
Automatica 50 (2014) 657–682
Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Survey Paper

Kernel methods in system identification, machine learning and
function estimation: A survey✩

Gianluigi Pillonetto a,1, Francesco Dinuzzo b, Tianshi Chen c, Giuseppe De Nicolao d,
Lennart Ljung c

a Department of Information Engineering, University of Padova, Padova, Italy
b Max Planck Institute for Intelligent Systems, Tübingen, Germany
c Division of Automatic Control, Linköping University, Linköping, Sweden
d Department of Computer Engineering and Systems Science, University of Pavia, Pavia, Italy

a r t i c l e i n f o

Article history:
Received 16 November 2011
Received in revised form
13 January 2014
Accepted 15 January 2014
Available online 25 February 2014

Keywords:
Linear system identification
Prediction error methods
Model complexity selection
Bias-variance trade-off
Kernel-based regularization
Inverse problems
Reproducing kernel Hilbert spaces
Gaussian processes

a b s t r a c t

Most of the currently used techniques for linear system identification are based on classical estimation
paradigms coming from mathematical statistics. In particular, maximum likelihood and prediction
error methods represent the mainstream approaches to identification of linear dynamic systems, with
a long history of theoretical and algorithmic contributions. Parallel to this, in the machine learning
community alternative techniques have been developed. Until recently, there has been little contact
between these two worlds. The first aim of this survey is to make accessible to the control community
the key mathematical tools and concepts as well as the computational aspects underpinning these
learning techniques. In particular, we focus on kernel-based regularization and its connections with
reproducing kernel Hilbert spaces and Bayesian estimation of Gaussian processes. The second aim is to
demonstrate that learning techniques tailored to the specific features of dynamic systemsmayoutperform
conventional parametric approaches for identification of stable linear systems.

© 2014 Elsevier Ltd. All rights reserved.
1. Preamble

System identification is about building mathematical models
of dynamic systems from observed input–output data. It is a well
established subfield of Automatic Control, withmore than 50 years
history of theoretical and algorithmic development as well as
software packages and industrial applications.
General aspects. For time-invariant linear dynamical systems the
output is obtained as a convolution between the input and the sys-
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tem’s impulse response. This means that system identification is
an example of an inverse problem: indeed, finding the impulse re-
sponse from observed data is a deconvolution problem. Such prob-
lems are quite ubiquitous and appear in biology, physics, and
engineeringwith applications e.g. inmedicine, geophysics, and im-
age restoration (Bertero, 1989; De Nicolao, Sparacino, & Cobelli,
1997; Hunt, 1970; Tarantola, 2005). The problem is non trivial as
convolution is a continuous operator, e.g. on the space of square
integrable functions, but its inverse may not exist or may be un-
bounded (Phillips, 1962).

The reconstruction of the continuous-time impulse response
is always an ill-posed problem since such a function cannot be
uniquely inferred from a finite set of observations. Also finite dis-
cretizations lead to an ill-conditioned problem,meaning that small
errors in the data can lead to large estimation errors. Starting
from the seminal works of Tikhonov and Phillips (Phillips, 1962;
Tikhonov & Arsenin, 1977), a number of regularization methods
have been proposed in the literature to solve the deconvolution
problem, e.g. truncated singular value decompositions (Hansen,
1987) and gradient-based techniques (Hanke, 1995; Nemirovskii,
1986; Yao, Rosasco, & Caponnetto, 2007). This means that
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regularization should be an important topic and area for system
identification.
Identification techniques. The most widespread approach to identi-
fication of dynamic systems relies on parametric prediction error
methods (PEMs), for which a large corpus of theoretical results is
available (Ljung, 1999; Söderström & Stoica, 1989). The statistical
properties of prediction error (and maximum likelihood) methods
are well understood under the assumption that the model class
is fixed. They show that such procedures are in some sense op-
timal, at least for large samples. However, within this parametric
paradigm, a key point is the selection of the most adequate model
structure. In the ‘‘classical, frequentist’’ framework, this is a ques-
tion of trade-off between bias and variance, and can be handled
by various model validation techniques. This is often carried out
by resorting to complexity measures, such as the Akaike’s crite-
rion (AIC) (Akaike, 1974) or cross validation (CV), but some inef-
ficiencies related to these classical approaches have been recently
pointed out (Chen, Ohlsson, & Ljung, 2012; Pillonetto, Chiuso, & De
Nicolao, 2011; Pillonetto & De Nicolao, 2010). In particular, it has
been shown that sample properties of PEM approaches, equipped
e.g. with AIC or CV, may be unsatisfactory when tested on exper-
imental data, departing sharply from the properties predicted by
standard (i.e. without model selection) statistical theory, which
suggests that PEM should be asymptotically efficient for Gaussian
innovations.

Parallel to this development in system identification, other
techniques have been developed in the machine learning com-
munity. Until very recently, there has been little contact between
these concepts and system identification.

Recent research has shown that the model selection problems
can be successfully faced by a different approach to system identi-
fication that leads to an interesting cross fertilization with the ma-
chine learning field (Pillonetto & De Nicolao, 2010). Rather than
postulating finite-dimensional hypothesis spaces, e.g. using ARX,
ARMAX or Laguerre models, the new paradigm formulates the
problem as function estimation possibly in an infinite-dimensional
space. In the context of linear system identification, the elements
of such space are all possible impulse responses. The intrinsical
ill-posedness of the problem is circumvented using regularization
methods that also admit a Bayesian interpretation (Rasmussen &
Williams, 2006). In particular, the impulse response is modeled as
a zero-mean Gaussian process. In this way, prior information is in-
troduced in the identification process just assigning a covariance,
named also kernel in the machine learning literature (Schölkopf &
Smola, 2001). In view of the increasing importance of these kernel
methods also in the general system identification scenario, the first
aim of this survey is to make accessible to the control community
some of the keymathematical tools and concepts underlying these
learning techniques, e.g. reproducing kernel Hilbert spaces (Aron-
szajn, 1950; Cucker & Smale, 2001; Saitoh, 1988), kernel meth-
ods and regularization networks (Evgeniou, Pontil, & Poggio, 2000;
Suykens, Gestel, Brabanter, De Moor, & Vandewalle, 2002; Vap-
nik, 1998), the representer theorem (Schölkopf, Herbrich, & Smola,
2001; Wahba, 1990) and the connection with the theory of Gaus-
sian processes (Hengland, 2007; Rasmussen & Williams, 2006). It
is also pointed out that a straight application of these techniques
in the control field is doomed to fail unless some key features of
the system identification problem are taken into account. First, as
already recalled, the relationship between the unknown function
and the measurements is not direct, as typically assumed in the
machine learning setting, but instead indirect, through the convo-
lution with the system input. This raises significant analogies with
the literature on inverse problems (Bertero, 1989; Tikhonov & Ar-
senin, 1977). Furthermore, in system identification it is essential
that the estimation process be informed on the stability of the im-
pulse response. In this regard, a recent major advance has been the
introduction of new kernels which include information on impulse
response exponential stability (Chen et al., 2012; Pillonetto & De
Nicolao, 2010). These kernels depend on some hyperparameters
which can be estimated from data e.g. using marginal likelihood
maximization. This procedure is interpretable as the counterpart
of model order selection in the classical PEM paradigm but, as it
will be shown in the survey, it turns out to be much more robust,
appearing to be the real reason of success of these new procedures.
Other research directions recently developed have been the justi-
fication of the new kernels in terms of Maximum Entropy argu-
ments (Pillonetto & De Nicolao, 2011), the analysis of these new
approaches in a classical deterministic framework leading to the
derivation of the optimal kernel (Chen et al., 2012), as well as the
extension of these new techniques to the estimation of optimal
predictors (Pillonetto et al., 2011).

Outline of the survey. The present surveywill dealwith thismeeting
between conventional system identification of linear models and
learning techniques. It is divided into three Parts with sections
which are relevant, but can be skipped without interrupting the
flow of the discussion, marked with a star ⋆.

Part I will describe the status in traditional parametric system
identification in discrete-time with an account of how the bias-
variance trade-off can be handled also by regularization techniques,
including their Bayesian interpretation.

Part II is an account of general function estimation – or function
learning – theory in a general and abstract setting. This includes
the role of RKHS theory for this problem.

Part III treats linear system identification,mainly in continuous-
time, as an application of learning the impulse response function
from observed data, leaning on general function estimation and its
adaptation to the specific properties of impulse responses of dy-
namic systems. Thiswill link back to the regularizations techniques
from the simplistic perspective in Part I. Considerations on compu-
tational issues are also included while some mathematical details
are gathered in the Appendix.

In conclusion, the scope of this work is twofold. Firstly, our aim
is to survey essential results in kernel methods for estimation, that
are mostly published outside the control audience, and hence not
so well known in this community. Secondly, we want to show that
these results have much to offer for estimation problems in the
control community, in particular for system identification.

Part I. Estimating system impulse responses in discrete
time

In this part, we study the problem of estimating system impulse
responses in discrete time.

2. ‘‘Classical’’ system identification

2.1. System identification

There is a very extensive literature on system identifica-
tion, with many text books, like Ljung (1999) and Pintelon and
Schoukens (2012a). Most of the techniques for system identifica-
tion have their origins in estimation paradigms from mathemati-
cal statistics, and classical methods like Maximum Likelihood (ML)
have been important elements in the area. In Part I the main in-
gredients of this ‘‘classical’’ view of system identification will be
reviewed. For convenience, we will only focus on the single in-
put–single output (SISO) linear time-invariant, stable and causal
systems. We will also set the stage for the ‘‘kernel methods’’ for
estimating the main characteristics of a system.
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2.2. Parametric model structures

A model structure M is a parameterized collection of models
that describe the relations between the input and output signal
of the system. The parameters are denoted by θ so M (θ) is a
particular model. That model gives a rule to predict (one-step-
ahead) the output at time t , i.e. y(t), based on observations of
previous input–output data up to time t − 1 (denoted by Z t−1).

ŷ(t|θ) = g(t, θ,Z t−1). (1)

For linear systems, a general model structure is given by the
transfer function G from input to output and the transfer function
H from a white noise source e to output additive disturbances:

y(t) = G(q, θ)u(t)+ H(q, θ)e(t) (2a)

E e2(t) = σ 2
; E e(t)e(k) = 0 if k ≠ t (2b)

where E denotes mathematical expectation. This model is in
discrete time and q denotes the shift operator qy(t) = y(t+1). We
assume for simplicity that the sampling interval is one time unit.
The expansion of G(q, θ) and H(q, θ) in the inverse (backwards)
shift operator gives the impulse responses of the two systems:

G(q, θ) =

∞
k=1

gk(θ)q−k (3)

H(q, θ) = h0(θ)+

∞
k=1

hk(θ)q−k (4)

where for normalization reasons, we assume h0(θ) = 1.
Under the assumption thatH(q, θ) is inversely stable, see Ljung

(1999, p. 64), the natural one-step-ahead predictor for (2a) is

ŷ(t|θ) =
H(q, θ)− 1
H(q, θ)

y(t)+
G(q, θ)
H(q, θ)

u(t). (5)

Since h0(θ) = 1, the numerator in the two terms starts with
h1(θ)q−1 and g1(θ)q−1, respectively. So there is a delay in both y
and u. The question is how to parameterize G and H .
Black-box models. Common black box (i.e. no physical insight or
interpretation) parameterizations are to let G and H be rational in
the shift operator:

G(q, θ) =
B(q)
F(q)

; H(q, θ) =
C(q)
D(q)

(6)

where B(q), F(q), C(q) and D(q) are polynomials of q−1.
A very common case is that F(q) = D(q) and C(q) = 1 which

gives the ARX-model:

y(t) =
B(q)
A(q)

u(t)+
1

A(q)
e(t), or

A(q)y(t) = B(q)u(t)+ e(t)
(7)

where A(q) = 1 + a1q−1
+ · · · + anaq

−na , B(q) = b1q−1
+ · · · +

bnbq
−nb , and na, nb are positive integers referred to as the orders of

ARX-model.
Other common black/box structures of this kind are FIR-model

(Finite Impulse Response model, F(q) = C(q) = D(q) = 1), OE-
model (Output Error model, C(q) = D(q)), ARMAX-model (F(q) =

D(q) = A(q)), and BJ-model (Box–Jenkins, all four polynomials
different).
Approximating linear systems by ARXmodels. Suppose the true linear
system is given by

y(t) = G0(q)u(t)+ H0(q)e(t). (8)

Suppose we build an ARXmodel (7) for high orders na and nb. Then
it is well known from Ljung andWahlberg (1992) that, as na and nb
tend to infinity at the same time as the number of data N increases
even faster, we have for the ARX-model estimate Âna(q) and B̂nb(q):

B̂nb(q)

Âna(q)
→ G0(q),

1

Âna(q)
→ H0(q) as na, nb → ∞. (9)

This is quite a useful result. ARX-models are easy to estimate. The
estimates are calculated by linear least squares (LS) techniques,
which are convex and numerically robust. Estimating a high order
ARX model, possibly followed by some model order reduction,
could thus be an alternative to the numerically more demanding
general PEM criterion minimization (12) introduced in the next
subsection. This has been extensively used, e.g. by Zhu (1989) and
Zhu and Backx (1993). The only drawback with high order ARX-
models is that they may suffer from high variance. That is the
problem we will turn to in Section 4.

2.3. Fitting time-domain data

Suppose we have collected a data record in the time domain

Z = {u(1), y(1), . . . , u(N), y(N)}. (10)

It is most natural to compare the model predicted values (5) with
the actual outputs and form the criterion of fit

VN(θ) =

N
t=1


y(t)− ŷ(t|θ)

2 (11)

and define the parameter estimate

θ̂N = arg min
θ

VN(θ). (12)

In (12), and also in the sequel, if multiple solutions to the
optimization problem exist, the equality has to be interpreted as
a set inclusion. We call this the Prediction Error Method, PEM. It
coincides with the Maximum Likelihood, ML, method if the noise
source e is Gaussian. See, e.g. Ljung (1999) or Ljung (2002) formore
details.

2.4. Bias and variance

The observations of the system output are certainly affected
by noise and disturbances, which of course also will influence the
estimated model (12). The disturbances are typically described
as stochastic processes, which makes the estimate θ̂N a random
variable. This has a certain probability distribution function and a
mean and a variance. The difference between the mean and a true
description of the system measures the bias of the model. If the
mean coincides with the true parameters, the estimator is said to
be unbiased. The total error in a model thus has two contributions:
the bias and the variance.

A very attractive property of the PEM estimate (for Gaussian
noise source) is that it is asymptotically efficient provided themodel
structure M contains a correct description of the true system. That
means that as N → ∞ the covariance matrix of θ̂N will approach
the Cramér–Rao limit, so that no unbiased estimate can be better
than the PEM estimate.

