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System identification

Cost

Goal

A statistical framework

1/69



Qutline

A motivating example: why do you need system identification?!

Characterizing estimators

Basic steps of the identification process

A statistic approach to system identification

|dentification in the presence of ‘input’ and ‘output’ noise
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Why do you need identification methods?

A simple experiment
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Why do you need identification methods?

A simple experiment

Multiple measurements lead to conflicting results.

How to combine all this information?
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The story of Ceres
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System identification

Cost
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Why do you need identification methods
Measurement of a resistance

i(k) @‘ -

u(k)
2 sets of measurements
ﬁﬁ- -H
%% ?'n 100 b— > ~

Voltage (V)
=]

C 1A
=]

Voltage (V)

Current {A)
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3 different estimators

_ u(k)
Rsa(N) = NZk 170K

SN Ui
0

Ris(N) =

DI
DI

Rev(N) =
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and their results

24
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Remarks
- variations decrease as function of N, except for Rgp

- the asymptotic values are different

- Rga behaves ‘strange’
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Repeating the experiments.
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Group B
Observed pdf of R(N)for both groups, from the left tot the right N = 10, 100, and 1000

- the distributions become more concentrated around their limit value
- Rgp behaves ‘strange’ for group A
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Repeating the experiments
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Standard deviation of R(N)

full dotted line: Rgp, dotted line: R g, full line: Rgy,, dashed
line 1/.JN.

- the standard deviation decrease in /N

- the uncertainty also depends on the estimator

9/69



Strange behaviour of rgs for group A
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Histogram of the current measurements.

- The current takes negative values for group A

- the estimators tend to a normal distribution
even when the noise behaviour is completely different
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Simplified analysis

Why do the asymptotic values depend on the estimator?
Can we explain the behaviour of the variance?

Why does the Rgp estimator behave strange for group A?

More information is needed to answer these questions
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Noise model of the measurements

i(K) = iy +ni(K) uk) = uy+n,(K)

Assumptions:
n:(k) and n (k) are:

- mutually independent

- Zero mean
- independent and identically distributed

- have a syrr%metric cziistribution
- variance ¢, and c; .
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Statistical tools

. 1 N
lim 1 K) = 0
N[)nooNZk = X( )
lim 23N x®? = of
N — coN4=k = X
lim =3 x®y(k) = 0
N — ooN =1
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Asymptotic value of r g
) . N . N .
Jim RigN) =i (Zk: 1u(k)u(k))/(zk: 1|2(k))

— 0

S g+ (k) ig *+ (k)
= lim -

N — o0 %ZI':': g+ (k)"

Or
lim RLS(N):
N > o
u I
i 0~—N 0~—N 1 <N
Ualy + — n.(k) + = n (k) + = n. (k)n.(k
I o NG PITCRS D WIRTCTE
N — oo 2 1N 2 215 N
-+ = n. (k) + — n.(k
Y ILACESD ST
And finally
Unl
i 0'0 1
N= e iy * o 1+ 67 /i

It converges to the wrong value!!!
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Asymptotic value of Rrg

Jim Rey(N) = lim (Z::'_lu(k))/(z::lzli(k))

— N > o =

1N
R

N—>ol N -
2l (g n )

1 <—N
+ = k
N — oo : 1N
g+ Nzk _ 1ni(k)

:RO

It converges to the exact value!!!
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Asymptotic value of r g

u(k) _ ot N,k _ 1UgaN 1+n,(k)/ug
Rsa) = 52,070 = Nk - 0Io+n(k) " N, 2= 0 TH 070,

The series expansion exist only for small noise distortions

1 00 | 1
Trx = Z|:o(_l)x for [x <1

Group A: The expected value does not exist for the data of group A.
The estimator does not converge.

Group B: For group B the series converges and

2
G

lim RSA(N) R 1+ —
N — o IO

The estimator converges to the wrong value!!
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Variance expressions

First order approximation

R2 62 6-2

or N0y Nxop (=0 =+
Ris Rev 2 .2
Up 1o

- variance decreasesin 1/N

- variance increases with the noise

- for low noise levels, all estimators have the same uncertainty

---> Experiment design
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Cost function interpretation

The previous estimates match the model u = Ri as good as possible on the data.

A criterion to express the goodness of the fit is needed ----> Cost function interpretation.

Rsa(N)
VaaR) = %Z:jzl(R(k)—R)z.
Ris(N)
Vis® = 230 (0 -Rik)’
Rev(N)
(u(k) - up)’ (i) —ig)°
Vey(R, ig, Ug) = %[Z::I:l = 0 +Z||:|=1 — 0 j subjectto uy = Rig
u |
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Conclusion

- A simple problem
- Many solutions
- How to select a good estimator?

