response to a periodic input results in a periodic output 
with the same period. 

• PM-systems can be arbitrary well approximated by a 
nonlinear open-loop representation (no nonlinear sub­
system in a feedback loop). This leads to a Volterra 
representation of the system that can be considered as 
a (static) polynomial approximation that is extended with 
a fading memory [5], [6], [7]. 

PM-systems include hard nonlinear systems like saturation, 
clipping, and dead-zones. However, amongst others, hysteresis 
effects and a chaotic behavior cannot appear within this class 
of systems. 

Nonlinear feedback systems: these systems have at least 
one nonlinear element that is captured in a feedback loop, 
and they have the following interesting properties used in this 
discussion: 

• NLFB-systems can have multiple solutions for the same 
input signal. Which solution is actually present depends 
upon the initial conditions. This complex behavior can 
eventually lead to a chaotic behavior. 

• In general, it is not possible to make an arbitrarily good 
approximation with open loop models (Volterra series). 

• Some NLFB-systems are a PM-system on a restricted 
input domain. The fading memory property is in that case 
not a pure system property, it is conditioned on the class 
of inputs that is considered. 

III. NONLINEAR DISTORTION ANALYSIS 

As we explained in the introduction, the first step of the 
identification process is to determine whether we can use 
'simple' linear models, or if we need the more 'complex' 
nonlinear models. This classification is performed using a dis­
tortion analysis. Since the presence and the level of nonlinear 
distortions is strongly dependent on the nature of the excitation 
signal, we first have to specify the class of the excitation. 
Next, we show that it is possible to measure the level of the 
nonlinear distortions directly with very little user interaction, 
for the class of fading memory systems. 

A. Excitation signals 

The choice of the excitation signal is extremely important 
in a nonlinear framework. The behavior of a nonlinear system 
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depends not only on the power spectrum of the applied 
excitation signal, also its amplitude distribution has a strong 
impact [3]. In this paper we will use signals with a Gaussian 
amplitude distribution. 

Gaussian noise 

periodic noise 

random multisine 

Gaussian noise periodic noise random multisine 

Figure 2. Examples of excitation signals: Top: time domain, Bottom: 
amplitude spectrum of the actual realization (blue) and the power spectrum 
(red); Left: Gaussian random noise, Middle: periodically repeated Gaussian 
noise, Right: random phase multisines. 

Gaussian random noise excitations (Figure 2, left) are very 
popular among practicing engineers, because they seem to 
be simple to design. However, we prefer periodic excitations 
because these signals offer significant advantages to make a 
nonparametric nonlinear distortion analysis. A first possibility 
to generate a periodic signal is to periodically repeat a finite 
segment of a random noise sequence (Figure 2, middle). Using 
a random phase multisine [3], [8] it is possible to do much 
better. Consider the signal 

Uo (t) (3) 

2 
N/2-1 

VN L UkCOS (27rkfot + 'Pk) (4) 
k=-N/2+1 

where 'P-k = -'Pk and U-k = Uk. Uo = 0, and fo = fslN = 

liT. The sample frequency to generate the signal is fs, and 
T is the period length of the multisine. The phases 'Pk will be 
selected independently such that E{ ej<Pk} = 0, for example 
by selecting a uniform distribution on the interval [0, 27r[. The 
amplitudes Uk are chosen to follow the desired amplitude 
spectrum (Figure 2, right). In [9], a detailed discussion about 
the user choices and the properties of these signals is made. 
The major advantage of the random phase multi sine is that 
it still has (asymptotically for sufficient large N) all the nice 
properties of Gaussian noise, while it also has the advantages 
of a deterministic signal: the amplitude spectrum does not 
show dips at the excited frequencies as the two other signals 
do (see Figure 2). At those dips, the measurements are very 
sensitive to all nonlinear distortions and disturbing noise. 

User g uidelines: 



• Use random phase multisine excitations. 
• The spectral resolution fo of the multisine should be 

chosen high enough so that no important resonances 
are missed [10]. Since fo = 1fT, it sets immediately 
the period length of the multisine. A high frequency 
resolution requires a long measurement time. 

• The amplitude spectrum should be chosen such that 
the frequency band of interest is covered. The signal 
amplitude should be scaled such that it also covers the 
input amplitude range of interest. 

