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FRF Measurement of Nonlinear Systems
Operating in Closed Loop

Rik Pintelon, Fellow, IEEE, and Johan Schoukens, Fellow, IEEE

Abstract—To prevent unstable behavior or saturation, a fre-
quency response function (FRF) measurement is often performed
under closed-loop conditions (e.g., open-loop gain measurements
of an operational amplifier). The difficulty of such FRF mea-
surements is that the nonlinear (NL) distortions also perturb the
input via the feedback loop. The latter introduces a bias in the
estimate of the best linear approximation (BLA) and jeopardizes
the interpretation of the output NL distortions. In this paper, we
solve these problems via a generalized definition of the BLA that is
valid for NL systems operating in feedback. The classical definition
for open-loop systems follows as a special case.

Index Terms—Best linear approximation (BLA), feedback,
frequency response function (FRF), nonlinear (NL).

I. INTRODUCTION

FREQUENCY response function (FRF) measurements give
a lot of insight in the dynamic behavior of a system.

It is used for analysis, design, prototyping, and modeling in
all kinds of engineering applications, even if it is known that
the system is subject to nonlinear (NL) distortions. The major
reason for this is that the linear theory is well understood and
easy to apply. Moreover, the impact of NL distortions on FRF
measurements has been studied in detail [1]–[7]. Via well-
designed experiments, one can estimate the FRF [called the best
linear approximation (BLA)], its noise variance, and the level
of the NL distortions [6]–[11]. As such, the user can decide
whether the linear approximation is accurate enough or not for
the intended application. If not, then a full NL modeling is
required.

Although the theory of the BLA of an NL system has been
developed for the open-loop case only [1], [3], [12], it has been
applied with success to closed-loop situations without formal
proof [9]–[11], [13]. However, due to the feedback loop, the
input of the NL system is also disturbed by the NL distortions.
This leads to a biased estimate of the classical BLA defined
for open-loop systems and complicates the interpretation of the
NL distortions in the output spectrum. In [14], only the first
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Fig. 1. NL PISPO system operating in a closed-loop configuration.

problem is handled assuming that the actuator and the feedback
are linear. The aim of this paper is to solve both problems
without imposing any linearity condition on the actuator and
feedback dynamics.

First, inspired by the indirect FRF measurement method for
linear feedback systems [15], [16], we propose a generalized
definition of the BLA that is suitable for NL systems oper-
ating in closed loop. Moreover, the actuator and/or feedback
dynamics might be NL. For open-loop systems driven by
linear actuators, the generalized BLA reduces to the classical
definition. Next, we prove that the existing methods for mea-
suring the BLA [9], [10], [12] are still appropriate under feed-
back conditions. It explains why the feedback experiments in
[9]–[11] and [13] were successful. Furthermore, we study the
influence of the NL behavior of the actuator, prove that the
linear feedback dynamics can be estimated from the open-loop
gain measurements, and discuss the detection, classification,
and quantification of the NL distortions in the presence of a
feedback loop. Finally, the theory is illustrated on simulations
and on open-loop gain measurements of an operational ampli-
fier (opamp).

II. BLA OF AN NL SYSTEM

The class of NL systems considered includes the systems
whose output can be approximated arbitrarily well in mean
square sense by a Volterra series (see [1] and [17] for the de-
tails). This excludes phenomena such as chaos and bifurcations
but allows for hard nonlinearities such as saturation, clipping,
dead zones, etc. Since the steady-state response of such systems
to a periodic input is periodic with the same period as the input,
they will be denoted in the sequel of this paper as NL period in
same period out (PISPO) systems.

The properties of the BLA of NL PISPO systems are studied
for the class of Gaussian-like excitation signals. This class
includes Gaussian noise, periodic Gaussian noise, and random
phase multisines with the same Riemann equivalent power
spectrum (see [7] for the details). First, we recall briefly the
results for the open-loop case and next handle the closed-loop
configuration (see Fig. 1).

0018-9456/$31.00 © 2012 IEEE
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Fig. 2. BLA of an NL PISPO system.

A. Open-Loop Case

For NL PISPO systems operation in open loop (Fig. 1
without feedback branch), the BLA is defined as

GBLA(jω) =
Syu(jω)

Suu(jω)
=

F {E {y(t)u(t− τ)}}
F {E {u(t)u(t− τ)}} (1)

with Syu(jω) being the input–output cross-power spectrum,
Suu(jω) being the input autopower spectrum, and F{x(t)}
being the Fourier transform of x(t), where the expected values
E{} are taken w.r.t. the random excitation u(t). The difference
ys(t) between the actual output y(t) of the NL system and the
output yBLA(t) predicted by the BLA (1) (see Fig. 2) has some
special properties.