Generally speaking the model quality depends on the quality of
themeasured data and the flexibility of the chosenmodel structure
(1). A more flexible structure typically has smaller bias, since it
is easier to come closer to the true system. At the same time, it
will have a higher variance: higher flexibility makes easier to be
fooled by disturbances. So the trade-off between bias and variance
to reach a small total error is a choice of balanced flexibility of the
model structure.
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3. Selection of model flexibility: AIC, BIC, CV

3.1. Adjusting the estimation criterion

With increasing flexibility, the fit to the estimation data in (12),
i.e. VN(θ̂N), will always improve, since the bad effect of the variance
is not visible in that fit. To account for that it is necessary to add a
penalty formodel flexibility to assess the total quality of themodel.
A common technique for this is Akaike’s criterion, see e.g. Akaike
(1974) and Ljung (1999, pp. 505–507). Letting dim(θ) = m and
assuming the noise to be Gaussian, with unknown variance, one
has

θ̂N = arg min
θ


log(VN(θ))+ 2

m
N


, AIC (13)

where the minimization also takes place over a family of model
structures with different number m of parameters. There is also a
small-sample version, described in Hurvich and Tsai (1989) and
known in the literature as corrected Akaike’s criterion (AICc),
defined by

θ̂N = arg min
θ


log(VN(θ))+ 2

m
(N − m − 1)


, AICc. (14)

Another variant places a larger penalty on the model flexibility:

θ̂N = arg min
θ


log(VN(θ))+ log(N)

m
N


, BIC, MDL. (15)

This is known as Bayesian information criterion (BIC), or Rissanen’s
MinimumDescription Length (MDL) criterion, see e.g. Ljung (1999,
pp. 505–507), Rissanen (1978) and Schwarz (1978).

3.2. Cross validation

Another important technique is known as cross validation, CV.
This is certainly to be regarded among the most widely employed
approaches to statistical model selection. The goal is to obtain an
estimate of the prediction capability of future data of the model
in correspondence with different choices of θ . Parameter selection
is thus performed by optimizing the estimated prediction score.
Holdout validation is the simplest form of CV: the available data are
split in two parts, where one of them (estimation set) is used to
estimate the model, and the other one (validation set) is used to
assess the prediction capability. By ensuring independence of the
model fit from the validation data, the estimate of the prediction
performance is approximately unbiased. For models that do not
require estimation of initial states, like FIR and ARXmodels, CV can
be applied efficiently in more sophisticated ways by splitting the
data into more portions, as described in Section 14.3.

4. Regularization of linear regression models

ARX-models, introduced in (7), belong to the class of well-
known and much-used linear regression models. Before we look
closer into properties of ARX-model estimates, it is useful to con-
sider linear regression models in more general terms.

4.1. Linear regression models

A linear regression model has the form

y(t) = ϕT (t)θ + e(t), θ ∈ Rm. (16)

Here y (the output) and ϕ (the regression vector) are observed
variables, e is a noise disturbance and θ is the unknown parameter
vector. In general e(t) is assumed to be independent of ϕ(t).
It is convenient to rewrite (16) in vector form, by stacking all the
elements (rows) in y(t) and ϕT (t) to form the vectors (matrices) Y
andΦ and obtain

Y = Φθ + E. (17)

The LS estimate of the parameter θ is

θ̂ = arg min
θ

∥Y − Φθ∥2 (18a)

= (ΦTΦ)−1ΦTY (18b)

where ∥ ·∥ represents the Euclidean norm. From (18a) to (18b), we
have implicitly assumed that ΦTΦ is nonsingular. In many cases,
like whenΦTΦ is singular or ill-conditioned, it makes sense to in-
troduce a regularization term in (18a) bymeans of a regularization
matrix P and consider the regularized least squares instead.

4.2. Regularized least squares

In order to regularize the estimate, we add a regularization term
θ TP−1θ in (18a) and obtain the following problem, often referred
to as regularized least squares (ReLS):

θ̂ = arg min
θ

∥Y − Φθ∥2
+ γ θ TP−1θ (19a)

= PΦT (ΦPΦT
+ γ IN)−1Y ; or (19b)

= (PΦTΦ + γ Im)−1PΦTY (19c)

where γ is a positive scalar and Im denotes the m-dimensional
identity matrix.2

Remark 1. When P is singular, (19a) is not well-defined. In this
case, consider the singular value decomposition of P: P = [U1 U2]
ΛP 0
0 0

 
U1 U2

T whereΛP is a diagonalmatrixwith all diagonal

elements being positive singular values of P and U =

U1 U2


is

an orthogonal matrix with U1 having the same number of columns
asΛP . Then (19a) should be interpreted as

θ̂ = arg min
θ

∥Y − Φθ∥2
+ γ θ TU1Λ

−1
P UT

1 θ (20a)

s.t. UT
2 θ = 0. (20b)

It is easy to verify that (19b) or (19c) is still the optimal solution of
(20). For convenience, we will use (19a) in the sequel and refer to
(20) for its rigorous meaning for singular P .

The positive scalar γ is the so called regularization parameter
which has to balance adherence to experimental data and the
penalty term θ TP−1θ . This latter will improve the numerical
properties of the estimator and decrease its variance, at the price of
introducing some bias. To evaluate the model quality in a ‘‘classic’’
or ‘‘frequentist’’ setting, suppose that the data have been generated
by (17) for a certain ‘‘true’’ vector θ0 with noise E with variance
E EET

= σ 2IN . Then, the mean square error (MSE) of the estimator
θ̂ is

E [(θ̂ − θ0)(θ̂ − θ0)
T
] = σ 2


PΦTΦ

γ
+ Im

−1

×


PΦTΦP
γ 2

+
θ0θ

T
0

σ 2


ΦTΦP
γ

+ Im

−1

. (21)

2 Note that the step from (19b) to (19c) follows from the simple matrix equality
A(Ij + BA)−1

= (Ik + AB)−1Awhich holds for every k × jmatrix A and j × kmatrix
B.
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A rational choice of P and γ is one thatmakes thisMSEmatrix small
in some sense. How shall we think of good such choices? It is useful
to first establish the following Lemma of algebraic nature.

Lemma 2. Consider the matrix

M(Q ) = (QR + I)−1(QRQ + Z)(RQ + I)−1 (22)

where Q , R and Z are positive semidefinite matrices. Then for all Q

M(Z) ≼ M(Q ) (23)

where (23)means that M(Q )− M(Z) is positive semidefinite.

The proof consists of straightforward calculations, see Chen et al.
(2012).

Noting the expression of (21) and invoking Lemma 2, the ques-
tion what P and γ give the best MSE of the regularized estimate
has a clear answer: the equation σ 2P = γ θ0θ

T
0 needs to be satis-

fied. Thus, the following result holds.

Proposition 3 (Optimal Regularizer for a Given θ0). Letting γ = σ 2,
the regularization matrix

P = θ0θ
T
0 (24)

minimizes, in the sense of (23), the MSE matrix (21).

So, not surprisingly the best regularization depends on the un-
known system.

Note that the MSE (21) is linear in θ0θ T0 . That means that if we
compute the ReLS estimate with the same P for a collection of
true systems θ0, the average MSE over that collection will be given
by (21) with θ0θ T0 replaced by its average over the collection. In
particular, if θ0 is a random vector with E θ0θ

T
0 = Π , we obtain the

following result:

Proposition 4. Consider (19a) with γ = σ 2. Then, the best average
(expected) MSE for a random true system θ0 with E θ0θ

T
0 = Π is

obtained by the regularization matrix P = Π .

With this we are very close to a Bayesian interpretation.

4.3. Bayesian interpretation

The followingwell known and simple result about conditioning
jointly Gaussian random variable is a key element in Bayesian
calculations. Let x ∼ N (m, P) denote a Gaussian random variable
with meanm and covariance matrix P , and consider
x1
x2


∼ N


µ1
µ2


,


Σ11 Σ12
Σ21 Σ22


. (25a)

Then the conditional distribution of x1 given x2 is

x1|x2 ∼ N (µ,Σ) (25b)

µ = µ1 +Σ12Σ
−1
22 (x2 − µ2) (25c)

Σ = Σ11 −Σ12Σ
−1
22 Σ21. (25d)

In the current setup, we regard the vector θ as a random vari-
able, say of Gaussian distribution with zero mean and covariance
matrix Π , i.e. θ ∼ N (0,Π). In addition, let e(t) in (16) be Gaus-
sian, independent of θ , with zero mean and variance σ 2. Then, we
have (17), with knownΦ and E ∼ N (0, σ 2IN). Hence, Y and θ will
be jointly Gaussian variables:
θ
Y


∼ N


0
0


,


Π ΠΦT

ΦΠ ΦΠΦT
+ σ 2IN


. (26)
The posterior distribution of θ given Y follows from (25)

θ |Y ∼ N (θ̂ ,Π∗) (27a)

θ̂ = ΠΦT (ΦΠΦT
+ σ 2IN)−1Y (27b)

= (ΠΦTΦ + σ 2Im)−1ΠΦTY (27c)

Π∗
= Π −ΠΦT (ΦΠΦT

+ σ 2IN)−1ΦΠ . (27d)

So this shows that the regularized LS estimate (19) is the mean of
the posterior distribution (the MAP estimate) provided we choose
γ = σ 2 and the regularization matrix P as the prior covariance
matrix of θ , i.e., with P = Π . Note also that the Bayesian interpre-
tation permits to compute uncertainty bounds around θ̂ using the
posterior covarianceΠ∗ given by (27d).

4.4. Tuning the regularization: marginal likelihood maximization

Can we estimate this matrix P = Π in some way? Let P be
parameterized in terms of the so-called hyperparameters η ∈ Γ ,
P(η). Now, the bottom row of (26) states that Y is a Gaussian
random vector with zero mean and covariance matrix

Z(η) = ΦP(η)ΦT
+ σ 2IN . (28)

Apart from constants, two times the negative logarithm of the
probability density function of the Gaussian random vector Y is
Y TZ(η)−1Y + log det Z(η). That is also the negative log likelihood
function for estimating η from Y , so the ML estimate of η will be

η̂ = arg min
η∈Γ

Y TZ(η)−1Y + log det Z(η), MargLik. (29)

This maximization of the marginalized likelihood function is also
known as Empirical Bayes. We have thus lifted the problem of
estimating θ to a problem where we estimate parameters (in) P
that describe the distribution of θ .

If the matrix Φ is not deterministic, but depends on E in such
a way that row ϕT (t) is independent of the element e(t) in E, it is
still true that (29) will be the ML estimate of η, although then Y is
not necessarily Gaussian itself. See, e.g. Ljung (1999, Lemma 5.1)
and Appendix in Pillonetto et al. (2011) for details.

Remark 5. The noise variance σ 2 is also typically not known and
needs to be estimated. As suggested in Goodwin, Gevers, and
Ninness (1992) and Ljung (1999), a simple and effective way is
to estimate a low bias ARX (Pillonetto & De Nicolao, 2010) or FIR
model (Chen et al., 2012) with least squares and use the sample
variance as the estimate of σ 2. An alternative way is to treat σ 2 as
an additional ‘‘hyper-parameter’’ contained in η, estimating it by
solving (29), e.g. see Chen, Andersen, Ljung, Chiuso, and Pillonetto
(2014) and MacKay (1992).

5. Regularization in system identification

We first consider the regularized FIR model identification
problem,which is a useful intermediate step for themore advanced
multi-input FIR model and ARX model identification problem.

5.1. FIR models

Let us now return to the impulse response estimation of G(q, θ)
in (3) and assume it is finite (FIR) and described by:

y(t) = G(q, θ)u(t)+ e(t) =

m
k=1

gku(t − k)+ e(t)

= ϕT
u (t)θg + e(t) (30)
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where we have collected the m elements of u(t − k) in ϕu(t)
and the m impulse response coefficients gk in θg . That means that
the estimation of FIR models is a linear regression problem. All
that was said above about linear regressions, regularization and
estimation of hyper-parameters can thus be applied to estimation
of FIR models. In particular, suitable choices of P should reflect
what is reasonable to assume about an impulse response: If the
system is exponentially stable, the impulse response coefficients gk
should decay exponentially, and if the impulse response is smooth,
neighboring values should have a positive correlation. That means
that a suitable regularization matrix Pg for θg could be a matrix
whose k, j element is
DC Pg

kj(η) = λα(k+j)/2ρ|j−k|
;

λ ≥ 0, 0 ≤ α < 1, |ρ| ≤ 1; η = [λ, α, ρ]. (31)
Here α accounts for the exponential decay along the diagonal,
while ρ describes the correlation across the diagonal (the correla-
tion between neighboring impulse response coefficients). We call
this matrix, or kernel, as it will be termed in Part II, DC for Diago-
nal/Correlated.

A special case is if we link ρ =
√
α, leading to

TC Pg
kj(η) = λαmax(k,j)

;

λ ≥ 0, 0 ≤ α < 1, η = [λ, α] (32)
which we call TC for Tuned/Correlated. The same kernel was in-
troduced in Chen, Ohlsson, Goodwin, and Ljung (2011), Pillonetto,
Chiuso, andDeNicolao (2010) and Pillonetto andDeNicolao (2011)
with the name First-order Stable Spline.

A third useful kernel, which will be also explained in Part III, is
called SS for Stable Spline:

SS Pg
kj(η) = λ


αk+j+max(k,j)

2
−
α3max(k,j)

6


λ ≥ 0, 0 ≤ α < 1, η = [λ, α]. (33)
The hyperparameter η can then be tuned by (29) where

Pg(η) enters the definition of Z(η) in (28). Efficient numerical
implementation of this minimization problem is discussed in Carli,
Chiuso, and Pillonetto (2012) and Chen and Ljung (2013). Once η
is estimated, the impulse response can be computed by (19) with
γ = σ 2. (The routine is implemented as impulseest.m in the
2012b version of Ljung (2013).)

This method of estimating impulse response, possibly followed
by a model reduction of the high order FIR model, has been
extensively tested inMonte Carlo simulations in Chen et al. (2012).
They clearly show that the approach is a viable alternative to the
classical ML/PEM methods, and may in some cases provide better
models. An important reason for that is that the tricky question of
model order determination is avoided.

5.2. Multi-input FIR-models

With several inputs, it is easy and natural to extend (30):

y(t) = ϕT
u1(t)θ

1
g + · · · + ϕT

uk(t)θ
k
g + e(t) (34a)

= ϕu(t)T θg + e(t) (34b)

where ϕuj(t) contains the lagged inputs from input j and θ jg the
impulse response coefficients from that input. The resulting linear
regression (34b) simply stacks the contributions. If we assume that
the responses from the different inputs have nomutual correlation,
it is natural to partition the regularization matrix accordingly:

P(η) =


Pg1(η1) 0 · · · 0

0 Pg2(η2) · · · 0
...

...
. . . 0

0 0 · · · Pgk(ηk)

 (35)
with Pgj(ηj) as in any of (31)–(33), with different hyperparameters
for each input.