• In the next section, it will be shown that nonlinear distor­
tions can be easily detected by putting some amplitudes 
Uk equal to zero for a well selected set of frequencies. 

• A detailed step-by-step procedure how to generate and 
process periodic excitations is given in Chapter 2 of [8]. 

B. Separation of the signal, the disturbing noise, and the 

nonlinear noise 

In this paper we explain the basic principle of the nonlinear 
distortion analysis. We refer the reader to [3] for a theoretical 
analysis, and for extensions that are more robust with respect 
to non-idealities present in the setup (for example interaction 
of the actuator and the system). 

The basic idea is very simple (see Figure 3): a multi sine that 
excites a well selected set of odd frequencies (odd frequencies 
correspond to odd values of k in eq. (3» is applied to the 
nonlinear system under test. Even nonlinearities show up at 
the even frequencies, odd nonlinearities are present at the odd 
frequencies, and become visible at the odd frequencies that 
were not excited (for example frequency 5 and 7 in Figure 3). 
By using a different color for each of these contributions, it 
becomes possible to recognize these in an amplitude spectrum 
plot of the output signal. 
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Figure 3. Design of a multisine excitation for a nonlinear analysis. Left: 
Selection of the excited frequencies; Right: from top to bottom: linear 
contributions, even and odd contributions, total output. 

This method is experimentally illustrated on an electronic 
circuit that mimics a mass/damper/spring system with a hard­
ening spring (see Figure 4, top), called the silverbox [3], [11], 
[23]. The circuit is known in the literature as a forced Duffing 
oscillator, and its properties are intensively studied. Although 
this is a nonlinear feedback system, it behaves as a fading 

3 

memory system for sufficiently small input amplitudes. At 
the right side of the figure, we show not only the evolution 
of the nonlinear distortions as a function of the frequency, 
but also the level of the disturbing noise is shown. It can 
be seen that, for a low excitation level, we can detect the 
presence of odd nonlinear distortions around the resonance 
frequency. When the excitation level grows, the odd nonlinear 
distortions grow faster than the even ones, while the observed 
disturbing noise level remains almost the same. This figure is 
very informative for the modeller. For small excitation levels 
(left side of the figure), the nonlinear distortions are 30 dB 
below the linear contributions. In that case a linear model 
can be used if a moderate precision is sufficient. For higher 
excitation levels (right side of the figure), it is clear that 
the nonlinear distortions can no longer be neglected as the 
nonlinear distortions are as large as the linear contributions. In 
that case a full nonlinear model will be needed. It is important 
to realize that all this information is directly available from a 
simple nonparametric nonlinear analysis. 
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Figure 4. Detection of the level of the nonlinear distortions on a 
mass/damper/spring system with a hardening spring (simulated by a nonlinear 
electronic circuit) for different excitation levels. Top: most simple model for a 
hardening spring system (s denotes the Laplace variable). Bottom: Distortion 
analysis for an increasing excitation level (from left to right). The thin black 
line gives the output at the excited frequencies. The level of the even and the 
odd nonlinearities is given by the blue stars and the red circles respectively. 
The thin green line gives the disturbing noise level. 

User g uidelines: 

• Design a multi sine to detect the presence of nonlinear 
distortions following the guidelines of Section III-A. To 
do so, the even frequencies and a set of randomly selected 
odd frequencies should be put to zero. See [9] for a 
detailed discussion. 

• Make a series of (steady state) measurements with vary­
ing amplitudes or offsets of the excitation signal that 
cover the amplitude range of interest, and make the non­
linear analysis. More advanced signal processing methods 
can be used to remove transient effects [19]. 

• If the nonlinear distortions are smaller than the specified 
level of accuracy of the model to be built, a linear design 
might be sufficient. This will lead to the best linear 
approximation of the nonlinear system. In the other case, 



a more involved nonlinear model will be needed. 
• Be aware that the best linear approximation varies in gen­

eral as a function of the power spectrum and amplitude 
distribution of the excitation signal. 

• A detailed step-by-step explanation to make a nonpara­
metric nonlinear distortions analysis is given in Section 
6.1 of [8]. 

IV. LINEAR IDENTIFICATION IN THE PRESENCE O F  

NONLINEAR DISTO RTIONS 

In the previous section, it turned out that we have two 
possibilities to deal with nonlinear distortions: we can use 
either a linear approximation, or we can built a nonlinear 
model. In this section, the best linear approximation (BLA) 
will be studied. First, a short introduction to the concept 
is given. Next, we measure the frequency response function 
of the BLA and discuss how to obtain a parametric model. 
Finally, error bounds on the nonparametric and the parametric 
BLA-estimates are discussed. 