For any class of random excitations with the same power
spectrum and probability density function, we have the
following:

1) ys(t) has zero mean: E{ys(t)} = 0.
2) ys(t) is uncorrelated with—but not independent of—the

input u(t): E{ys(t)u(t− τ)} = 0.
3) ys(t) contains no subharmonics (harmonically related to

the input u(t)).

where the expected values are taken w.r.t. the random input u(t)
(see [3], [4], and [18]).

For the class of Gaussian-like random excitations with the
same power spectrum, the discrete Fourier transform (DFT)
spectra YS(k) and U(k) of ys(t) and u(t), respectively

X(k) =
1√
N

N−1∑
t=0

x(t)e−j2πkt/N (2)

with X = Ys, U and x = ys, u having the following (addi-
tional) properties:

1) YS(k) has zero mean: E{YS(k)} = 0.
2) YS(k) is uncorrelated with—but not independent of—

U(k): E{YS(k)U(k)} = 0.
3) YS(k) contains no subharmonics (harmonically related to

the input U(k)).
4) YS(k) is asymptotically (N → ∞) normally distributed.
5) YS(k) is asymptotically (N → ∞) uncorrelated over the

frequency (cumulant mixing of order infinity).
6) var(YS(k)) is a continuous function of the frequency with

continuous (higher order) derivatives.

where the expected values are taken w.r.t. the random input u(t)
(see [1], [17], and [18]). These first- and second-order proper-
ties are very similar to those of filtered white noise disturbances
(see [17] and [19]), and therefore, it is very hard to distinguish
the stochastic NL distortions ys(t) from the disturbing noise
in frequency response function measurements. It motivates the
equivalent scheme in Fig. 2, where ys(t) is represented as a
disturbance.

B. Closed-Loop Case

The key difference between the closed-loop configuration
(see Fig. 1) and the open-loop setup (see Fig. 2) is that,
due to the feedback loop, the input u(t) depends on the NL
distortions produced by the system. Therefore, definition (1)
leads to biased estimates of the BLA for NL systems operating
in feedback. Indeed, assuming that we observe the steady-state
response to a random phase multisine, we have that Y (k) =
GBLA(jωk)U(k) + YS(k). Hence, (1) becomes

Syu(jωk)

Suu(jωk)
=

E
{
Y (k)Ū(k)

}
E

{
|U(k)|2

} =GBLA(jωk) +
E

{
YS(k)Ū(k)

}
E

{
|U(k)|2

}

where E{YS(k)Ū(k)} �= 0 due to the feedback loop (see
Appendix A).

Following the lines of [15] and [16] for identifying linear
systems in closed loop, we redefine the BLA via the indirect
method as

GBLA(jω) =
Syr(jω)

Sur(jω)
=

F {E {y(t)r(t− τ)}}
F {E {u(t)r(t− τ)}} (3)

with r(t) being the known reference signal (typically the signal
stored in the arbitrary waveform generator), and where the
expected values E{} are taken w.r.t. the random realization
of r(t). To study the properties of (3), we need the following
assumption.

Assumption: The single-input two-output (SITO) open-loop
system from reference r(t) to input–output z(t) = [y(t) u(t)]T

is an NL PISPO system.
Under this assumption, it is shown in Appendix B that the

equivalence in Fig. 2, where GBLA(jω) is defined as in (3), can
be applied to the NL system in Fig. 1: All properties of ys(t)
(YS(k)) of the open-loop case (see Section II-A) remain valid
except that ys(t) (YS(k)) is uncorrelated with the reference
signal r(t) (R(k)) instead of the input u(t) (U(k)).

Define now ŨS(k) and ỸS(k) as those parts of the
input–output DFT spectra that are uncorrelated with R(k). The
difference YS(k) between the actual output of the NL system
and the output predicted by the BLA (3) is related to these
observed input–output NL distortions ŨS(k) and ỸS(k) as

YS(k) = ỸS(k)−GBLA(jωk)ŨS(k) (4)

(see Appendix B). According to the particular case, the actual
output distortions |YS(k)| produced by the NL system can
be (much) larger or (much) smaller than the observed output
distortions |ỸS(k)|. Examples are given in the sequel of this
section.

The following properties of the BLA show that the new
definition (3) is a natural extension of (1).