5.3. General predictor models and ARX models

From the general linear predictor expression (5) we can write
any predictor as two infinite impulse responses from y and u
respectively. Note for ARX models (7) the expressions 1 −

1
H(q) =

1 − A(q) and G(q)
H(q) = B(q), so these infinite responses specialize

to finite responses. In line with (9), these finite ARX-expressions
become arbitrarily good approximators for general linear systems
as the orders tend to infinity.We canwrite theARX-model, (7)with
one input as

y(t) = −a1y(t − 1)− · · · − anay(t − na)+ b1u(t − 1)
+ · · · + bnbu(t − nb)+ e(t)

= ϕT
y (t)θa + ϕT

u (t)θb + e(t) (36)

where θa =

a1 · · · ana

T , θb =

b1 · · · bnb

T and ϕy(t),
ϕu(t) are made up from y and u in an obvious way. That means
that also the ARX model is a linear regression model, to which the
same ideas of regularization can be applied. Eq. (36) shows that
the predictor consists of two impulse responses, from y and from
u, and similar ideas on the parameterization of the regularization
matrix can be used. The P-matrix in (19) can be partitioned along
with θa, θb:

P(η1, η2) =


Pa(η1) 0

0 Pb(η2)


(37)

with Pa(η), Pb(η) as in any of (31)–(33).
Finally, the ARX model (36) is extended to multiple inputs in

an obvious way. If there are several outputs, the easiest and most
natural way is to treat each output channel as a separate linear
regression as in (36) but with the other outputs appended in the
same way as the inputs.

Remark 6. Note that linear systems satisfy the superposition
property that impulse response of a linear system is the sum of
impulse responses of its partial fraction expansion and also that
the hyperparameter tuning problem (29) is non-convex, and for
high-dimension η it may cause problems. It is therefore of interest
to consider kernels that are formed linearly from multiple, known
kernels Pk:

P(η) =

r
k=1

ηkPk; ηk ≥ 0 (38)

where Pk can be chosen as specific instances of the kernels DC,
TC and SS, and also complemented by rank 1 kernels of the
kind θ0θ T0 (cf. (24)) for a collection of candidate models θ0. This
gives several advantages as described in Chen et al. (2014). For
example, the tuning problem (29) for (38) is a difference of convex
functions programming problem, whose locally optimal solutions
can be found efficiently by using sequential convex optimization
techniques, (Horst & Thoai, 1999; Tao & An, 1997). What is more,
it favors sparse solutions, i.e. with many ηk = 0. This is very
useful if Pk corresponds to different hypothesized structure and
enables this kernel-based regularization method to tackle various
structure detection problems in system identification, e.g., the
sparse dynamic network identification and the segmentation of
linear systems.
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6. Regularized least squares and James–Stein estimators ⋆

Consider (19) under orthonormal design assumptions (ΦTΦ =

Im), with regularization matrix proportional to the identity (P =

λIm) and with σ 2 assumed known. Then, if γ is set to σ 2 and
λ is estimated via marginal likelihood optimization, it is easy to
show that ReLS reduces essentially to the famous James–Stein
estimator (James & Stein, 1961; Stein, 1981). Hence, for m > 2,
its performance, measured by the trace of the MSE matrix of θ̂ ,
is uniformly better than that of the LS estimator for every θ0. See
also Efron andMorris (1973) for connections between James–Stein
estimation and empirical Bayes approaches.

In the general case (non orthonormalΦ and/or generic kernel),
a large variety of different estimators dominating LS can be found
in the literature, see e.g. Berger (1982), Bhattacharya (1966), Bock
(1975) and Shinozaki (1974), but ReLS (e.g. equippedwithmarginal
likelihood for hyperparameters tuning) does not belong to this
class. In fact, to get minimax properties (thus guaranteeing that
the MSE never exceeds that of LS for every θ0), ReLS structure
needs to be suitably modified giving rise to generalized ReLS
estimators (Strawderman, 1978). However, there is a price to pay:
generalized ReLS is typically less effective against ill-conditioning,
e.g. see Casella (1980) but also Maruyama and Strawderman
(2005) for newminimax estimators with better numerical stability
properties.

The Bayesian interpretation reported in Section 4.3 helps to
understand why ReLS performance can prove superior to other
minimax estimators when regularization is carefully tuned. In fact,
ReLS concentrates the improvement in the most likely regions
in the parameter space as specified by the chosen kernel (it
will perform worse than LS only if the probability induced by
the kernel predicts poorly the location of θ0). In particular, ReLS
equipped with kernels (31)–(33) outperforms LS in the region of
exponentially decaying impulse responses. In this region, forcing
the estimator to be minimax, one would loose most of the gain
coming from smoothness and stability prior information, see also
Section 3 in Berger (1982) for other insights.

Nevertheless, the development of effective minimax estima-
tors for system identification appears an interesting issue. To our
knowledge, this is an open problemwhen kernel parameters, such
as (λ, α) in (32) and (33), have to be determined fromdata. Instead,
when they can be fixed in advance, the estimator in Berger (1982)
can be used: not only it is minimax but concentrates the improve-
ment in ellipsoids defined by P in the parameter space. This ap-
proach is deeply connected with robust Bayesian estimation con-
cepts, e.g. see Berger (1980, 1994).

7. Numerical illustrations

To illustrate the properties of the suggested algorithms, we
consider two kinds of Monte Carlo experiments regarding the
identification of randomly generated linear systems

y(t) =


p

i=1

Gi(q)ui(t)


+ H(q)e(t). (39)

The experiment in Section 7.2 involves OE-models (p = 1,H(q) =

1) while ARMAX-models will be then considered in Section 7.3.
Both of the experiments have been performed using MATLAB,
equipped by the System Identification Toolbox (Ljung, 2013) as
the numerical platform. 3 There, all the methods described in
Sections 2 and 5 are implemented, and we refer to the manual of
Ljung (2013) for details of the implementations.

3 Data and related code are available at thewebsitewww.control.isy.liu.se/books/
sysid/AutomaticaSurvey.
7.1. Performance measure: model generalization capability

First, we describe the performance measure adopted to com-
pare different estimatedmodels. At everyMonte Carlo run, the sys-
tem (39) is used to generate two kinds of data sets. The first type is
the identification data set (also called training or estimation set)

Z = {u(1), y(1), . . . , u(N), y(N)}

while the second type is the test set

Z new
= {unew(1), ynew(1), . . . , unew(M), ynew(M)}.

The test set Z new is generated by applying inputs (independent of
those entering Z ) at t = 0, starting from null initial conditions.

The set Z new serves to characterize the generalization capability
of a model, i.e. its ability to predict future outputs, not contained
in Z . More specifically, let ŷnewk (t|θ̂ ) be the k-step-ahead predictor
associated with an estimated model (characterized by θ̂ ). It yields
the rule to predict (k-step-ahead) ynew(t) from the knowledge of
unew up to time t−1 and ynew up to t−k. If ȳnew denotes the average
output in Z new , the performance is measured by the fit

Fk(θ̂) = 100

1 −


M
t=1


ynew(t)− ŷnewk (t|θ̂ )

2
M
t=1
(ynew(t)− ȳnew)2

 (40)

which quantifies how much of the variance of ynew is captured by
the k-step-ahead forecast. In the OE-model case,Fk is independent
of k. Note that is essential that the k-step ahead predictions
are computed with zero initial conditions, so as not to give any
advantages to higher order models which could adjust the initial
conditions to fit the test set. (This can be obtained using the
MATLAB commandpredict(model, data, k, ‘ini’, ‘z’)
where model and data are structures containing the estimated
model and the test set Z new , respectively.)

The quality measure (40) will depend on the actual data in
X new , but asM → ∞ it will be a truemeasure of the quality of the
model, depending only on the true system Gi(q),H(q), the model
Gi(q, θ̂ ),H(q, θ̂ ) and the input spectrum. For example for an OE-
model with zero mean white noise as input, one has

Fk(θ̂) → 100


1 −

∥G(q)− G(q, θ̂ )∥2

∥G(q)∥2


(41)

with ∥S(q)∥2 being the ℓ2 norm of the impulse response of a
generic system S(q).

The oracle. The test setZ new and the fitFk(θ̂) are useful not only for
model tests, but they can also be used as an oracle. In statistics the
term oracle is often used as a means for correct information about
model properties based on ideal and unrealistic sources. In that
sense, Z new is an oracle only if M = ∞ or if y has been generated
from the system in a noise-free way. In the tests of OE models in
Section 7.2 we shall use Z new and F1(θ̂)with noise free data (and
M = 3000) as a true oracle to select the best order of the OEmodel.

For theARMAX tests in Section 7.3,which include a noisemodel,
we use as an ‘‘approximate oracle’’ Z new forM = 3000 and a noise
source of the same character as in the estimation data. To decide
what are the best ARMAX orders, an average k-step prediction
performance is evaluated, and

20
k=1

Fk(θ̂) (42)

is maximized.
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7.2. Identification of discrete-time OE-models

We now consider twoMonte Carlo studies of 1000 runs regard-
ing identification of discrete-time OE-models

y(t) = G(q)u(t)+ e(t), G(q) =
B(q)
F(q)

.

At each run, a different rational transfer function G is generated as
follows. First, a 30th order SISO continuous-time, strictly proper
system was randomly generated (using the MATLAB command
rss.m). The continuous-time systemwas then sampled at 3 times
of its bandwidth. If all poles of the sampled system are within the
circle with center at the origin and radius 0.95 on the complex
plane, the system is used and saved.

During each run, the input in the estimation data set is
generated as a realization from white Gaussian noise of unit
variance filtered by a 2nd order rational transfer function obtained
by the same type of generator defining G. The input delay is always
equal to 1. Starting from zero initial conditions, 1000 input–output
pairs are collected with the output corrupted by an additive white
Gaussian noise. The SNR, i.e. ratio between the variance of the
noiseless output and the noise, is randomly chosen in [1, 10]
at every run. In the first experiment, the estimation data set Z

contains the first 200 input–output pairs while all the 1000 pairs
are used in the second case study.

Two types of test sets Z new are generated at every run. The
first one is the most challenging since it contains noiseless outputs
obtained using a unit variance white Gaussian noise as input. The
second one is obtained using a test input having the same statistics
of the input in the estimation data.

The following 6 estimators are used:

• Oe+Or1. Classical PEM approach (11) equippedwith an oracle.
In particular, we consider candidate models where the order of
the polynomials B and F is equal and can vary between 1 and
30. For everymodel order, estimation is performed solving (11).
(The method is implemented in oe.m of the MATLAB System
Identification Toolbox, (Ljung, 2013).) Then, the oracle chooses
the estimate which maximizes the fit (40) (independent of k in
this case) relative to the first test set (test input equal to white
noise).

• Oe + Or2. The same as above except that the oracle chooses
themodel ordermaximizing the prediction performance on the
second test set (test input with the same statistics of the input
in the estimation data).

• Oe + CV. The same as above except that model order is selected
using cross validation. In particular, identification data are split
into two sets Za and Zb containing, respectively, the first and
the last N/2 input–output pairs in Z . For different orders of the
rational transfer function, the models are obtained by the PEM
methodusing the estimationdataZa. Then the prediction errors
are computed, with zero initial conditions, for the validation
data Zb. (This can be obtained using pe(model,data,‘z’)
where model contains the model obtained by oe.m and data
contains Zb.) The model order minimizing the sum of the
squared prediction errors is selected and the final impulse
response estimate is obtained solving (11) for the complete data
set Z .

• {TC, SS,DC}. These are three ReLS estimators, see (19),
equipped with the kernels DC (31), TC (32) and SS (33). The
number of estimated impulse response coefficients is 200. At
every run, the noise variance is estimated by fitting via LS a low-
bias model for the impulse response, as e.g. described in Good-
win et al. (1992). Then, kernel hyperparameters (2 for SS and TC,
3 for DC) are obtained via marginal likelihood optimization, see
(29).
7.2.1. Results
Fig. 1 reports the MATLAB boxplots of the 1000 fit measures

returned by the estimators during the first experiment (N = 200,
left panels) and the second experiment (N = 1000, right panels).
Table 1 also displays the average fit values.

The top panels of Fig. 1 displays the fits relative to the first
test set. The performance reference is Oe + Or1. It is apparent
that the performance of Oe + CV is unsatisfactory, far from that
of Oe + Or1. In accordance with the analysis reported in Pillonetto
and De Nicolao (2012), such an approach exhibits a poor control
on model complexity. Hence, it often returns impulse response
estimates affected by ill-conditioning. The performance of all the
three regularized approaches is instead close to that of Oe + Or1,
or also better. E.g., Table 1 reveals that TC and DC outperform the
oracle when the data set size is 200.

The bottompanels of Fig. 1 display the fits relative to the second
test set. The performance reference is now Oe + Or2. Prediction
is now easier since the estimation and test data are more similar.
As a consequence, the performance of Oe + CV much increases
but remains significantly inferior than that of the kernel-based
estimators.

Finally, it is worth noticing that the performances of Oe + Or1
and Oe + Or2 appear quite different in each of the four scenarios
illustrated by Fig. 1. This indicates that themodel orders chosen by
the oracle strongly depend on the prediction target. On the other
hand, the generalization capability of the regularized estimators is
always high, irrespective of the nature of the test set. Hence, one
can argue that TC, SS and DC (which are estimators implementable
in real applications) return impulse response estimates which
are ‘‘the right synthesis’’ of those returned by the two oracle-
based procedures (which are not implementable in practice since
have access to noise free data contained in the test set). These
outcomes have been recently confirmed also by an independent
study (Olofsson, 2013).

7.3. Identification of discrete-time ARMAX-models

We now consider one Monte Carlo study of 1000 runs. At every
run, data are generated by an ARMAX model of order 30 having p
observable inputs ui, i.e.

y(t) =


p

i=1

Bi(q)
A(q)

ui(t)


+

C(q)
A(q)

e(t)

where p is the realization from a random variable uniformly dis-
tributed on {2, 3, 4, 5}. The polynomials A, Bi and C are randomly
generated. (This has been obtained by using drmodel.m: the first
call defines B1 and A, the others the numerators of the remaining p
rational transfer functions.) The system is used and saved if the fol-
lowing two requirements are satisfied. System and one-step ahead
predictor poles have to stay inside the circle of radius 0.95 while
the signal to noise ratio has to satisfy

1 ≤

p
i=1

∥Gi∥
2
2

∥H∥
2
2

≤ 10

where Gi(q) =
Bi(q)
A(q) ,H(q) =

C(q)
A(q) with ∥Gi∥2, ∥H∥2 to denote the ℓ2

norms of the system impulse responses,which are also constrained
to be less than 10.

At every run, the input in the estimation data set is unit variance
white Gaussian noise and Z contains 300 input–output pairs
collected after getting rid of initial conditions effect. The test input
is also white Gaussian noise and the performance measure is the
fit (40) which now depends on the prediction horizon k.
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Fig. 1. Identification of discrete-time OE-models (Section 7.2). Top Boxplot of the 1000 prediction fits on future outputs generated using white noise as test input.
Identification data consist of 200 (top left) or 1000 (top right) input–output pairs. Bottom Same results as in the top panel except that the statistics of the input in the
estimation and test data set coincide. In all the four panels, the first and last boxplots report results from the estimators Oe+ Or1 and Oe+ Or2which are not implementable
in practice.
Table 1
Identification of discrete-time OE-models (Section 7.2). Average fit as a function of the identification data set size (N = 200 or N = 1000) and of the type of test set. The
first and last columns report results from oracle-based estimators not implementable in practice.