A. The best linear approximation 

The best linear approximation G BLA of a nonlinear system 
is defined as that linear system whose output is as close as 
possible to the output of the nonlinear system. This is obtained 
by minimizing the mean squares error [3], [12], [13], [14], [9], 
[15]: 

GBLA (q) = argmJnE { Iyo (t) - G (q) Uo (t) 12 } (5) 

with q the shift operator for a discrete time model. In most 
applications, it is important to remove first the DC-value of 
the input and output signal. Similar expressions can be given 
for continuous time models. All expected values E {} in this 
paper are taken with respect to the random input Uo (t) (e.g. 
random phase multisine or random noise excitation). 

The best linear approximation G BLA depends on the am­
plitude distribution (e.g. Gaussian, uniform) and the power 
spectrum (RMS value and coloring) of the input [16], [17], 
[3]. 

The output of a nonlinear system that is driven by a random 
excitation (or an equivalent signal [9]) can be split in two 
classes of contributions, being the coherent contributions YB 
and the non-coherent contributions Ys: 

• Coherent output: The relation between the input Uo (k) 
and the coherent nonlinear contributions YB(k) is very 
similar to the input output behavior of a linear system, 
and can be also written like that: 

The transfer function G B ( k) of that system depends on 
the input characteristics (e.g. power spectrum), but not 
on the actual realization of the random phases in (3). G B 
contributes to the FRF of the BLA: 

GBLA(k) = Go (k) + GB(k) , 

where Go (k) is the transfer function of the underlying 
linear system (if it exists). 

4 

• Non-coherent output: The non-coherent output Ys ac­
counts for the difference between the output of the best 
linear approximation and the actual nonlinear output. For 
random excitations, it is very difficult for an untrained 
user to distinguish the nonlinear noise Ys (t) from the 
additive disturbing output noise v (t). The nonlinear 
distortions are uncorrelated with Uo (t) because they are 
the residuals of the solution of a least squares problem. 
However, Uo (t) and Ys (t) are mutually dependent as 
there exists a nonlinear relation between both signals, viz. 

Ys (t) = yo (t) - GBLA (q) Uo (t) . 

An alternative representation of (1) is to write the noise free 
output Yo (t) as the sum of its best linear approximation plus 
an error term [16], [17], [3] 

y(t) 
Yo (t) 

Yo (t) + v(t) 
GBLA (q) Uo (t) + Ys (t) . 

In the frequency domain this expression becomes 

Y (k) =Yo (k) + V (k) 

(6) 

=GBLA (k) Uo (k) + Ys (k) + T (k) + V (k) , (7) 

where the transients T (k) represents the initial transients 
and leakage errors [18], [3]. From now on we assume that 
we measure under steady state conditions such that we can 
neglect the transient terms in (7) in what follows. Equation 
(7) becomes 

Y (k) = GBLA (k) Uo (k) + Ys (k) + V (k) . (8) 

The power spectra of Ys and V can be measured using the 
methods explained in Section III-B. 

B. Nonparametric measurement of G BLA 
Exactly the same measurement techniques that were devel­

oped for the measurement of the frequency response function 
(FRF) of a linear system [3], [20] can be used to measure the 
FRF of the BLA. In Figure 5, the FRF that is experimentally 
measured on the silverbox (see Figure 4) is shown. We 
averaged the measurements over 50 realizations of the random 
phase input, to get a smoother measurement. By changing the 
excitation from one realization to the other, we reduce not only 
the disturbing noise, also the stochastic nonlinear distortions 
will be reduced. 

Two observations can be made. The resonance frequency 
shifts to the right for increasing excitation levels, and the 
measurements become more noisy. Both effects are completely 
due to the nonlinear distortions. The impact of the distortions 
can be evaluated starting from the distortion analysis in Figure 
4. 

User g uidelines: 

• Measure the FRF GBLA(k) and its variance if'2;(k) 
using multiple realizations of a random phase multisine, 
designed following the guidelines of Section III -B. All 
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Figure 5. Measurement of the FRF of the silverbox: an electronic simulation 
of a mass/damper/spring system with a hardening spring. The system is excited 
with a random phase multisine at the same levels as in Figure 4. 

the nonparametric expressions of the linear theory can be 
used. 