- Can we know the properties in advance?

Need for a general framework !
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Qutline

A motivating example: why do you need system identification?!

Characterizing estimators

Basic steps of the identification process

A statistic approach to system identification

|dentification in the presence of ‘input’ and ‘output’ noise
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Characterizing estimators

Location properties: are the parameters concentrated around the ‘exact value’ ?

Dispersion properties: is the uncertainty small or large?
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Location properties

unbiased and consistent estimators

Unbiased estimates

the mean value equals the exact value

Definition
An estimator 0 of the parameters 6, is unbiased if E{6} = 0, for all
true parameters 6. Otherwise it is a biased estimator.

Asymptotic unbiased estimates: unbiased for N — «
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Example

1) The sample mean
_ 1N
o(N) = &> u(

Unbiased?
N
k=1

E {t(N)} = %Z E{uk)} = %Z::I:luo = U,

Il) The sample variance
soN) = =3 (u(K) - u(N))’
u N&k =1
Unbiased?

E{o,(N} = T2oy

Alternative expression

o (Ul - a(N)
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Example cont’d

1
o = ﬁzl':': 1(u(k)-u(N))2 and o5 = NZ::I: 1(u(k)-u(N))2

2

bias Gi = 0, and bias cg = GW

. 2 . 2
variance ¢, > variance G,

RMS error ci > RMS error cg

Best choice?
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Consistent estimates

Consistent estimates: the probability mass gets concentrated around the exact value

lim Prob(|B(N) - 65| > 5>0) = 0

N —> oo
or

pim&(N) = 6,

N — o0
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consistency

properties

plim f(a) = f(plim a)

plim ab = plim a plim b if all plim exist



Example

DIIAIC
plimRgy(N) = plim
N — o N — 1 N . k

Nzk _ 1K)
. (1
plim( SN u(o)

pim(§2 1)
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Dispersion properties

efficient estimators

- Mostly the covariance matrix is used, however alternatives like percentiles exist.

- For a given data set, there exists a minimum bound on the covariance matrix:

the Cramér-Rao lower bound.

CR(0) = Fi™(0,)

T 2
Fi(0,) = E{(a%l(zw)) ((%I(ZW))} - -E{-a%l(zw)}.

with

The derivatives are calculated in 6 = 90
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The likelihood function

1) Consider the measurements Z e R
2)Z is generated by a hypothetical, exact model with parameters 0,,
3) Z is disturbed by noise --> stochastic variables

4) Consider the probability density function f(Z|6,) with

f(Z|6,)dZ = 1.
J‘ZeRN( | O)

5)Interpret this relation conversely, viz:

how likely is it that a specific set of measurements Z = Z_ are
generated by a system with parameters 0?

--> Measurements given
Model parameters as the free variables:

L(Zm‘e) = f(Z = zm‘e), with 0 the free variables

u;Mm:erHhoodfuncﬂon.
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Interpretation of the Cramér-Rao lower bound

Model Yo = f(ugy, 0)
Measurement y =Yo*ny and ny, ~ N(0, 2)
(Y —f(up, 0))?
Likelihood function L(y|8) = f (y|0) = e 20
212
o | 1 L (y=Tug, 9)?
Loglikelihood function I(y|0) = —Zlog(2nc<) -
2 262
8| _ (y_f(u09 e)) 5
6= 9100
Information matrix
. (e al
Fioy = £[(2)'(2)
( o) <\ 3 3

((y—f(ug, ©))?/ 2 2
- E. 0 7 (St(ug. 0)) }

c4

(i )
= aef(uo, 0)
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Example

Determine the flow of tap water by measuring the height h(7) of the water in a measuring jug as a

function of time ¢

Model
hﬂ(r) = a{r-rsmn) = at+b with 8 = [a, b]
Measurements
h(k) = at, +b+n,(k)

Noise model

n,; (k): iid zero mean normally distributed N(0, GE}
Likelihood function
for the set of measurements & = {(A(1), 1), ..., (W(N), t),) }

1 " 2
- h(k) —at,—b)
| EUEZ."L=I{ (k) —at,—b)

3 N72°¢
(2nG )

Lih|a, b) =
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Example Continued

Log likelihood function
N 2 1 N 2
l(hla, b) = —Eh}g(Z:n:ﬂ' ]——2sz l{h(k)umkﬂb}
20
Information matrix