Oe + Or1 TC SS DC Oe + CV Oe+ Or2

1st test set, N = 200 56.2 56.6 54.8 56.5 −88.1 −14.9
1st test set, N = 1000 70.1 69.0 66.5 69.1 −43.2 14.8
2nd test set, N = 200 85.7 87.9 86.7 88.4 79.5 89.1
2nd test set, N = 1000 93.8 94.5 94.2 94.6 91.1 95.2
The following estimators are used:

• PEM + Oracle: this is the classical PEM approach (11) equipped
with an (‘‘approximate’’) oracle (42). The candidate model
structures are ARMAX models defined by polynomials that all
have the samedegree. (Themethod is implemented inpem.m of
the MATLAB System Identification Toolbox, (Ljung, 2013).) The
maximum allowed order is 30. The oracle chooses the model
order maximizing (42).

• PEM + CV : the same as above except that cross validation is
used for model order selection. In particular, identification data
are split into two sets Za and Zb containing, respectively, the
first and the last 150 input–output pairs in Z . For different
orders of the rational transfer function, the model is obtained
solving (11) using the estimation data Za. Then, the one-step-
ahead prediction errors are computed with zero initial condi-
tions for the validation data Zb. The model order minimizing
the sum of the squared prediction errors is selected and the fi-
nal impulse response estimate is obtained solving (11) using Z .

• {PEM + BIC, PEM + AICc}: the same as above except that AIC-
type criteria select the model order.

• {TC, SS,DC}: the unknown coefficients of the multi-input ver-
sion of the ARXmodel (36) are estimated via ReLS. The length of
each predictor impulse response is 50. The regularization ma-
trices entering (the multi-input version of) (37) all consist of
TC (32) or SS (33) or DC (31) kernels, sharing a different scale
factor λ for every impulse response and a common variance de-
cay rate α. The innovation variance is obtained using a low-bias
ARX model (following the same approach described in the pre-
vious subsection). Then, hyperparameters are determined via
marginal likelihood optimization. To dealwith initial conditions
effect, the first 50 input–output pairs in Z are used just as en-
tries of the regression matrix.

The system inputs delay are assumed known and their values are
provided to all the estimators described above.

7.3.1. Results
Fig. 2 displays the average of the fits Fk defined in (40) as a

function of the prediction horizon k (left panel) and the MATLAB
boxplots of the 1000 values of F1 (right panel).

One can see that the performance of TC and SS is similar and
close to that of PEM + Oracle (even better for k ≤ 4). For what re-
gards DC, its average performance is always better than PEM + Or-
acle. These results are remarkable also recalling that TC, SS and
DC are estimators that can be used in real applications while
PEM + Oracle is an ideal tuning which has access to the test set.

Finally, one can see that the regularized approaches largely
outperform PEM equipped with CV and the Akaike-like criteria.
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Fig. 2. Identification of ARMAX models (Section 7.3). Left Average of the k-step ahead fits Fk as defined in (40). Right Boxplots of the 1000 values of F1 . Recall that
PEM + Oracle uses additional information, having access to the test set to perform model order selection.
Remark 7. How can the DC be better than the oracle? Nothing
can beat the oracle in the sense that PEM/OE equipped with any
model order selection rule cannot beat the oracle. But the model
order selection works with bias-variance trade-off among a finite
set of given models. Regularization deals with that trade-off using
a continuous set of regularization parameters, andmay in this way
come up with better performing trade-offs. Also, when studying
the results in Fig. 2, it is important to keep in mind that these
are experiments with relatively few (300) data, and quite complex
systems (orders 30).

Remark 8. We have also tested a variant of the regularized
algorithms given by TC with a single scale factor λ for all the regu-
larizationmatrices. In thisway, the dimensionof thehyperparame-
ter vector is independent of the number of system inputs, with the
marginal likelihood to be optimized just over a two-dimensional
space. The mean of the 20 fits values displayed in the left panel of
Fig. 2 only slightly reduces, passing from 46.6 to 43.6.

8. An example with a real process
In robotics, a good model of the robot is one key of the success

for high positioning accuracy/low tracking errors, which are per-
formance specifications and the driving elements for any servo de-
sign. In Torfs, Vuerinckx, Swevers, and Schoukens (1998) a process
with a vibrating flexible robot arm is described. The experimen-
tal data from this process have also been analyzed in Pintelon and
Schoukens (2012b, Section 11.4.4). The input is the driving couple
and the output is the acceleration of the tip of the robot arm. In to-
tal, 40960 data points were collected at a sampling rate of 500 Hz.
A portion of the input–output data is shown in the left panel of
Fig. 3. The right panel of the same figure displays the empirical fre-
quency function estimate obtained by these data. (This is imple-
mented in etfe.m of the MATLAB System Identification Toolbox
(Ljung, 2013).)

We have built models both using standard PEM and regular-
ized FIR-model techniques. Since the true system is unknown we
cannot evaluate the models by model fit to the actual system. In-
stead we use cross validation ideas, and measure how well the es-
timated models can reproduce the output on validation portions
of the data that were not used for estimation. We selected esti-
mation data to be the portion 1:7000 and the validation data to
be the portion 10,000:40,960. We estimated nth order state space
models without disturbance model for n = 1, . . . , 36 using the
prediction error method PEM (via the command pem(data,n,
‘dist’,‘no’)) and calculated their fit to validation data as in
(40). The fits are shown as a function of n in Fig. 4. The best
fit is 78.7% and obtained for order n = 18. Then, the regular-
ized FIR model (30) with order m = 3000 is estimated using
(19), with the DC kernel (31), tuned by the marginalized likeli-
hood method (29), and the unknown input data are set to zero.
(This method is available in MATLAB’s System Identification Tool-
box (Ljung, 2013) as the command impulseest(data,3000,0,
opt)where, in the optionopt, we setopt.RegulKernel=‘dc’;
opt.Advanced.AROrder=0.) The fit for a regularized FIR model
of order 3000 is 81.8% and clearly better than any of the PEM-
estimated state spacemodels. For illustration, this fit is also shown
in Fig. 4 as a horizontal line.

One can say that a FIR model of order 3000 is quite large, but
it is interesting to note that it can be reduced to low order state-
space models by L2 model order reduction. For example, the fit of
a reduced state-space model of order n = 15 is 79.5%, which is
better than the best PEM-estimated state space model.

One may also say that estimating a FIR model of order 3000 is
not practical. One way to deal with this issue is to decimate the
original data by a factor of 10 and repeat the tests. They show that
with the DC kernel, a regularized FIR model of order 300 gives a fit
of 87.0% while the best PEM-estimated state-space model has a fit
of 82.2%.

Part II. Function estimationby regularizedkernelmeth-
ods

In this part, we study function estimation by regularized kernel
methods.

9. Function estimation problem and RKHS

Methods for estimating (learning) a function g in a functional
relationship y = g(x) from observed samples of y and x are the
basic building blocks for black-box estimation techniques. Given a
finite set of pairs (xi, yi) ∈ X ×R, whereX is a non-empty set, the
goal is synthesizing a function g having a good generalization ca-
pability in the sense that, for a newpair (x, y), the prediction g(x) is
close to y (e.g. in theMSE sense). The classical parametric approach
uses a model gθ : X → R depending on a vector of parameters
θ ∈ Rm. A very simple example is a finite-dimensional polynomial
model, e.g. gθ (x) = θ1 + θ2x + θ3x2.
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Fig. 3. Identification of the flexible robot arm. Left The first 1000 pairs of input–output data: the input is the driving couple (bottom) and the output is the tip of the robot
arm (top). Right Magnitude of the empirical transfer function estimate (ETFE) constructed using all 40,960 data.
Fig. 4. Identification of the flexible robot arm. Values of F1 for different model
order n = 1, . . . , 36. The solid line is the fit for the regularized DC FIR model.

As mentioned in Part I, a well known parametric regression
method is the classical LS one: the vector θ is obtained by
minimizing a functional of the form

N
i=1

(yi − gθ (xi))2 (43)

that dates back to Gauss. It is convenient to adopt amodel which is
linear in the parameter vector θ , i.e. gθ (x) =

m
i=1 θiφi(x), where

the basis functions φi are fixed in advance. In this way, global min-
imization with respect to θ can be obtained just solving a linear
system of equations.

As already seen, within the parametric approach a major
issue is the choice of the model order m (dim(θ)), which is typ-
ically carried out by using model validation techniques, see Sec-
tion 3.1 and Ljung (1999), Söderströmand Stoica (1989). Increasing
the order improves the LS penalty eventually leading to data inter-
polation. However, overparameterized models, as a rule, perform
poorlywhen used to predict the output fromnew input data. A fur-
ther problem with overparameterized models is that the problem
ofminimizing (43)may become ill-posed in the sense of Hadamard
(1922). In particular, the solution may be highly sensitive to small
perturbations of the data yi. That is the same observation as ex-
pressed at the end of Section 2.4 that flexible models give higher
variance.
9.1. Regularization in reproducing kernel Hilbert spaces

Is there a way to reconcile flexibility of the model class with
well-posedness of the solution? The question has been extensively
investigated in the literature of inverse problems, opening the way
to regularization techniques (Tikhonov & Arsenin, 1977) that have
been widely adopted also in themachine learning literature. In the
specific case of function estimation, the regularization approach
is in fact an alternative paradigm to traditional parametric
estimation. Instead of constraining the unknown function to a
specific parametric structure, g is searched over a possibly infinite-
dimensional functional space H . The key ingredient to avoid
overfitting and ill-posedness is the introduction of a regularizer J
in the objective functional:

min
g∈H


N
i=1

(yi − g(xi))2 + γ J(g)


. (44)

The regularization term J(g) is designed so as to penalize undesired
behaviors. For instance, the regularizer given by the energy of first-
order derivative, i.e. J(g) =


(g(1)(x))2dx, penalizes the presence

of high-frequency components in the function g . The positive
parameter γ , which was already introduced in (19), controls the
relative importance of the error term

N
i=1(yi − g(xi))2, and the

regularizer J(g). A mathematically rigorous and elegant analysis
of regularization methods is possible when H is a Hilbert space,
namely a space endowed with an inner product ⟨·, ·⟩H , which
is complete (meaning that all the Cauchy sequences converge)
with respect to the induced norm ∥g∥H =

√
⟨g, g⟩H . In such a

case, a typical regularizer is the squared norm in the Hilbert space,
i.e. J(g) = ∥g∥2

H which leads to:

min
g∈H


N
i=1

(yi − g(xi))2 + γ ∥g∥2
H


. (45)

As for the Hilbert space H , a basic requirement is that every
function in the space be point-wise well defined everywhere on
X . In addition, we will assume that pointwise evaluations are
continuous linear functionals on H , i.e.

∀x ∈ X , ∃Cx < ∞ : |g(x)| ≤ Cx∥g∥H , ∀g ∈ H . (46)

Notice that the above condition is stronger than requiring g(x) <
∞ ∀x due to the fact that Cx can depend on x but not on g .

Definition 9 (RKHS). A reproducing kernel Hilbert space (RKHS)
over a non-empty set X is a Hilbert space of functions g : X → R
such that (46) holds.
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When a RKHS is adopted as hypothesis space, problem (45) is
well-posed: there exists a unique solution that is little sensitive to
perturbations of the data (Tikhonov &Arsenin, 1977). The theory of
RKHS has been mainly developed by Aronszajn (Aronszajn, 1950).
As suggested by the name itself, the concept of RKHS is strongly
linked with that of positive semidefinite kernel.

Definition 10 (Positive Semidefinite Kernel). Let X denote a non-
empty set. A symmetric function K : X ×X → R is called positive
semidefinite kernel if, for any finite natural number p, it holds
p

i=1

p
j=1

aiajK(xi, xj) ≥ 0, ∀(xk, ak) ∈ (X ,R) , k = 1, . . . , p.

Given a kernel K , the kernel section Kx ∈ H centered at x is
Kx(a) = K(x, a),∀a ∈ X . The following theorem provides the
connection between RKHS and positive semidefinite kernels.

Theorem 1 (Moore–Aronszajn). To every RKHS H there corresponds
a unique positive semidefinite kernel K , called the reproducing kernel,
such that the reproducing property holds:

g(x) = ⟨g, Kx⟩H , ∀(x, g) ∈ (X ,H ) . (47)

Conversely, given a positive semidefinite kernel K , there exists
a unique RKHS of real valued functions defined over X whose
reproducing kernel is K .

Remark 11. The Moore–Aronszajn theorem gives a one-to-one
correspondence between RKHS of functions and positive semidef-
inite kernels (Aronszajn, 1950). It follows that the Hilbert space
H is completely characterized by its reproducing kernel. This also
means that the kernel choice specifies both the hypothesis space
H and the regularizer J(g) = ∥g∥2

H entering the estimator (45).
In particular, from the proof of the theorem, e.g. reported on p.

35 of Cucker and Smale (2001), it follows that every RKHS is built
from the kernel as follows. First, consider all the functions of the
type g(x) =

p
i=1 aiKxi(x) for every choice of p, ai and xi. This de-

fines a subspace that is then equippedwith a suitable inner product
inducing the norm ∥g∥2

H =
p

i=1
p

j=1 aiajK(xi, xj) (see Cucker
and Smale (2001) for details). Finally, adding all the limits of
Cauchy sequences to this subspace provides the RKHS associated
with K . Thus, every function in the RKHS is a linear combination of
a possibly infinite number of kernel sections. Assume for instance
K(x1, x2) = exp


−∥x1 − x2∥2


. Then, all the functions in the cor-

responding RKHS are sums, or limits of sums, of functions pro-
portional to Gaussians. It can be shown that every function of the
space H inherits properties such as smoothness and integrability
of the kernel. This fact has an important consequence onmodeling:
instead of specifying a whole set of basis functions, it suffices to
choose a single positive semidefinite kernel function that encodes
the desired properties of the function to be synthesized.

9.2. The representer theorem

Hereby, let IN be the N × N identity matrix. In addition, the
(column) vector Y contains the available output measurements yi
while K ∈ RN×N is a positive semidefinite matrix (called kernel
matrix, or Gram matrix) such that Kij = K(xi, xj).

The importance of RKHS in the context of regularization meth-
ods stems from the following central result (Kimeldorf & Wahba,
1971b) showing that the solution of the variational problem (45)
admits a finite-dimensional representation.