• Averaging over multiple realizations reduces the impact 
of the disturbing noise and the stochastic nonlinearities 
Ys. It results in a smoother estimate. However, it does not 
reduce the systematic contributions G B of the nonlinear 
distortions. These result in a systematic contribution to 
the BLA that cannot be reduced using averaging tech­
niques. 

• How to measure the FRF G BLA (k) and its variance 
it'b (k) is explained in Chapters 3 and 6 of [8]. 

C. Parametric modeling of G BLA 
In many applications, a parametric transfer function model 

or state space representation of the system is needed. Starting 
from GBLA(k) and it'b(k), it is possible to obtain such 
a parametric model by minimizing the following weighted 
least-squares cost function that comes from the linear system 
identification theory [1], [2], [3], [16]: 

1 F IGBLA(k) - G (Dk' 0) 1 2 

V (0) = F L it2 (k) (9) 
k=l G 

where Dk is the continous- or discrete-time frequency variable. 

It can be shown that the minimizer G (Dk' e) of the cost 
function (9) is consistent (the estimate converges to the exact 
value as the number of data points tend to infinity). The 
linear system identification theory provides also a theoretical 
estimate of the variance of the estimated model. 

However, a detailed study shows that this result is wrong 
in the presence of nonlinear distortions [21]. The actual 
sensitivity to the nonlinear distortions Ys will be much higher 
than what is predicted by the linear theory. This leads to far too 
optimistic uncertainty bounds, under-estimation of the actual 
variance with a factor 7 (about 8 dB) or more occurs. 

This is illustrated in Figure 6 on the identification of 
a Wiener-Hammerstein system (Figure 6, top). A Wiener­
Hanlffierstein system consists of the cascade of a linear dy-
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namic system, a static nonlinear system, and a linear dynamic 
system. It can be shown, that for Gaussian excitations, 

with G1, G2 the transfer function of the first and second linear 
system, and a a constant that depends on the nonlinear system 
and the properties of the excitation signal. From this figure 
it can be seen that the actual observed error level in the 
simulations (J" sim is significantly larger than the expected level 
(J"th from the linear system identification theory. 
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Figure 6. Parametric identification of a Wiener-Harnmerstein system (top). 
The bottom figure shows the theoretical (Jth and the actually observed (J aim 
standard deviation. 

User guidelines: 

• Measure the FRF GBLA(k) and its variance it'b(k) 
following the guidelines of Section IV-B and estimate 
the parametric model. Take care: while the uncertainty 
bounds of the linear theory could be safely used for non­
parametric models, they are NOT valid for the parametric 
model. There exists, for the moment being, no simple 
theory to provide better error bounds. 

• The BLA can also be directly estimated from the raw 
input -output data in the time- or in the frequency domain, 
using the classical linear framework. 

• A detailed step-by-step procedure explaining how to 
identify a parametric estimate of the BLA is given in 
Chapter 7 of [8]. 

Y. NONLINEAR S Y STEM IDENTIFICATION 

If the nonlinear distortions are above the error level that 
can be tolerated, the user has no choice and should start a 
more expensive nonlinear modeling procedure. In this paper, 
we comment on the use of unstructured models that are ' easy' 
to identify (the nonlinear state space models), and highly 
structured block -oriented models that are more difficult to 
retrieve from the experimental data (see Figure 9). We can 
only briefly discuss some modeling and identification issues. 
Again, we refer the reader to the literature for more informa­
tion. However, most contributions in the literature deal with 
simple block oriented model structures. There are today no 



operational identification methods available for block-oriented 
models with a very complex structure. 

A. Unstructured nonlinear state space models 

There exist many possible approaches to model nonlinear 
systems [4], [31], [6], [26]. A very powerful nonlinear model 
is the nonlinear state space model (NLSS) (see Figure 7). It 
can be split in a linear and a static nonlinear part as shown in 
the figure. 

Figure 7. Nonlinear state space model with a split in a linear (Pink) and 
a static nonlinear (blue) part. x+ denotes x(t + 1), al the other signals are 
evaluated at t. 