82

Fi(6)) = E{(%(Z@)T(%HZ'@]} i _E{_ aeﬁf{z@}

2
Fi(a, by = ‘15 Ns— Nu|
o [Nu N

Cramér-Rao lower bound

2
) ] -
cran = —) '
Nis —pu)f-n s
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Example continued

Case |: a and # unknown: consider F.-'_](a, )

2 Gz
o, (a b) = 53
N —-p5)
Case 2: a unknown: consider F.i_ll[ﬂ}
2
2
Ns

Discussion points
- impact of the number of measurements
- impact of the number of parameters

- the analysis is done without selecting an estimator
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Digiribution of the esimated Slope
40 T T T T T T T

B Zpamn |
R i param |
anr 8
a0t
10 -
0
.75 ¥ 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

model 1: y = ar+ b (two parameters)

model 2: y = at (one parameter)
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Sample variances
1 -4 I I I I I ] I I I

s
(]
T
i

Interpretation of the covariance matrix, and the impact of the experiment design on
the model uncertainty.
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Characterizing estimators

» Goal asymptotic analysis
- what happens with the estimate if more data are gathered?
- hypothesis: asymptotic behaviour reflects finite sample behaviour
- true finite sample behaviour is in general very difficult to establish
(exception: linear least squares)

» Consistency
- convergence in stochastic sense to the true value
- does not exclude divergence for some realisations
- guarantees with high probability that estimate is close to true value
- consistency does not imply asymptotic unbiasedness
- proof: law of large numbers

« Asymptotic unbiasedness
- asymptotically the expected value equals the true value
- does not guarantee that the estimate is close to the true value
- in general very difficult to verify (exception: linear least squares)

« Asymptotic normality
- allows to construct uncertainty bounds with a given confidence level
- proof: linearisation around limit value + central limit theorem
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Characterizing estimators (Cont’d)

« Asymptotic variance
- measure of the convergence rate
- construction of uncertainty bounds
- proof: linearisation around limit value

« Asymptotic efficiency
- minimal uncertainty within class of asymptotically unbiased estimators
- in practice applied to class of consistent estimators

- Cramér-Rao lower bound does not always exist
or may be too conservative

- proof: comparison asymptotic variance with Crameér-Rao lower bound

* Robustness
- sensitivity (asymptotic) properties to the noise assumptions

- proof: validity law of large numbers and central limit theorem
under relaxed noise assumptions
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Qutline

A motivating example: why do you need system identification?!

Characterizing estimators

Basic steps of the identification process

A statistic approach to system identification

|dentification in the presence of ‘input’ and ‘output’ noise
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Basic steps in identification

1) collect the information: experiment setup

2) select a model
parametric >< nonparametric models
white>< black box models

linear><nonlinear models

linear -in-the-parameters><nonlinear-in-the-parameters
e=y-(autau), g = Y(0) - ———U(o)
by +bjo

3) match the model to the data

select a cost function
LS, WLS, MLE, Bayes estimation

4) validation
does the model explain the data?
can it deal with new data?

Remark
this scheme is not only valid for the classical identification theory.
It also applies to neural nets, fuzzy logic, ...
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Qutline

A motivating example: why do you need system identification?!

Characterizing estimators

Basic steps of the identification process

A statistic approach to system identification

|dentification in the presence of ‘input’ and ‘output’ noise
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A statistical framework: choice of the cost functions
Yo = G(U,0),y = Yot Ny, € = y—G(u, 6;)

Least squares estimation

VO = SV ek, 6)

Weighted least squares estimation
1
Vi s(6) = Ne(e)TWe(e)

Maximum likelihood estimation
f(y|6g) = f, (v - G(u, 6y))

= argmaxf(y ‘ 0)
0

eML
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Least squares: principle

Model
yO(k) = g(uo(k)ae)
with k the measurement index, and

y(k) € R, uk) e R"M 9 e R

nyx1

Measurements
y(k) = Yo(K) +ny(k)

Match model and measurements
Choose:

e(k, 0) = y(k) -y(k, 6),
with y(k, 6) the modelled output.

Then
O s = argeminvl_s(e),
with

Vis© = SV ek, 0)
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Least squares: special case
model that is linear-in-the-parameters

Yo ~ K(Uo) 90

e(0) = y-K(u)o, K = —g—z

-1
OLs = (K'K) K'y
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Properties

-1
BLs = (K'K) Ky

Noise assumptions

y = Yo+ n, with E[n

y y]

Bias?
-1
E[0, 5] = E[(KTK> KTy]

= K"K KTE[Y]

T, T
= (K'K) Ky,
Note that y, = K0,

~ Ty e Ten =
E[0Ls] = (K K) K Ko, = 0,
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Noise assumptions

Note

Covariance matrix

Properties

-1
BLs = (K'K) Ky

y = Yyptn, withE[n ] =0

y y]

Noise sensitivity?