Theorem 2 (Representer Theorem). If H is a RKHS, the minimizer
of (45) is

ĝ(x) =

N
i=1

ĉiKxi(x) (48)
where ĉ = [ĉ1, . . . , ĉN ]
T is given by

ĉ = (K + γ IN)−1 Y . (49)

Similarly to the traditional linear parametric approach, the optimal
function is a linear combination of basis functions. However, a fun-
damental difference is that the number of basis functions is now
equal to the number of data pairs, and is thus not fixed a-priori. In
fact, the basis functions appearing in the expression of the mini-
mizer ĝ are just the kernel sections Kxi centered on the input data.
The estimator (48)–(49) is also called in the literature regulariza-
tion network (Poggio & Girosi, 1990) or least squares support vector
machine (Suykens et al., 2002). Its asymptotic behavior, as N goes
to ∞, has been studied in many recent works, see e.g. Smale and
Zhou (2007) and Wu, Ying, and Zhou (2006), also in the context of
NARX identification (De Nicolao & Trecate, 1999).

Remark 12. More general versions of the representer theorem ex-
ist (Schölkopf et al., 2001). In particular, when the quadratic termsN

i=1(yi−g(xi))2 are replaced by general convex functions, e.g. the
Huber (Huber, 1981) or the Vapnik loss which leads to support
vector regression (Vapnik, 1998), (48) still holds under mild as-
sumptions. The adopted loss then determines how to obtain the
expansion coefficients: generally, in place of (49), ĉ requires the
solution of a (possibly non differentiable) convex optimization
problem.

9.3. The bias space ⋆

Sometimes, it can be useful to enrich the RKHS H with a
low-dimensional parametric part, the so called bias space. This is
typically defined by linear combinations of functions {φk}

m
k=1. E.g.,

if the unknown g exhibits a linear trend, one may let m = 2 and
φ1(x) = 1, φ2(x) = x, and assume that the unknown function is
sum of two functions, one inH and the other one in the bias space.
In other words, the hypothesis space is H + span{φ1, . . . , φm}.
Then, the estimated function is ĝ(x)+

m
k=1 θ̂kφk(x), where ĝ and

θ̂ solve

min
g∈H ,
θ∈Rm


N
i=1

(yi − g(xi)−

m
k=1

θkφk(xi))2 + γ ∥g∥2
H


. (50)

Note that the expansion coefficients gathered in θ are not subject
to any penalty term but a low value for m avoids overfitting.
An extension of the representer theorem holds (Schölkopf et al.,
2001): the function estimate is

N
i=1

ĉiKxi(x)+

m
k=1

θ̂kφk(x) (51)

where the ĉi and θ̂k are obtained optimizing (50) with g replaced
by
N

i=1 ciKxi . In particular, assume that Φ ∈ RN×m is full column
rank, with N ≥ m and Φij = φj(xi). Then, it follows from Theorem
1.3.1 in Chapter 1 ofWahba (1990) that θ̂ =


ΦTA−1Φ

−1
ΦTA−1Y

and ĉ = A−1

Y − Φ θ̂


, with A = K + γ IN .

10. Kernels

Since the reproducing kernel completely characterizes the
hypothesis space H , its choice has a crucial impact on the ability
of predicting future output data (generalization performance).
A large variety of positive semidefinite kernel functions have
been introduced in the literature over the years. In the following,
we limit the attention to few illustrative examples, referring
the interested reader to more comprehensive treatments of the
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subject, e.g. Hofmann, Schölkopf, and Smola (2008), Schölkopf and
Smola (2001) and Shawe-Taylor and Cristianini (2004).

10.1. Linear kernels and regularized linear regression ⋆

Let X = Rm with every input location x thought of as an m-
dimensional column vector. Let also P ∈ Rm×m denote a symmetric
and positive semidefinite matrix. Then, we can define a linear
kernel as follows

K(x1, x2) = xT1Px2.

The spaceH induced by suchK is simply a space of linear functions
g : Rm

→ R. In fact, from Remark 11 we know that each function
is a linear combination of kernel sections. In this particular case, it
is not difficult to verify that for every g(x) there exists a ∈ Rm such
that g(x) = Ka(x) = xTPa. If P is assumed of full rank, H contains
all the functions

g(x) = xT θ, θ ∈ Rm

where θ := Pa. Furthermore, ∥g∥2
H is given by

⟨Ka(·), Ka(·)⟩H = K(a, a) = aTPa = θ TP−1θ.

Then, the regularization problem (45) can be reformulated (in
terms of θ ) as

min
θ∈Rm


∥Y − Φθ∥2

+ γ θ TP−1θ


where the ith row ofΦ is xTi . This is now exactly the ReLS formula-
tion derived as (19) in Part I. Notice that the regularization matrix
P , defining the kernel K , induces the penalty term θ TP−1θ . In ad-
dition, if xi includes past values of the system input, the entries of
θ are the unknown impulse response coefficients. This establishes
a correspondence between regularized FIR estimation and RKHS
regularization via linear kernels. Another correspondence will be
stated in Part III (Section 11.3).

10.2. Kernels given by a finite number of basis functions ⋆

Let the map φ : X → Rm be φ(x) =

φ1(x) · · · φm(x)


and

let K(x1, x2) = φ(x1)φ(x2)T . It is easy to verify that K is a posi-
tive semidefinite kernel, and the associated RKHS coincides with
the m-dimensional space spanned by the basis functions φi. The
associated kernel matrix is given by K = ΦΦT , where Φ ∈ RN×m

withΦij = φj(xi). Then, the solution of (45) is (48)where ĉ satisfies
θ̂ = ΦT ĉ with

θ̂ = arg min
θ∈Rm


∥Y − Φθ∥2

+ γ ∥θ∥2 s.t. θ = ΦT c. (52)

In particular, one has4

θ̂ = ΦT ΦΦT
+ γ IN

−1
Y =


ΦTΦ + γ Im

−1
ΦTY

that again coincides with the classical ReLS formula (19) intro-
duced in Part I with P = Im.

10.3. Radial basis kernels

The class of continuous positive semidefinite kernels

K(x1, x2) = h(x1 − x2), (53)

4 Notice that the optimal solution θ of the unconstrained problem (52)
automatically satisfies the constraint θ = ΦT c , and therefore the latter can be
dropped without loss of generality.
includes the class of radial basis kernels (RBF) of the form
K(x1, x2) = g(∥x1 − x2∥), such as the popular Gaussian kernel

K(x1, x2) = exp

−ρ∥x1 − x2∥2 , ρ > 0. (54)

Differently from the kernels described in Sections 10.1 and 10.2,
the RKHS associated with any non-constant RBF kernel is infinite-
dimensional (it cannot be spanned by a finite number of basis
functions). An explicit characterization of the associated RKHS is
described in Steinwart (2002) and Steinwart, Hush, and Scovel
(2006).

10.4. Spline kernels

To simplify the exposition, let X = [0, 1]; let also g(j) be the jth
derivative of g , with g(0) := g . Intuitively, in many circumstances
an effective regularizer is obtained by penalizing the energy of the
pth derivative of g , i.e.

J(g) =

 1

0


g(p)(x)

2
dx.

Now, an interesting question is whether this penalty term can be
cast in the RKHS theory. The answer is positive. In fact, consider
the Sobolev space of functions g whose first p − 1 derivatives are
absolutely continuous and satisfy g(j)(0) = 0 for j = 0, . . . , p − 1
(Adams & Fournier, 2003). Then, this is a particular RKHS H if the
norm is defined by

∥g∥2
H =

 1

0


g(p)(x)

2
dx.

The corresponding kernel is the so called spline kernel

K(s, t) =

 1

0
Gp(s, u)Gp(t, u)du (55)

where

Gp(r, u) =
(r − u)p−1

+

(p − 1)!
, (u)+ =


u if u ≥ 0
0 otherwise. (56)

Note that the Laplace transform of Gp(·, 0) is 1/sp. When p = 1,
one obtains the linear spline kernel given by

K(s, t) = min{s, t} (57)

whereas p = 2 leads to the cubic spline kernel:

K(s, t) =
st min{s, t}

2
−
(min{s, t})3

6
. (58)

When the kernel (55) is adopted, it follows from the representer
theorem that the estimate ĝ is a smoothing spline, whose deriva-
tives are continuous exactly up to order 2p − 2 (Wahba, 1990). As
an example, from (58) one can see that for p = 2 the kernel sec-
tions Kxi , whose linear combinations provide ĝ , are the well known
cubic smoothing splines consisting of piecewise third-order poly-
nomials, see also Fig. 5.

Spline functions enjoy notable numerical properties originally
investigated in the interpolation scenario. In particular, piecewise
polynomials avoid Runge’s phenomenon (Runge, 1901) (presence
of large oscillations in the reconstructed function) which e.g. arises
when high-order polynomials are employed. Fit convergence rates
are discussed e.g. in Ahlberg and Nilson (1963) and Atkinson
(1968).

Recall that the spline kernel induces an infinite-dimensional
RKHS of functions which all satisfy the constraints g(j)(0) = 0 for
j = 0, . . . , p − 1. Then, to cope with nonzero initial conditions,
the spline kernel is typically enriched with a low-dimensional
parametric part (the bias space already discussed in Section 9.3)
given by the space of polynomials up to order p − 1. The enriched
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Fig. 5. Cubic spline kernel (top) and kernel sections Kxi (x) for xi = 0.1, 0.2, . . . , 1
(bottom).

space is H ⊕ span{1, x, . . . , xp−1
} and the spline estimator solves

min
g∈H ,

θ∈Rp

 N
i=1


yi − g(xi)−

p
k=1

θkxk−1
i

2

+ γ

 1

0


g(p)(x)

2
dx


(59)

whose explicit solution is given by (51) setting φk(x) = xk−1 and
Φij = xj−1

i .

10.5. Numerical example using the cubic spline estimator
To illustrate the effect of the regularization parameter γ on the

performance of ReLS, we consider a simple numerical example.
The problem is the reconstruction of esin(8x), x ∈ [0, 1], from 100
noisy samples obtained fromuniform sampling of the independent
variable on the unit interval. Data are corrupted by additive white
Gaussian noise with standard deviation 0.3, see Fig. 6. We adopt
the estimator (59) with p = 2. The results associated with three
different values of γ are displayed in the three panels of Fig. 6. The
estimate in the left panel is affected by oversmoothing: the value of
γ is too large overweighting the normof g in (59). This introduces a
large bias in the estimator: the model is too rigid, unable to follow
the data. The opposite situation is visible in themiddle panelwhere
a too low value for γ is used. In turn, this overweights the loss
function in (59), leading to a high variance estimator: the model is
overly flexible and overfits themeasurements. Finally, the estimate
in the right panel of Fig. 6 is obtained using an oracle which has
access to the true function and minimizes the MSE. It selects that
value of γ , denoted by γopt , that establishes the optimal trade-
off between bias and variance, returning the regularized estimate
closest to truth according to a quadratic criterion. The example
demonstrates that the choice of γ can be seen as the counterpart
of model order selection in the classical parametric paradigm.

10.6. Concluding remarks of the section

The regularized estimator (45) has been introduced, pointing
out the importance of the kernel that defines the hypothesis space
and the regularization penalty.

Regularized estimation has been widely used in applications
fields related to statistics and machine learning. In recent years,
it has been exploited also for nonlinear system identification
and prediction, mainly resorting to Gaussian or polynomial
kernels (Schölkopf & Smola, 2001). Diverse applications call for
different definitions of the function domain X . For instance, in
the algorithms for NARX identification and time-series prediction
described in Girard, Rasmussen, Quinonero-Candela, and Murray-
Smith (2003), Leithead, Solak, and Leith (2003) and Pillonetto,
Chiuso, and Quang (2011), the elements of X are vectors
containing system input samples. Regularized approaches for
estimation of partially linear models can be found in Espinoza,
Suykens, and De Moor (2005), Li, Li, Su, and Chun (2006) and
Xu and Chen (2009). There, the linear behavior is captured by a
parametric model (the bias space) while the nonlinear distortion
is estimated by kernel-based techniques. Other regularized
approaches for nonlinear and state-spacemodels identification can
be found in Frigola, Lindsten, Schon, and Rasmussen (2013), Frigola
and Rasmussen (2013) and Hall, Rasmussen, and Maciejowski
(2012). A connection between Volterra and Wiener nonlinear
system representation and the RKHS induced by the polynomial
kernel, together with an efficient identification scheme, can be
found in Franz and Schölkopf (2006). Other recent applications
regard Wiener, Hammerstein and Wiener–Hammerstein system
identification (Falck et al., 2012; Falck, Pelckmans, Suykens, &
De Moor, 2009; Goethals, Pelckmans, Falck, Suykens, & De Moor,
2010; Goethals, Pelckmans, Suykens, & De Moor, 2005; Lindsten,
Schön, & Jordan, 2013). For example, in Lindsten et al. (2013) the
elements of X are the outputs coming from the linear block of
the Wiener structure. A Gaussian kernel is then used to recover
the static nonlinearity present in the second block. Conditions
ensuring the statistical consistency of this identification scheme
have been derived in Pillonetto (2013) using RKHS theory.

Part III. Continuous-time system identification as a
function estimation problem

In this part, we study continuous-time system identification as
a function estimation problem.

11. Impulse response estimation problem

There is a particular linear system identification problem that
naturally lends itself to being solved using the function estimation
techniques previously described. This happenswhen a linear time-
invariant system is excited by an impulsive input and noisy
samples of its output are collected. Then, the identification of the
impulse response is perfectly equivalent to learning a univariate
function of time. In the following, this simple scenario will be
referred to as the static case. It is apparent that assuming an
impulsive input is too restrictive in system identificationwhere, as
seen in Part I, it is necessary to consider dynamic scenarios inwhich
the system is excited by arbitrary inputs (Ljung, 1999; Söderström
& Stoica, 1989).

Hereafter, we will consider continuous-time single-input–
single-output (SISO) dynamic systems. We also assume that the
system is linear, time-invariant, and causal, denoting with u the
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Fig. 6. Cubic spline estimates using three different values of γ : truth (solid line), noisy data (◦) and estimate (dashed line).
input and with y(ti) the output measured at the time instant ti.
Assuming an output error model, one has

y(ti) =


+∞

0
u(ti − s)g(s)ds + ei, i = 1, . . . ,N (60)

where ei is white noise and the unknown function g is now the
system impulse response. Let

yi = y(ti), Y = (y1, y2, . . . , yN)T .
Then, the identification problem consists of reconstructing g
starting from a known input u and Y . Compared to the static
scenario described in the previous sections, the following two
peculiarities can be noticed:
• the domain of the function g is one-dimensional and given by

the positive real axis, i.e. X = R+ and g : R+
→ R;

• compared to the static case, the nature of the data is more
complex since, in place of g(xi), the measurement model
involves the functional Li given by

Li[g] =


+∞

0
u(ti − s)g(s)ds.