To initialize the identification of such a model, we can 
retrieve the linear part, starting from the BLA estimate of the 
nonlinear system [11]. Next, the multivariate static nonlinear 
function can be retrieved while the linear part is fixed to 
its initial estimate [11], [22]. To model the static nonlinear 
functions, we can use multivariate polynomials, but also more 
advanced methods from the machine learning community are 
available, for example, neural networks or support vector 
machine modeling can be used [22], [23]. 

This modeling approach turns out to be very flexible, and it 
has been tested on many examples, including a few benchmark 
problems [24]. 

Here, we show some illustrative results on the silverbox 
that was discussed before [11], [23]. A good model should 
be able to describe new data that were not used during the 
estimation procedure. Such a data set is called the validation 
data. The validation of a NLSS-model for the silverbox is 
shown in Figure 8. The model has two state variables (order 
2), and a multivariate polynomial of degree 3 is used for the 
static nonlinear part F (x, u). From the figure, it is seen that 
the error on the simulated output is below 1 % in the frequency 
band from DC to 150 Hz. 

The major disadvantage of the NLSS modelling approach is 
that for systems with many states, the number of polynomial 
coefficients to be estimated grows combinatorially. This can 
lead to very complex models that give little insight to the user 
about the underlying structure. Retrieving this structure is a 
major drive to use block-oriented models, as will be discussed 
in the next section. 

User Guidelines: 

• A NLSS-model gives a (good) description of the input­
output behavior for a wide class of nonlinear systems. 

• NLSS-models provide little structural insight, especially 
for systems with many states. 

• It is very important to collect experimental data that 
are rich enough (see User guidelines of Section III-A). 
We also advice to add a series of experiments to the 
estimation data that mimic well the signals that will 
be later applied. This is illustrated in an industrial case 
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Figure 8. Validation of a NLSS-model of the silverbox, Top: time domain; 
Bottom: frequency domain. Blue: the measured output, green: the error of the 
BLA, red: the error of the NLSS-model 

study that models the closing- and coupling phase of an 
industrial wet clutch [25]. 

B. Highly structured block-oriented models 

In order to avoid the structure loss, we can use block­
oriented models [27], [29]. These consists of a set of connected 
linear dynamic blocks and static nonlinear blocks [28]. In 
Figure 9 we give a number of examples. The Hammerstein 
(H), Wiener (W), and Wiener-Hammerstein (WH) are the most 
intensively studied structures. 

However, there is a strong need for more advanced struc­
tures in order to deal with a broad class of real systems. It is 
known already for a long time that parallel cascade structures 
can address some of these needs [7], [30], [31], only recently 
methods are proposed to identify parallel Wiener, parallel 
Hammerstein, and parallel Wiener-Hammerstein systems [32]. 

Also the identification of the nonlinear feedback structures 
is still a huge challenge, but recently interesting advances are 
discussed in [34], [35], [36]. The WH feedback system and 
the nonlinear LFR system in Figure 9 are examples of such 
systems. We refer the reader again to the references for more 
details on the available identification methods. 

In this paper, we highlight some of the structural limitations 
of the different model classes to prevent that time is wasted on 
identifying models that are too simple to describe the system. 

1) Single branch models W, H, WH: As mentioned before, 
single branch models are very popular in the literature, mainly 
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Figure 9. Examples of structured nonlinear block oriented models. 

because we are able nowadays to deal with them. Although a 
Hammerstein system can be used to include actuator nonlin­
earities in the model, and a Wiener system can cover sensor 
nonlinearities, the general applicability of these models is 
rather limited. This can be easily understood by looking at 
the BLA. In Figure 10, we show a typical example for W, 
H, or WH systems. It shows that these models can not deal 
with shifting resonances or varying phase characteristics as it 
was visible for example in the silverbox results in Figure 5. 
This is too hard a restriction for many applications. For that 
reason we need more advanced structures. A deeper theoretic 
insight in the behaviour of these models, driven by Gaussian 
excitations, is given in [16], [3], [15]. 
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Figure 10. Typical variation of the BLA for Wiener, Hammerstein, or Wiener­
Hammerstein systems for varying Gaussian excitation conditions. 
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2) NLFB systems: Many systems show a BLA with varying 
resonance frequencies or changing damping ratios for varying 
experimental conditions (see for example the BLA of a nonlin­
ear feedback structure in Figure 11). As we illustrated before 
in Figure 10, is impossible to model these systems with single 
branch block oriented models. 