Properties of the BLA (3):

1) Open Loop, NL System, and Linear Actuator: If the
NL system operates in open loop and the actuator is
linear, then (3) reduces to (1) (proof: use Syr(jω) =
Syu(jω)/Gact(jω) and Sur(jω) = Suu(jω)/Gact(jω),
with Gact(jω) being the actuator FRF, and where x̄ is the
complex conjugate of x).
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2) Closed Loop, Linear System, NL Actuator, and NL Feed-
back: If the system is linear and the actuator and/or
feedback dynamics are NL, then the BLA (3) is equal
the FRF G(jωk) and YS(k) = 0 (proof: see Appendix C).
This is an example where |YS(k)| (4) is much smaller
than |ỸS(k)|.

3) Closed Loop, NL System, NL Actuator, and NL Feedback:
Since the proof in Appendix B does not use the linearity
of the actuator and the feedback dynamics, the properties
of YS(k) remain valid for the NL actuator and/or feed-
back dynamics. For example, YS(k) is still uncorrelated
with R(k), and the linear correction for the input NL
distortions (4) is still exact without any approximation.

Interpretation of the Output Residual (4): Assuming that
the actuator and the feedback are linear, the input–output DFT
spectra of the NL system in Fig. 1 can be written as

Y (k) =GBLA(jωk)UR(k) + ỸS(k) + TY (jωk)

U(k) =UR(k) + ŨS(k) + TU (jωk) (5)

with UR(k) being that part of the input that is correlated with
the reference signal

UR(k) =
Gact(jωk)

1 +GBLA(jωk)M(jωk)
R(k) (6)

where Gact(jω) and M(jω) stand for the actuator and feed-
back dynamics, respectively. TU (jω) and TY (jω) represent
the input–output transient (leakage) errors due to the DFT.
These leakage errors are rational functions of the frequency that
decrease as O(N−1/2) w.r.t. the main terms as the number of
time domain samples N increases to infinity [17], [20], [21].
The input–output stochastic NL distortions ŨS(k) and ỸS(k)
in (10) are related to YS(k) in Fig. 2 as

ỸS(k) =
YS(k)

1 +GBLA(jωk)M(jωk)
(7)

ŨS(k) =
−YS(k)M(jωk)

1 +GBLA(jωk)M(jωk)
. (8)

Note that ỸS(k) (7) and ŨS(k) (8) satisfy (4). Note also that
|YS(k)| (4) is much larger than |ỸS(k)| if the open-loop gain
|GBLA(jωk)M(jωk)| is much larger than one. It illustrates that
a linear feedback loop combined with a high open-loop gain
linearizes the NL behavior of the PISPO system.

III. MEASURING THE BLA

Consider the setup of Fig. 3 where the reference signal r(t)
is a random phase multisine

r(t) =

N/2−1∑
k=−N/2+1

Rke
j2πfskt

N (9)

with Rk = R−k = |Rk|ej∠Rk , fs being the clock frequency
of the arbitrary waveform generator, and N being the number
of samples in one signal period. The amplitudes |Rk| of the
Fourier coefficients are deterministic and user defined (usually

Fig. 3. Setup for measuring the BLA of an NL PISPO system operating in
closed loop. Gact(jω) and M(jω) represent respectively the linear actuator
and feedback dynamics. mu(t) and my(t) are respectively the input and output
measurement errors.

R0 = 0), and the phases are randomly chosen over k such
that E{ej∠Rk} = 0, for example, a uniform distribution over
[0, 2π). The results presented in the sequel of this section are
valid for multisines with a “sufficient” number of nonzero
harmonics F such that r(t) resembles Gaussian noise [1], [7],
[17]. To keep the RMS value of the multisines (9) constant as
F = O(N) → ∞, the Fourier coefficients are scaled such that
|Rk| = O(N−1/2).

To avoid the transient (leakage) errors due to the system
dynamics in (5), the acquisition channels and the arbitrary
waveform generator are synchronized, and an integer number
of periods of the steady-state response is measured. Hence, the
measured input–output DFT spectra can be written as

Y (k) =GBLA(jωk)UR(k) + ỸS(k) +MY (k)

U(k) =UR(k) + ŨS(k) +MU (k) (10)

with MU (k) and MY (k) being the input–output measurement
errors, and where ŨS(k) and ỸS(k) are defined in (8). Note that
the transient (leakage) errors due to the noise dynamics have
been neglected in (10). In those applications where this is not
permitted (e.g., lowly damped vibrating mechanical structures),
the noise leakage errors are suppressed nonparametrically as
explained in [22].