As mentioned in the preamble, inverting this convolution integral
is an inverse problem associated with potentially ill-conditioned
numerical solutions, e.g. see Twomey (1977). Ill-conditioning is
particularly severe when u is a low-pass/smooth signal and wors-
ens when the output signal is sampled more frequently, i.e. when
more information comes from the system. In the case of uniform
sampling, these phenomena can be given a spectral characteriza-
tion using the Szegö theorem (Ekstrom, 1973). So, the problemarea
should benefit from the classical regularization works of Tikhonov
and Phillips (Phillips, 1962; Tikhonov & Arsenin, 1977) as well
as from the connection between regularization techniques for in-
verse problems and the function estimation paradigm of Part II,
see also De Vito, Rosasco, Caponnetto, De Giovannini, and Odone
(2005). In the next subsection, along the line developed in Pil-
lonetto and De Nicolao (2010), we extend the RKHS framework to
SISO linear system identification.

11.1. Regularized identification in RKHS and the representer theorem
for system identification

Following the framework described in Section 9, the impulse
response g is seen as an element of the RKHS H associated with a
‘‘causal’’ kernel K : R+

× R+
→ R. For the time being, K will be

a generic kernel (the choice of the most suitable kernel for system
identification will be discussed later in Section 13). The use of the
regularizer ∥g∥2

H to avoid ill-posedness and ill-conditioning leads
to the estimator

min
g∈H


N
i=1

(yi − Li[g])2 + γ ∥g∥2
H


(61)

that coincides with (45) except that Li[g] replaces g(xi).
For future developments, given the system input u, it is useful
to define the output kernel O as follows

O(t, τ ) =


+∞

0
u(t − x)


+∞

0
u(τ − a)K(x, a)da


dx

and the output kernel matrix O ∈ RN×N as a positive semidefinite
matrix with (i, j) entry given by

Oij = Li[Lj[K ]] = O(ti, tj). (62)

From the Theorem 2 (representer theorem), we have seen that
a remarkable feature of problem (45) is that it admits a finite-
dimensional representation. One may wonder whether this holds
also for the solution of (61). The answer is positive if the linear
functionals Li are continuous on H , i.e. if

∀i ∃Ci < ∞ : |Li[g]| ≤ Ci∥g∥H , ∀g ∈ H .

From RKHS theory it is known that the linear functional Li is
continuous iff Li[Kx] is a function in H , see Aronszajn (1950) for
details.

Theorem 3 (Representer Theorem for System Identification). If H is
a RKHS induced by K and each Li : H → R is a continuous linear
functional, the minimizer of (61) is

ĝ(x) =

N
i=1

ĉiLi[Kx] (63)

where the ĉi are the components of

ĉ = (O + γ IN)−1 Y . (64)

The result above is obtained following the same arguments of the
proof of Theorem 1.3.1 in Wahba (1990), see also Yuan and Tony
Cai (2010) where asymptotic properties of the estimator (63) are
also discussed.

Thus, also the solution of the variational problem (61) admits
a finite-dimensional representation. The difference w.r.t. the static
case is that the basis functions are nomore the kernel sections, but
their convolution with the input u, i.e. Li[Kx] =


+∞

0 u(ti − a)K
(x, a)da. As in the static case, more general versions of Theorem 3
can be found, e.g. see Dinuzzo and Schölkopf (2012).

11.2. The bias space ⋆

As in the static case, it can be useful to enrich the estimator (61)
with a parametric component, e.g. a low-order rational transfer
function. An approach consists of using an enlarged space, already
introduced in Section 9.3, given by H + span{φ1, . . . , φm}. Thus,
the impulse response is assumed to be g +

m
k=1 θkφk with g ∈ H

and the regularization problem (61) is modified as follows

min
g∈H ,
θ∈Rm

N
i=1


yi − Li


g +

m
k=1

θkφk

2

+ γ ∥g∥2
H . (65)
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Again, assume Φ ∈ RN×m, with N ≥ m, of full rank and defined
by Φij = Li[φj]. Then, using Theorem 1.3.1 in Wahba (1990), the
estimate is

N
i=1

ĉiLi[Kx] +

m
k=1

θ̂kφk(x) (66)

where θ̂ =

ΦTA−1Φ

−1
ΦTA−1Y and ĉ = A−1


Y − Φ θ̂


, with

A = O + γ IN .

11.3. Regularized FIR estimation as regularization in RKHS⋆

Even if stated in a continuous-time fashion, all the theory so far
exposed holds on general function domains. Hence, it also covers
the discrete-time setting. For instance, IIR systems can be handled
considering X = N. Then, all the results above hold just replacing
continuous-time convolutions with their discrete-time versions,
i.e. Li[g] =


+∞

j=1 u(ti − j)g(j). It is also instructive to discuss in
some depth the connection of the RKHS framework with the FIR
case treated in Part I. This will give also some insight about the
nature of the RKHS norm entering (61).

First, recall that in Part I the estimate of the vector θ containing
the FIR coefficients was

θ̂ = argmin
θ

∥Y − Φθ∥2
+ γ θ TP−1θ. (67)

Let gθ denote the impulse response such that gθ (i) = θi. We now
show that there exists a suitably defined RKHS (dependent on P)
such that the function estimation problem (61) is equivalent to (67)
in the sense that ĝ(i) = θ̂i, i = 1, . . . ,m, where θ̂i is the ith entry
of θ̂ .

To state the connection, it suffices introducing the following
correspondences:

X = {1, 2, . . . ,m} (68a)
K : X × X → R s.t. K(i, j) = Pij (68b)

Li[gθ ] = Φ(i, :)θ (68c)

whereΦ(i, :) denotes the ith row ofΦ . In fact, since P is a symmet-
ric and positive semidefinite matrix, K is a positive semidefinite
kernel. Therefore, Theorem 1 says that there is a unique RKHS H

of real valued functions over {1, 2, . . . ,m} having K as reproduc-
ing kernel. Notice that there exist only m kernel sections given by
the m columns of P . Therefore, recalling Remark 11, each gθ ∈ H

has the representation

gθ (x) =

m
j=1

ajK(j, x) (69)

with ∥gθ∥2
H = aTPa, where a = [a1, . . . , am]

T . Using the defi-
nition of gθ and (69), one obtains θi = gθ (i) =

m
j=1 ajK(j, i) =

P(i, :)a. It follows that θ = Pa and ∥gθ∥2
H = θ TP−1θ . Hence, un-

der the assumptions (68), (67) coincides with (61). From elemen-
tary algebra,we also obtain that the solution θ̂ admits the following
two equivalent expressions

θ̂ = (ΦTΦ + γ P−1)−1ΦTY (70a)

= PΦT (ΦPΦT
+ γ IN)−1Y . (70b)

It is interesting to notice that the last expression (70b) can be de-
rived from the representer theorem. In fact, each basis function
Li[Kx] corresponds to the ith columnof PΦT . In addition, the expan-
sion coefficients are ĉ = (ΦPΦT

+ γ IN)−1Y . This last equivalence
is in perfect agreement with (64): in fact, the last correspondence
in (68), in combination with (62), leads to the output kernel matrix

O = ΦPΦT . (71)
Finally, the correspondence can be stated also in the case of sin-
gular P . In fact, under assumption (68), even if P is not full rank,
the representer theorem still guarantees that (70b) is the solution
of (61) and this coincides with the solution of (20) discussed in
Remark 1.

12. Connection with Bayesian estimation of continuous-time
Gaussian stochastic processes

As in the FIR case, the kernel-based regularization approach de-
scribed in the previous section can be given a probabilistic inter-
pretation in a Bayesian framework. This connection was initially
studied in Kimeldorf and Wahba (1971a) in the context of spline
regression, see also Girosi, Jones, and Poggio (1995), Rasmussen
and Williams (2006) and Wahba (1990). The main point is to see
the function estimation problem as the Bayesian estimation of a
continuous-time Gaussian stochastic process on R+, from noisy
observations.

To set up our Bayesian framework, the N entries of Y are mod-
eled as in (60), i.e. yi = Li[g] + ei, where

• the ei are zero-mean Gaussian of variance σ 2, mutually inde-
pendent and independent of g;

• the system impulse response g is a zero-mean Gaussian
stochastic process, on R+, with autocovariance λK and inde-
pendent of ei.

Thus, the prior knowledge on g is given within the probabilistic
description of the random process. To make an example, smooth-
ness can be enforced by selecting a covariance K such that irreg-
ular profiles, e.g. nondifferentiable functions, are probabilistically
unlikely. Notice also that giving a probabilistic description of an
unknown signal is not new in the systems and control literature, a
paradigmatic example being given by the theory of Wiener filter-
ing, prediction and smoothing (Wiener, 1949).

Given (column) random vectors u and v, we define Cov[u, v] :=

E [(u − E [u])(v − E [v])T ]. Since linear transformations of Gaus-
sian processes preserve Gaussianity, the vector z = [L1[g] . . .
LN [g]] (the noiseless output evaluated at time instants ti) is amulti-
variate zero-mean normal vector. Furthermore, since Cov(zi, zj) =

λLi[Lj[K ]], the covariance matrix of z is λO, where O is the output
kernelmatrix defined in (62). In view of (60) and the independence
of g and ei, it follows that g(x) and Y are jointly Gaussian for any
x ∈ R+. Hence, the posterior p(g(x)|Y ) is Gaussian as well, as re-
called in (25). In our case we obtain (Papoulis, 1984)

Cov(g(x), zi) = λLi[Kx]

Cov(yi, yj) = Cov(zi, zj)+ σ 2δij = λOij + σ 2δij

where δij is the Kronecker Delta. Using (25) with γ =
σ 2

λ
:

E [g(x)|Y ] = [L1[Kx] . . . LN [Kx]] (O + γ IN)−1 Y =

N
i=1

ĉiLi[Kx]

where ĉi is the ith entry of vector ĉ defined in (64). Hence, themin-
imum variance estimate coincides with the solution of (61) when
the properH is chosen. This is summarized in the following propo-
sition.

Proposition 13. Consider (60) where
• the ei are independent and Gaussian, of variance σ 2;
• the system impulse response g is a zero-mean Gaussian stochastic

process, independent of the noise, with autocovariance λK.

Let H be the RKHS induced by K . Then, given Y , the minimum
variance estimate of g(x) is ĝ(x) where

ĝ = arg min
g∈H


N
i=1

(yi − Li[g])2 + γ ∥g∥2
H


, γ =

σ 2

λ
.
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13. Kernels for continuous-time system identification

13.1. The Gaussian and the cubic spline kernels are not suited to
impulse response estimation

Consider a very simple causal impulse response given by g(x) =

e−x, x ∈ R+. We consider the problem of estimating g when the
system input is a unit impulse at 0 and 100 noisy output samples
are uniformly collected in the interval [0, 0.5]. The measurement
noise is additive and Gaussian with variance equal to 0.01.

We consider a Monte Carlo study of 300 runs. At each run a
different set of noisy measurements is generated, an example be-
ing reported in the top left panel of Fig. 7. Notice that, in view of
the impulsive nature of u, the function g can be reconstructed ex-
ploiting the static scenario described in Part II. In particular, the
impulse response is estimated by solving Problem (45) adopting
a quadratic loss function. Concerning the choice of the kernel, we
will first test the performance of the cubic spline kernel defined in
(58), equipped with the bias space accounting for non zero initial
conditions, and then the Gaussian kernel reported in (54). At any
run j, the optimal regularization parameter γ , as well as the Gaus-
sian kernel width ρ, are those maximizing the fit measure

100%

1 −

 1
0 (ĝj(x)− g(x))2dx 1

0 (g(x))
2dx


where ĝj is the impulse response estimate obtained at the jth run.
Fig. 7 (top right) shows the 300 estimates of g obtained by the cu-
bic spline kernel. One can see that g(0) tends to be underestimated
and that the variance of the estimator is large. In fact, many esti-
mates exhibit oscillations and ĝj tends to diverge as x increases. The
average fit is 79%.

The bottom left panel shows the same kind of results but
obtainedusing theGaussian kernel. One can see that it outperforms
the cubic spline kernel but the variance of the estimator is still
large. Oscillations are visible in many estimates ĝj and the average
fit is 89%.

This system identification problem is rather simple because g
is very basic and its noisy samples are directly available. However,
even if such a favorable setting is seldom encountered in practice,
this example demonstrates that a straight application of standard
machine learning techniques, based on kernels including only
smoothness information, is doomed to produce poor estimates in
the system identification field.

13.2. The notion of stable kernel and sufficient conditions for kernel
stability

Here, and in the sequel, all the introduced kernels are causal,
i.e. different from zero only on R+

× R+.
The poor performances of the Gaussian and spline kernels in

impulse response identification stem from the lack of constraints
on systemstability. Let us discuss this issueunder the deterministic
RKHS framework. The necessary and sufficient condition for a
system to be BIBO stable is that g ∈ L 1, where L 1 is the space
of functions on R+ such that

R+

|g(x)|dx < ∞.

Therefore, the impulse response should be searched for in a RKHS
which is a subspace of L 1.

Definition 14. Let H be the RKHS induced by a kernel K . Then, K
is said to be stable if H ⊂ L 1.

It turns out that integrability is a sufficient condition for a kernel
to be stable (Carmeli, Vito, & Toigo, 2006).
Proposition 15. Let H be the RKHS induced by K . Then,
R+


R+

|K(x1, x2)|dx1dx2 < ∞ H⇒ H ⊂ L 1. (72)

In addition, considering only nonnegative-valued kernels K+, i.e. K+

(x1, x2) ≥ 0,∀x1, x2 ∈ R+, the condition becomes also necessary:
R+


R+

K+(x1, x2)dx1dx2 < ∞ ⇐⇒ H ⊂ L 1. (73)

Hence, when the impulse response is searched within a RKHS,
an integrable kernel enforces BIBO stability.

Now, consider the Gaussian kernel (54) which is nonnegative.
For every ρ > 0, it is easy to see that it does not satisfy the
necessary and sufficient stability condition (73)

R+


R+

exp

−ρ(x1 − x2)2


dx1dx2 = +∞.

This implies that the Gaussian kernel is not stable, see also Minh
(2006). Hence, it is not suited for system identification. The same
holds for the spline kernels (57) and (58) over R+

× R+.

Remark 16. Notice that every kernel can be easilymade stable just
by truncation, i.e. setting K(x1, x2) = 0 for x1, x2 > T . However,
stable kernels, e.g. such that K(x, x) > 0 for all x ∈ R+, encode the
information that the variability of g is asymptotically decreasing.
For instance, in Fig. 7 the Gaussian kernel performance would not
be satisfactory also introducing a truncation as oscillations would
still be present.

Remark 17. The limitations of the Gaussian and spline kernels for
impulse response estimation can also be understood resorting to
the Bayesian interpretation of regularization,where the kernels are
seen as the covariances of Gaussian processes. Considering e.g. the
radial basis class, the covariance admits the representation h(|x1 −

x2|), so that it can only describe stationary stochastic processes.
This means that the variance of g is constant over time whereas
the variability of a stable impulse response is expected to be
asymptotically decreasing. Spline kernels are even worse because
the signal variance is asymptotically increasing. This explains the
undue oscillations affecting the estimates in the top right and
bottom left panel of Fig. 7.