Asymptotical normal distributed
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Example: weight of a loaf of bread

model
Yo = 99
measurements
y(K) = yo+n,(K)
estimator

e(k) = y(k)-6

Standard formulation

y = Ke+nyW|th K = (l, 1991)T

Solution
T, "1, 7T 1
Bs = (K'K) Ky =<3 (K
2

T \-1 1C T\-1 o
6§ = (EK K) KT_yK(lK K) = Y for white noise
N N2 ‘N N

47169



Example: weight of a loaf of bread (Cont’d)

measurements

y(k) = y0+ny(k), k=1...,N

noise uniformly distributed [-50, 50]

1500

060

60

60

1000 -
500~
0
940 1000 1020 1040
3000
2000~
1000 - ‘
0
940 1000 1020 1040 10
3000
2000 .
1000 - .
O L
940 960 1000 1020 1040 10
4000 I |
2000 . .
0 | |
940 960 1000 1020 1040 10

60
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Weighted least squares
Goal: bring your confidence in the measurements into the problem

Model
Yo(k) = g(ugy(k), 6)

y(k) € R, uk) e R"M o e R

nex1

Measurements
y(k) = yo(k) + ny(K)

confidence in measurement k: w(k)

Match model and measurements

e(k, 0) = y(k) -y(k, 0),
Then

O g = arggninVLS(e),

with

“(k, 0
VWLS(G) - %Z::I: 1 eV\(I(k) )
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Weighted least squares (continued)

Generalization: use a full matrix to weight the measurements

define
e(0) = (e(1,0)...e(N, 0))

consider a positive definite matrix W

Then
1 T.,~1
VWLS(H) = Ne(e) W “e(0)

Special choice:

_ T, _ NxN
W = E{nyny} = Cnyny eR

This choice minimizes Ce

50/69



Example: resistor measurement, 2 voltmeters
i(k) = ig(k)

,k=1,2,...,100
u(k) = ug(k) +n(k)

I, uniformly distributed in [0, 0.01]
R, = 1000
Voltmeter 1: N(0, c2=1), Voltmeter 2:N(0, 62=32)

Least Squares Estimate
1500

1000

500 - - T
0

900 920 940 960 980 1000 1020 1040 1060 1080 1100

Weighted Least Squares Estimate
1500 T T T

1000

500

0 1 1 1 1
900 920 940 960 980 1000 1020 1040 1060 1080 1100
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Maximum likelihood estimation

Model
Yo(k) = g(ugy(k), 6)

nyx1

y(k) € R, uk) e R"M 9 e R

Measurements
y(k) = yo(k) + ny(k)

with f_ the pdf of the noise ny
y

Match model and measurements
Choose the experiments such that the model becomes most likely:

Then

Oy = arg énaxf(ym 0, u)

with
fy[0,u) =1, (y=G(u, 0))
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Maximum likelihood: example
weight of a loaf of bread

Model:
Yo = 99

Measurements:
Y(K) =y +ny(K)

Additional information
The distribution fy of n., I1s normal with zero mean and standard

deviation Gy, Y
Likelihood function: _(y2‘92)2 , L W0
) = ——=e = ——e
27cc52 27cc52
y y

Maximum likelihood estimator:
1 <N
0 = = k
ML = 52, - YK
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Resistance example with Gaussian and Laplace noise

white Gaussian noise
. N .
arg min u(k) — Ri(k)|? --> least squares
gmin}_ ~_ [u(k) - Ri(k) g

white Laplace noise

. N i
arg min u(k) — Ri(k)| --> least absolute values
gmin}  ~_ [u(k) - Ri(k)

2500

2000

Gaussian 15001

1000 -

500 -

1 — | om 1

0
900 920 940 960 980 1000 1020 1040 1060 1080

2500

1100

2000
Laplace o

1000 -

500 -

e B 1

0 | | |
900 920 940 960 980 1000 1020 1040 1060 1080

1100

Least Squares

Least Abs Values
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Properties of the Maximum likelihood estimator

principle of invariance: if Oy is a MLE of 6 € Rne, then 05 = g(Op) is a MLE of g(0)

where g is a function, 04 € R"™ and Ng<Ngp with n 4 a finite number.

consistency: if Oy (N) is an MLE based on N iid random variables, with n, independent

of N, then 0),_ converges to 6, almost surely: a.Ns.IimeML(N) = 0.