A first possibility to approximate NLFB systems is to use 
parallel WH structures. These can be considered as an open 
loop approximation of a closed loop system [7], [31]. This 
simplifies significantly the identification problem. However, 
open loop parallel structures can only create shifting zeros, 
the poles remain fixed. For that reason the application field of 
these models is still limited, although they can offer a balance 
between identification complexity and model flexibility. Some 
initial tools are available to identify such structures [32]. 

The major challenge is to come up with identification meth­
ods for the nonlinear feedback structures. Today, first results 
are available for the identification of these structures [34], [35], 
[36], and more methods are expected to be published in the 
coming years. 

20r---------r-------�r_------� 
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Figure 11. Example of the FRF of a BLA with a varying resonance frequency 
for a nonlinear feedback structure. 

User guidelines: 

• The initial selection of the model structure is very im­
portant. Too simple models will never be able to capture 
the complex behavior of many nonlinear systems, while 
too complex models are very hard to identify. 

• Measure the BLA under varying excitation conditions, 
e.g. increasing amplitude, a varying offset, ... The varia­
tions of the BLA give a lot of insight about the required 
model complexity. For example, shifting poles can only 
be modeled using nonlinear feedback structures. More 
information can be found in [38]. This can save a lot of 
energy. 

C. Retrieving the structure of the model 

A major problem during the identification of nonlinear 
systems is the loss of the original structure during the iden­
tification process. Consider the systems at the left side of 
Figure 12. It consists of a number of decoupled branches, 
each of the nonlinear functions j[il is a scalar function. Direct 
identification of a decoupled structure is impossible at this 
moment. For that reason we propose a two-step procedure that 
identifies in a first step an unstructured model with coupled 



nonlinearities (given in Figure 12, right). In a second step, we 
look for state transformations that decouple the multivariate 
vector functions «given in Figure 12, left). Initial results are 
reported in [33], [32], [37]. 

The complexity to describe a multivariate coupled function 
is much higher than it is to describe a set of scalar functions. 
The coupling results not only in a much larger number of 
unknown parameters to be estimated, it also reduces the intu­
itive or physical insight into the behavior of the system. This 
is another important reason to replace the coupled structure by 
a decoupled one. A similar problem pops up in the nonlinear 
state space models in Figure 7. Also for these models it is 
highly desirable to decouple the nonlinear function F for 
exactly the same reasons. 

1irn
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Figure 12. Replacing a coupled nonlinear structure (right) by a decoupled 
structure (left). Top: LFR structure; Bottum: parallel WH. 

V I. CONCLUSIONS 

In this paper we discussed a system identification approach 
for modeling real world systems. Typical for most problems is 
that some level of nonlinear distortions is present. However, it 
is not always advisable to build a full nonlinear model. Only 
when the errors of a linear approximation are too large for 
the intended application of the model, it pays off to invest in 
nonlinear identification procedures. Since the latter are much 
more involved, it is important to provide tools to the user to 
detect and quantify the level of the nonlinear distortions. If 
the nonlinear distortions are smaller than the specified level 
of accuracy of the model to be built, a linear design might be 
sufficient. This will lead to the best linear approximation of the 
nonlinear system. In the other case, a more involved nonlinear 
model will be needed. In this paper we presented simple 
nonparametric tools that can provide the requested information 
with very little user interaction, at a cost of imposing periodic 
excitations to the user. 

The c1assical linear system identification theory can provide 
consistent (non)parametric estimates of the best linear approx­
imation. Also the uncertainty bounds on nonparametric FRF 
models, obtained with the linear theory, are still valid, even in 
the presence of strong nonlinear distortions. However, in that 
case, the uncertainty bounds that are provided by the linear 
theory for parametric models are wrong. The variances that 
are calculated with the linear theory underestimate the real 
variance with a factor 7 or more. 
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In case the linear approximation is not good enough to 
solve the problem, a nonlinear model is used. We proposed a 
double approach. On the one hand we can use non-structured 
nonlinear state space models that are 'easy' to identify, on 
the other hand we can use highly structured nonlinear block­
oriented models that are difficult to initialize. For that reason 
we look nowadays for a combination of both approaches in a 
two-step procedure. First, unstructured initial estimates are ob­
tained using, for example, the nonlinear state space approach. 
Next, we try to retrieve structured models by using recently 
developed methods like tensor decomposition approaches. 
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