13.3. The necessary and sufficient condition for kernel stability ⋆

For 1 ≤ p ≤ ∞, let L p the classical Lebesgue space of p-power
integrable functions on R+. In particular, L ∞ denotes the space
of the essentially bounded functions with respect to the Lebesgue
measure (Rudin, 1987). The following definition derives from the
more general Definition 4.1 in Carmeli et al. (2006).

Definition 18. Let 1 ≤ p ≤ ∞ and q =
p

p−1 with the convention
p

p−1 = ∞ if p = 1 and p
p−1 = 1 if p = ∞. Then, the kernel K is

said to be q-bounded if

(1) the kernel section Kx ∈ L p for almost all x, i.e. for every x ∈ R+

except on a set of null Lebesgue measure,
(2) the function


R+ K(x, a)f (a)da ∈ L p for all f ∈ L q.

It turns out that q-boundedness is the key condition for a kernel
to induce a RKHS contained in L p. In turn, this implies that the
concepts of stable kernel and ∞-bounded kernel are equivalent,
see also Proposition 4.2 in Carmeli et al. (2006).
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Fig. 7. The left top panel shows the true impulse response (thick line) and one out of the 300 noisy data sets (◦). The other three panels display the true impulse response
(thick line) and the 300 impulse response estimates obtained using the cubic spline, the Gaussian and the stable spline kernel. The optimal regularization parameters,
minimizing the reconstruction error, are adopted at any run.
Theorem 4. Let H be the RKHS induced by K . Then, one has

H ⊂ L p
⇐⇒ K is q-bounded.

In particular, setting q = ∞, one obtains

H ⊂ L 1
⇐⇒


R+


R+

K(x, a)f (a)da
 dx < +∞, ∀f ∈ L ∞.

(74)

Some final remarks are in order. It can be shown that the integra-
bility of a kernel K implies its ∞-boundedness, see Corollary 4.1
in Carmeli et al. (2006), and this leads to the stability sufficient con-
dition (72). Also, if a nonnegative-valued and ∞-bounded kernel
is given, using f = 1 ∈ L ∞ in (74), one obtains that the kernel is
also integrable. Hence, when nonnegative-valued kernels are con-
sidered,∞-boundedness and integrability are equivalent concepts
and this leads to (73).

13.4. The optimal continuous-time kernel

In this subsection, we generalize the concept of best regular-
ization matrix derived in Section 4.2 for the FIR case (X = {1,
2, . . . ,m}) to the continuous-time setting (X = R+). Assume that
the data have been generated by (60) for a certain ‘‘true’’ impulse
response g0. We use ḡ0 and ˆ̄g to denote any finite-dimensional vec-
tor obtained by sampling on the same arbitrary input locations g0
and its estimate ĝ from (61). We can then design K minimizing the
MSE given by

MSEĝ = E


( ˆ̄g − ḡ0)( ˆ̄g − ḡ0)T


. (75)

Then, the next result (whose proof is reported in the Appendix)
shows that there exists one choice leading to the optimal kernel,
which is the natural generalization of that described in discrete-
time by Proposition 3.

Proposition 19 (Optimal Kernel for a Given g0). Consider (61) with
γ = σ 2 and K̂ the kernel defined by

K̂(xi, xj) = g0(xi)g0(xj), (xi, xj) ∈ X × X . (76)

Then, for every kernel K , the matrix in (75) obeys the following matrix
inequality

MSEĝ(K̂) ≼ MSEĝ(K), (77)

i.e. the matrix MSEĝ(K)−MSEĝ(K̂) is positive semidefinite for any K .

Hence, (76) defines the RKHS to be used in (61) to obtain the
best achievable performance of ReLS.

As done in the discrete-time setting, we can ask a related
question, still from a frequentist perspective: Over a certain set
of randomized true impulse responses, modeled as stochastic
processes with E g0(xi)g0(xj) = K(xi, xj), what is the regularizer
which, coupled with a quadratic loss, leads to the best average
MSE? The answer is in the following proposition (the proof is
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similar to that of Proposition 19 contained in the Appendix and is
therefore omitted).

Proposition 20. Consider (61) with γ = σ 2. Then, the best average
(expected) MSE for a random true system g with E g0(xi)g0(xj) =

K(xi, xj) is obtained using the RKHS induced by K as hypothesis space
and J(g) = ∥g∥2

H as regularizer.

Note that Proposition 20 is an exact counterpart of Proposi-
tion 4. It has also analogies with Proposition 13 but here the im-
pulse response can be a non Gaussian stochastic process.

13.5. Stable spline kernels and their relationship with TC and SS

We now discuss a class of exponentially stable kernels.
We start noticing that, according to Proposition 19, the optimal

kernel is such that its diagonal K(t, t), as well as its off diagonals,
decay exponentially to zero. The key idea developed in Pillonetto
and De Nicolao (2010) to build a stable kernel which has these
two features is an exponential change of coordinates to remap
R+ into [0, 1], then using a spline kernel for functions defined
there. This leads to the class of so called stable spline kernels
which, by construction, inherit all the approximation capabilities
of the spline curves (Atkinson, 1968), but, different from them, are
intrinsically stable. This class has been also derived using Bayesian
andmaximum entropy arguments: in some sense it represents the
least committing priors when smoothness and stability is the sole
information on g (Pillonetto & De Nicolao, 2011).

Now, let K be the general spline kernel on [0, 1]2 reported in
(55). Then, it follows from the discussion above that the stable
spline kernel S of order p is defined by

S(x1, x2) = K(e−βx1 , e−βx2), (x1, x2) ∈ R+
× R+. (78)

Notice that S depends on β ∈ R+ that regulates the change of
coordinates and can be thought of as a kernel parameter related
to the dominant pole of the system.

Using Proposition 15, one can verify that S is stable for every
β > 0 and order p, whose choice controls the degree of regularity
of g . Typical values are p = 1 or p = 2. Setting p = 1 one obtains

S(x1, x2) = e−βmax(x1,x2). (79)

Letting α = exp(−β), one can see that the sampled version of this
kernel becomes αmax(i,j), for i, j ∈ N, which coincides with the TC
kernel (32).

The choice p = 2 instead leads to the second-order stable spline
kernel (see also Fig. 8), i.e.

S(x1, x2) =
e−β(x1+x2+max(x1,x2))

2
−

e−3βmax(x1,x2)

6
. (80)

Letting again α = exp(−β), its sampled version now leads to
the SS kernel (33). Hence, remarkably, both the TC and SS kernels
introduced in Part I are deeply connected with the smoothing
splines.

Let us now investigate the nature of the RKHS induced by the
stable spline kernels, focusing just on the case p = 1. The RKHS
norm associated with (79) is Pillonetto et al. (2010)

∥g∥2
H =


R+


g(1)(x)

2 eβx

β
dx.

This equation gives insights on the nature of the hypothesis space:
compared to the classical Sobolev space induced by the linear
spline kernel, the norm, besides the energy of the first-order
derivative of g , includes also a weight proportional to eβx. Thus,
S induces a space of continuous and stable functions which decay
to zero at least exponentially.
Fig. 8. Stable spline kernel of order p = 2, β = 1 (top) and kernel sections Kxi (x)
for xi = 0.2, 0.4, . . . , 2 (bottom).

Let us now reconsider the simulation study of Section 13.1.
The bottom right panel of Fig. 7 plots the 300 impulse response
estimates obtained using the stable spline kernel of order 2 and
the optimal values of γ and β computed at any run. The benefit of
including the stability constraint in the nonparametric estimator is
apparent: all the estimates are close to the true impulse response.
The average fit is 96.6%.

14. Tuning of the design parameters

Tuning of the kernel and regularization parameters contained
in the vector η ∈ Γ is the counterpart of model order selection in
the classical parametric paradigm. Therefore, it has amajor impact
on the identification performance. Some effective tuning methods
are described in the following.

14.1. Marginal likelihood optimization

The technique here introduced was already briefly discussed in
Section 4.4 and adopted in the numerical experiments of Section 7
in Part I. It is rooted into the probabilistic interpretation of problem
(19) and its more general version (61). The impulse response
is seen as a zero-mean Gaussian stochastic process (or random
vector) of covariance λK and the vector η contains the scale factor
λ, the parameters entering the kernel K and possibly also the noise
variance σ 2.

The hyperparameter vector η is estimated by optimizing
the so called marginal likelihood p(Y |η), i.e. the joint density
p(Y |g, η)p(g|η) where the dependence on the unknown impulse
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response is integrated out. In particular, define Z(η) = λO(η) +

σ 2IN where the output kernel matrix O was defined in (62). Then,
exploiting the Gaussianity of g and the measurements noise, one
has

η̂ = arg min
η∈Γ

Y TZ(η)−1Y + log det(Z(η)), MargLik. (81)

Note that, when the discrete-time version of O given by (71) is
used, (81) coincides with (29) introduced in Part I, with Z(η) given
by (28).

By relying upon marginalization, this tuning method relates to
the concept of Bayesian evidence and embodies the Occam’s razor
principle, i.e. unnecessarily complex models are automatically
penalized. See Cox (1946) and MacKay (1992) for nice discussions
and also Section 6.6 of MacKay (1992) for a comparison between
this approach and cross validation. Some theoretical results
which corroborate its robustness, by finding connections with
MSE minimization, are described in Aravkin, Burke, Chiuso, and
Pillonetto (2012) and Carli, Chen, Chiuso, Ljung, and Pillonetto
(2012).

Once η is determined, following the Empirical Bayes paradigm
(Berger, 1985; Maritz & Lwin, 1989), the impulse response can
be computed by (61) setting γ = σ 2/λ and using the represen-
ter theorem. Full Bayes approaches have been also developed ex-
ploiting stochastic simulation techniques, e.g.Markov chainMonte
Carlo (Andrieu, Doucet, & Holenstein, 2010; Gilks, Richardson, &
Spiegelhalter, 1996; Ninness & Henriksen, 2010). In this context,
also η is seen as a random vector and the posterior of g and η is
recovered in sampled form. Hence, the final estimate of g , as well
as its Bayes intervals, account also for the uncertainty of the hy-
perparameters, e.g. see Magni, Bellazzi, and De Nicolao (1998) and
Pillonetto and Bell (2007).

The pointwise evaluation of the marginal likelihood using (81)
takes O(N3) operations. In the FIR or ARX case treated in Part I and
Section 11.3, when m ≪ N it is useful to resort to the equivalent
expression

η̂ = arg min
η∈Γ

(N − m) log(σ 2)+ log(det(σ 2Im + λPΦTΦ))

+
Y TY
σ 2

− Y TΦ


σ 4

λ
P−1

+ σ 2ΦTΦ

−1

ΦTY

which reduces the computational load to O(Nm2), see Chen and
Ljung (2013) for other implementation details. Many efficient
approximations of the marginal likelihood for the general case
have been also developed, see Carli, Chiuso et al. (2012),
Lázaro-Gredilla, Quiñonero-Candela, Rasmussen, and Figueiras-
Vidal (2010), Quiñonero-Candela and Rasmussen (2005) and
references therein.

14.2. Cp statistics

In all the remaining part of the section, the impulse response is
no more interpreted as a stochastic process, but is a deterministic
function. Considering (61), the vector η now contains the
regularization parameter γ and the parameters entering the
kernel K .

For future developments, exploiting the structure of the im-
pulse response estimate ĝ in (63), it is useful to note the following
linear relationship between the output estimates ŷi(η) := Li[ĝ]
collected in the vector Ŷ (η) and the output measurements in Y :

Ŷ (η) = H(η)Y (82)

where H(η) = O(η) (O(η)+ γ IN)−1 with O given by (62) in
continuous-time or by (71) in discrete-time. The trace of the
matrix H(η) in (82) corresponds to the so called degrees of freedom
associated with the estimator (61):

df (η) = tr (H(η)) . (83)

It can be verified that 0 ≤ df (η) ≤ N and that, provided O is full
rank, df (η) varies from N to 0 as the regularization parameter γ
(which, as said, is a component of η) goes from 0 to +∞. The fact
that df (η) is a real number is in agreement with the nature of the
regularization method: the flexibility of the model (its degree of
freedom) can be changedwith continuity through the tuning of the
regularization parameter, as also illustrated in Fig. 6.

Now, recall that Li[g] is the noiseless system output at instant
ti. Then, the error

E


1
N

N
i=1

(ŷi(η)− Li[g])2


(84)

(where expectation is taken only w.r.t. the measurement noise)
provides an indication of model capability to predict outputs
from the system fed with an input similar to that entering the
identification data. It comes that minimization of an estimate of
(84) is another viable way to perform selection of the design
parameter vector η. In particular, when the noise variance is
known,5 an unbiased estimator of (84) is related to the Cp
statistic (Mallows, 1973) that leads to the following estimator forη:

η̂ = arg min
η∈Γ

1
N

N
i=1

(yi − ŷi(η))2 +
2df (η)

N
σ 2, CP. (85)

It is interesting to note that, for σ 2 known, the above expression
coincides with the AIC criterion discussed in Part I (Section 3.1)
except that the dimension m of the vector θ which parameterized
the model structure, i.e. dim(θ), is now replaced by the degrees of
freedom parameterized by η, i.e. df (η) as defined in (83).

14.3. Cross validation, PRESS and GCV

In Section 3.2, we have already introduced one of the basic
variants of cross-validation, namely hold-out validation. Multi-
stage versions of cross-validation divide the available data set into
several complementary subsets. Each stage is a holdout validation
stepwhere some of the subsets are used to train themodel and the
remaining ones are used to evaluate predictive performances. The
procedure is repeated multiple times by rotating on the choice of
estimation and validation data sets. Eventually, a overall CV score is
computed by averaging the scores obtained at each stage, whereby
CV is an estimate of the predictive capability of the model.

One of the most common variant is k-fold CV where the data
are partitioned in k disjoint subsets (folds) of about the same
size, and then k estimation rounds are performed. The partition
can be obtained by various means, ranging from a completely
random sampling to a carefully designed stratified sampling aimed
at keeping the different folds balanced in someway. At each round,
one of the folds plays the role of validation set while the remaining
k − 1 are used for estimation. Validation performances are then
averaged out over the rounds to produce the CV score. Performing
k-fold CV with a large number of folds tends to reduce the bias in
the estimate of the prediction score, at the expense of a higher
variability. On the other hand, a low number of folds makes the
estimate more biased but also more stable. Often in practice, a

5 If σ 2 is unknown, it can be preliminarily estimated and then plugged into the
Cp expression (85).
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heuristic choice of the number of folds, such as k = 5, 10, already
leads to satisfactory performances.