asymptotic normality: if Oy (N) is @ MLE based on N iid random variables, with n,
independent of N, then 6y, (N) converges in law to a normal random variable with the

Cramér-Rao lower bound as covariance matrix.
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Bayes estimator: principle

Choose the parameters that have the highest probability:
6 = arg mgxf(9|u, y)

Problem: prior distribution of the parameters is required

f(y|0, u)f(o
(oluy - YISO
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Bayes estimator: example 1

Use of Bayes estimators in our daily life
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Bayes estimator: example 2
weight of a loaf of bread

Model:
Yo = 9
Measurements:
y(K) = yo+n,(K)

Additional information 1: disturbing noise
The distribution f, of n, is N(0, cyz)

Additional information 2: prior distribution of the parameters
The bread is normally distributed: N(800gr, c,,)

Bayes estimator:

(y-6)’ (0 -w)
fy10)f@) = —L e 2 _L o 2o
2n6y ZRG@
9:Z/G§+W/65V
1/6,+1/c,,
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Example continued

After making several independent measurements y(1), ..., y(N)

‘ZN (y(K) -6)° (O -w)’
YOIE) = —2 e KT T e
2
(/2n6y> ZTCGW

the Bayes estimator becomes

N 2 2
i Zk _ 1y(k)/csy +W/c,,

N/oy+1/c,,

0

For a large number of measurements:

N 2
E y(kK)/ o
_ k=1 Y _ 1IN
0= = N YK

N/Gy
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Qutline

A motivating example: why do you need system identification?!

Characterizing estimators

Basic steps of the identification process

A statistic approach to system identification

Identification in the presence of ‘input’ and ‘output’ noise
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Identification in the presence of input and output noise

Model

Yo(k) = g(up(k), 64)
Measurements

uk) = uo(k)+nu(k)

y(k) = yo(K) +ny(k)
3 solutions

- MLE formulation --> errors-in-variables EIV
- Instrumental variables
- total least squares
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Problem

Noise on the regressor --> systematic errors

SN Ui

Ris(N) =
1N 22
N2k=1®
. 1
lim Ry <(N) = R (0-1)
w st T+o/i2

or in general
OLs(N) =((KTK)tKTy

guadratic terms --> bias
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Errors-in-variables

(MLE)
Model
yO(k) = g(uo(k)a o)
Measurements
u(k) = uy(k) +n (k) n,-->f,
, pdf of the noise )
y(k) = yo(K) +ny(k) ny >,

for simplicity: f(n,,, ny) = fnufnu

Cost: likelihood function
f(Cy, WI(Ygs Ug, 0p)) = fny(y =YolYor eo)fnu(u — Up|Ug, Bp)
with
yO(k) = g(uo(k)a o)

Parameters
the model parameters 6
the unknown, true input and output: uy(k), y,(k)
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EIV

Example: Resistance

model
uy(k) = Riy(k)
measurements
u(k) = uy(k) +n (k)
i(k) = iyk) +n,(k)
noise model

n,(k), n,(k) I.i.d. zero mean normally distributed
n,(K) --> N(0, 62)
ni(k) --> N(0, c?)
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Example EIV (cont’'d)

likelihood function
f((la u)|(|09 u09 90)) = fni(i - y()ly()a e())fnu(u - u()lu()a e())

with
ug(k) = Rig(K)
or
= (i(K) — ig(K))? = (u(k) — Ug(k))?
1 _Z c? 1 _Z c?
Ne k=1 Ne k=1
(,/2mc?) (,/2nc3)

The cost function becomes

(i(K) = iK% (u(k) = uy(k))?
Vel U, 0) = Z::I: . — -

Oj Oy

with
ug(k) = Rig(k)
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Example EIV (cont’d)

Elimination of 1p> Ug

. <N (Ri(k) - u(k)?
ECTDED Wil

Solution
Zu(k)z Z(k)z J[Zu(k)z |(k)2j (Zu(k)l(k))z
U GI
Reiv = ST ui®)
G2

u

compare to the Least Squares estimator

ZI':': Ui

R =
LS Z::I: 1i(k)2
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Example: Resistance
Ry, = 1000, igy: N(0,0.01%), 6?2 = 0.0012, 62 = 1

120

Il RLS
Il REV

100 -

80

60

40

20

||I|‘ | “I.“ HI

0
980 985 990 995 1000 1005
Estimated R

1010

67/69



Outline

A motivating example: why do you need system identification?!

Characterizing estimators

Basic steps of the identification process

A statistic approach to system identification

|dentification in the presence of ‘input’ and ‘output’ noise
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