Leave-one-out validation is an extreme case of k-fold cross-
validation discussed in Section 3.2 where k = N (the validation
set at each round contains only one point). The leave-one-out
score with a quadratic loss is known as PRESS (predicted residual
sums of squares) (Allen, 1974; Wang & Cluett, 1996). For large
data sets, PRESS evaluation for a given η may seem expensive,
requiring the computation of a number of function estimates
equal to the number of data points. However, in the case of the
linear estimator (82), PRESS evaluation reduces to a single model
estimation (Wahba, 1990, Theorem 4.2.1) and the estimate of η is

η̂ = arg min
η∈Γ

1
N

N
i=1


yi − ŷi(η)
1 − hii(η)

2

, PRESS (86)

where hii is the ith diagonal element of the matrix H .
By replacing each hii in (86) with their average, one obtains an

approximation of PRESS known as Generalized Cross Validation
(GCV) (Craven & Wahba, 1979; Golub, Heath, & Wahba, 1979). Its
formulation involves the degrees of freedom df (η) defined in (83):
the hyperparameter estimate is

η̂ = arg min
η∈Γ

1
N

N
i=1
(yi − ŷi(η))2

(1 − df (η)/N)2
, GCV.

In common with PRESS, a practical advantage of GCV over the
statistics described in the previous subsection is that it does not
require estimating the variance σ 2. GCV has also other interesting
properties, such as invariance to rotations of Y , that sometimes
makes it a more desirable estimator than PRESS, see Golub et al.
(1979) and Wahba (1990).

15. Computational issues

We review some methods for the numerical computation of ĝ
in (61) relying on the relationship between machine learning and
convex optimization (Bennett & Parrado-Hernandez, 2006; Bottou,
Chapelle, DeCoste & Weston, 2007; Rockafellar, 1970).

Regardless of the nature of the function domain X , the repre-
senter theorem implies that ĝ is the sum of N basis functions with
the optimal weights solving the system of linear equations (64).
If the data set size N is large, plain application of a solver with
cost O(N3) can be highly inefficient. Therefore, many alternative
schemes have been developed.

Firstly, observe that in the case of regularized FIR estimation,
that, as discussed in Section 11.3, is a special case of (61), one may
well have m ≪ N . So, it can be advantageous to use the formu-
lation (70a) which provides ĝ at the cost of O(Nm2) operations.
More generally, for anyX , the direct solution of theN-dimensional
linear system can be avoided by using approximate representa-
tions of the kernel function (Bach & Jordan, 2005; Kulis, Sustik, &
Dhillon, 2006), based e.g. on the Nyströmmethod or greedy strate-
gies (Smola & Schölkopf, 2000; Williams & Seeger, 2000; Zhang
& Kwok, 2010). Another effective approximation relies on an ap-
plication of the Mercer theorem (e.g. see Section 2 in Cucker and
Smale (2001)) ensuring that the kernel K admits an expansion in
terms of eigenfunctionsψj and corresponding eigenvalues ζj, taken
in descending order without loss of generality. A pth order approx-
imation of K(x, a) is

p
j=1 ζjψj(x)ψj(a): this is a low-order kernel

associated with a subspace Sp of H spanned by {ψj}
p
j=1, see Sec-

tion 3 in Cucker and Smale (2001). Interestingly, after computing
the various Li[ψj], a solution of (61) with H replaced by Sp can
be obtained with O(Np2) operations. The solution obtained in this
way may provide accurate approximations of ĝ also when p ≪ N ,
see Ferrari-Trecate,Williams, andOpper (1999), Pillonetto and Bell
(2007), Zhu and Rohwer (1996) and Zhu, Williams, Rohwer, and
Morciniec (1998). The efficacy of such approximation method for
system identification has been shown in Carli, Chiuso et al. (2012),
exploiting the closed form expansions of the stable spline kernels
(79) and (80) reported in Pillonetto et al. (2010). A family of ap-
proximations based on the concept of pseudo input locations are
also reviewed in Lázaro-Gredilla et al. (2010), Quiñonero-Candela
and Rasmussen (2005) and Snelson and Ghahramani (2006).

If N is very large and it is not possible to store the entire
kernel matrix in memory, another alternative is given by so called
decomposition methods (List & Simon, 2004, 2007). The idea un-
derlying them is simple: a subset of the coefficients ci, called
working set, is selected, and the associated low-dimensional sub-
problem is solved. Thus, only the corresponding entries of the out-
put kernel matrix need to be loaded into the memory. An extreme
case of decomposition method is coordinate descent, where the
working set contains only one coefficient, e.g. see Dinuzzo (2011).
In this case, the algorithm updates a single ci at each iteration by
solving a sub-problem of dimension one. This approach is becom-
ing popular in machine learning and statistics, e.g. state-of-the-art
solvers for large-scale supervised learning, such as glmnet (Fried-
man, Hastie, & Tibshirani, 2010) for generalized linear models, are
based on these techniques.

16. Continuous-time example: estimation of cerebral hemody-
namics

The quantitative assessment of cerebral hemodynamics is cru-
cial to understand brain function in both normal and pathological
states. For this purpose, an important technique is bolus-tracking
magnetic resonance imaging (MRI), which relies upon the princi-
ples of tracer kinetics for nondiffusible tracers (Zierler, 1962, 1965).
Interestingly, in this scenario quantification of cerebral hemody-
namics corresponds to solving a time-invariant linear system iden-
tification problem (Calamante, Thomas, Pell, Wiersma, & Turner,
1999). In fact, the input is the measured arterial function while
the output is the tracer concentrationwithin a given tissue volume
of interest. The system impulse response g (proportional to the so
called tissue residue function) carries fundamental information on
the system under study, e.g. the cerebral blood flow is given by the
maximum of g .

We consider the same simulation described in Zanderigo,
Bertoldo, Pillonetto, and Cobelli (2009). The known system input is
a typical arterial function given by u(t) = (t −10)3e−

2t
3 for t ≥ 10

and null elsewhere, while the impulse response is the (causal part
of the) Lorentzian6 in the top panel of Fig. 9 (thick line). The noise-
less output is reported in the bottom panel of Fig. 9 (thick line). We
consider a Monte Carlo study where, at every run, the impulse re-
sponse has to be estimated from a distinct set of 80 noisy output
samples. The measurements affected by pseudorandom noise at
the first run are shown in the bottompanel of Fig. 9 (◦). Data are re-
alistic, and representative of an extremely ill-conditioned problem,
generated as detailed in subsection II.A of Zanderigo et al. (2009),
using parameters typical of a normal subject and a signal to noise
ratio equal to 20.

6 We have also used three other benchmark impulse responses present
in Zanderigo et al. (2009) which well represent typical tissue residue functions.
Results (not shown) are similar to those here described.
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Fig. 9. Assessment of cerebral hemodynamics using magnetic resonance imaging
(Section 16). The top panel shows the true system impulse response (thick line)
and the SS estimate obtained at the first Monte Carlo run (thin line). The noiseless
output (solid line) and the measurements (◦) are displayed in the bottom panel.

The following five estimators are adopted:

• Lag + Or . The unknown g is modeled as the sum of Laguerre
basis functions defined, in the Laplace domain, by

(s − p)k−1

(s + p)k
, p > 0, k = 1, 2, . . . .

At every run, the expansion coefficients are estimated by LS
setting p and the number of basis functions to the values
minimizing the MSE, i.e. leading to the estimate closest to truth
according to a quadratic criterion. In particular, the value of p
is searched over the grid [0.01, 0.05, 0.1, 0.15, . . . , 0.6] while
the maximum allowed number of basis functions is 30. This is
an ideal tuning, not implementable in practice, that provides
the upper bound on the performance of a LS estimator based on
Laguerre expansions.

• {Lag + AICc, Lag + BIC}. The same as above except that the
number of Laguerre functions is chosen by AICc or BIC assuming
σ 2 unknown.

• {SS, SS1}. They are defined by (61), with the first-order (SS1) or
the second-order (SS) stable spline kernel, see (79) and (80). The
noise variance and the hyperparameters (λ, β) are obtained via
marginal likelihood optimization.

The top panel of Fig. 9 shows that the estimate returned by
SS at the first run (continuous line) is close to the true impulse
Fig. 10. Assessment of cerebral hemodynamics using magnetic resonance imaging
(Section 16). Boxplots of the fits achieved by the five estimators after the 1000 runs.
Recall that the estimator Lag + Or is not implementable in practice.

response. Indeed, the Monte Carlo study shows that SS performs
better than the other 4 estimators. In particular, the boxplots of
the fits obtained by all the estimators are displayed in Fig. 10. One
can see that the fit returned by SS is often even better than that
by Lag + Or that uses additional information not available to SS.
Notice also that the regularized estimators outperform the classical
approaches exploiting Laguerre functions and AICc or BIC.

17. Other regularization techniques for system identification

This survey is focused on regularization techniques for system
identification based on quadratic penalty terms that exploit
suitable positive semidefinite kernels embodying information
about the system to be identified. However, other types of
regularizers have been and are being investigated in the context
of system identification. With reference to the discrete-time case,
these alternative regularization schemes amount to solving

argmin
g

N
t=1


y(t)−

m
k=1

g(k)u(t − k)

2

+ γ J(g) (87)

where J is different from the standard quadratic penalty.
An example is given by the use of the ℓ1 norm penalizer, an ap-

proach popularized in the machine learning literature by so called
LASSOmethods for joint estimation and variable selection (Tibshi-
rani, 1994). In our context, this amounts to solving (87)with J(g) =m

k=1 |g(k)|. Themain differencew.r.t. the quadratic penalty is that
this regularizer promotes sparsity, i.e. it has the capability to force
to zero several coefficients of the estimated impulse response. This
estimator and other variants based on ℓ1 regularizer have been
investigated in the system identification literature (Rojas & Hjal-
marsson, 2011; Rojas, Wahlberg, & Hjalmarsson, 2013; Toth, Hjal-
marsson, & Rojas, 2012; Welsh, Rojas, Hjalmarsson, & Wahlberg,
2012).

Another example is given by methods that construct penalty
terms based on the so-called nuclear norm. The nuclear norm (or
trace norm) of a matrix A can be defined as the sum of its singular
values:

∥A∥∗ =


i

σi(A).

Since the nuclear norm coincides with the convex envelope of the
rank function on the spectral ball, it has been often used as a convex
surrogate of the rank function, following the popular paper (Fazel,
Hindi, & Boyd, 2001). It iswell known that theminimumrealization
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order (also known as McMillan degree) of a discrete time LTI
system coincides with the rank of the Hankel operator constructed
from the impulse response coefficients:

H(g) =


g(1) g(2) g(3) · · ·

g(2) g(3) g(4) · · ·

g(3) g(4) g(5) · · ·

...
...

...
. . .

 .
Such observation can be readily exploited by adopting a high order
FIR model and solving (87) with J(g) = ∥H(g)∥∗ which will fit the
datawhile encouraging a lowMcMillan degree, see e.g. Grossmann,
Jones, and Morari (2009) and Mohan and Fazel (2010). The idea
has been extended to the estimation of VAR (Signoretto & Suykens,
2012) and Box–Jenkins models (Hjalmarsson, Welsh, & Rojas,
2012), applying a nuclear norm penalty to high-order ARXmodels.
An atomic norm regularizer (Chandrasekaran, Recht, Parrilo, &
Willsky, 2012) which mimics the Hankel nuclear norm, and is
approximated by a suitable ℓ1 penalty, is described in Shah,
Bhaskar, Tang, and Recht (2012). A comparison between quadratic
and nuclear norm regularization for linear system identification
can be found in Chiuso, Chen, Ljung, and Pillonetto (2013).
Nuclear norm regularization has been also adopted for subspace
identification and estimation of Hammerstein systems (Falck,
Suykens, Schoukens, & De Moor, 2010; Fazel, Kei, Sun, & Tseng,
2013; Liu & Vandenberghe, 2009).

18. Conclusions

In this survey we have taken a broad approach to one basic
problem in system identification, namely to estimate the impulse
response of a linear system. The state-of-the art techniques for this
were reviewed in Part I, together with classical statistical regular-
ization techniques equipped with recent tuning tools. In Parts II
and III, the problem was also set in a general function estimation
framework employing Reproducing Kernel Hilbert Space theory,
displaying the connections with machine learning and the links
between reproducing kernels and Bayesian estimation. We have
shown how this abstract and broad perspective is quite useful in
guiding the selection of useful kernels and tuning rules.

These broad encounters have clearly been beneficial and
fruitful for classical system identification. The numerical examples,
especially for standard system identification models in Section 7,
show that conventional techniques may be outperformed by
carefully tuned regularized estimates. One way to explain this is
that the difficult choice of model complexity (model order) can
be circumvented by careful regularization. In a way, the bias-
variance trade-off that is behind any reasonable choice of model
complexity, gets awhole newdimension and richness in the choice
of (continuous) regularization parameters compared to the choice
of (discrete) model order.
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Appendix. Proof of Proposition 19

Below, z0(t) denotes the true noiseless system output with ẑ
its estimate obtained convolving the solution of (61) with the sys-
tem input. In addition, z̄0 and ˆ̄z indicate any finite-dimensional
vector obtained by sampling, respectively, z0 and ẑ on the same
temporal instants, including the ti where the measurements are
available. We start noticing that the desired kernel must also
lead to the optimal estimator of every linear transformation of
g0. Hence, it has also to minimize (in matrix sense) MSE(K) =

E


( ˆ̄z − z̄0)( ˆ̄z − z̄0)T


. Notice that themeasurement vector Y is re-

lated to z̄0 by Y = Φ z̄0+E where each row ofΦ suitably selects the
right component of z̄0. Hence, it follows from Theorem 1 in Chen
et al. (2012) that the optimal kernel must satisfy7 LtLτ [K(·, ·)] =

z(t)z(τ ) where, given a function f , Lt [f ] returns the convolution
between f and the system input evaluated at t . In turn, one has

K̂(x1, x2) = (g0(x1)+ η(x1))(g0(x2)+ η(x2)) (88)

for a certain η belonging to the null space of Lt , ∀t .
In what follows, let now z̄0 be the restriction of z0(t) just on the

time instants {ti}Ni=1 where the measurements are collected. In this
way, the output kernel matrix in (62) with K = K̂ is O = z̄0z̄T0 and
it comes from the representer theorem that the optimal estimator
of z̄0 is ˆ̄z = O (O + γ IN)−1 Y . In addition, in view of (88) and the
above expression, the estimator of g0(x) minimizing the MSE can
be written as

ĝ(x) = (g0(x)+ η(x))z̄T0O
Ď ˆ̄z (89)

where OĎ is the pseudoinverse of O and we used the equalities
z̄T0 = z̄T0O

ĎO and Lt K̂(x, ·) = (g(x)+ η(x))z(t).
Thus, (89) shows that ĝ(x) is a linear transformation of ˆ̄z which

however still depends on the unknown η. We now prove that the
MSE is minimized setting η(x) = 0, ∀x. In fact, let A = g0(x)z̄T0O

Ď.
The optimal estimator for Az̄0 must be A ˆ̄z and one has

Az̄0 = g0(x)z̄T0O
Ďz̄0 = g0(x), A ˆ̄z = g0(x)z̄T0O

Ď ˆ̄z.

Extension of the above formulas to the multivariate case is
straightforward and this completes the proof.
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