In the sequel of this section, we summarize briefly the
robust and the fast measurement procedure and discuss their
properties; the reader is referred to [9], [12], and [17] for the
details.

A. Robust Method

First, P � 2 periods of the steady-state response to a random
phase multisine (9) are measured, and this experiment is re-
peated for M � 4 (or 7) independent random phase realizations
(following the lines of [22], the minimal number of realizations
M can be reduced to two). Next, the noisy input–output DFT
spectra are analyzed over the P periods (step 1) and the M
realizations (step 2).

Step 1) Calculate for each realization the sample means and
sample (co)variances of the input–output DFT spec-
tra over the periods. The result is a set of M sample
means Û [m](k) and Ŷ [m](k), m = 1, 2, . . . ,M , and
an estimate of the corresponding input–output noise
(co)variances.
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Step 2) Before calculating the sample means and sample
(co)variances over the M realizations, the mean
input–output DFT spectra over the periods, Û [m](k)
and Ŷ [m](k), must be referred to the reference
signal as

Ŷ
[m]
R (k) = Ŷ [m](k)e−j∠R[m](k)

Û
[m]
R (k) = Û [m](k)e−j∠R[m](k). (11)

Combining (11) with (10) shows that the sample
means and sample (co)variances over the M realiza-
tions of Û [m]

R (k) and Ŷ
[m]
R (k) result in an estimate

of the BLA

ĜBLA(jωk) =
1
M

∑M
m=1 Ŷ

[m]
R (k)

1
M

∑M
m=1 Û

[m]
R (k)

(12)

and its total variance (sum noise variance and vari-
ance of the stochastic NL distortions). Subtracting
the noise variance obtained in step 1 from the total
variance gives an estimate of the variance of the
stochastic NL distortions.

In Appendix D, it is shown that (12) is a consistent
(M → ∞) estimate of the BLA (3).

B. Fast Method

The fast method uses full (all harmonics are excited) or
odd (only the odd harmonics are excited) random phase mul-
tisines r(f) (9) with a random harmonic grid. The random
harmonic grid is constructed as follows: The excited harmonics
are split in groups of Nsub consecutive (odd) harmonics, and
within each group, one randomly selected harmonic is not
excited. By choosing Nsub, one makes a tradeoff between
the effective frequency resolution of the BLA measurement
(Nsub − 1)/Nsub × fres and the frequency resolution of the NL
detection fres/Nsub, where fres = fs/N and fs/(2N) for full
and odd multisines, respectively. Typical values for Nsub are
2, 3, or 4. These multisines are the Riemann equivalent with
the full random phase multisines used in the robust method,
which means that they lead to the same BLA with the Riemann
equivalent variance of the stochastic NL distortions (see [7] for
the details). The harmonics that are not excited in r(t) are called
detection lines.

Starting from P � 4 (or 7) periods of the steady-state re-
sponse to one full (odd) random phase multisine with a random
harmonic grid, the fast method estimates the BLA, its noise
variance, and the variance of the stochastic NL distortions
(following the lines of [22], the minimal number of periods can
be reduced to two).

Step 1) Calculate the sample means and sample
(co)variances of the input–output DFT spectra
over the P periods. The result is the sample means
Û(k) and Ŷ (k) and an estimate of the corresponding

input–output noise (co)variances. At the excited
harmonics ke, we calculate the BLA

ĜBLA (jωke
) =

Ŷ (ke)

Û(ke)
(13)

and its noise variance.
Step 2) Select the nonexcited (odd) harmonics kne in the

input–output DFT spectra and use (4) to estimate the
stochastic NL distortions YS(k)

ŶS(kne) = Ŷ (kne)− ĜBLA (jωkne
) Û(kne) (14)

where ĜBLA(jωkne
) is obtained via linear interpo-

lation of ĜBLA(jωke
) (13). Next, the total variance

(sum noise variance and variance of the stochastic
NL distortions) of the BLA estimate ĜBLA(jωke

) is
calculated as ∣∣∣ŶS(ke)

∣∣∣2∣∣∣Û(ke)
∣∣∣2

(15)

where |ŶS(ke)|2 is obtained via linear interpola-
tion of |ŶS(kne)|2 at the nearest (odd) nonexcited
harmonics.

For piecewise linearly varying BLAs, |ŶS(kne)|2 is an unbiased
estimate of the total variance (proof: see Appendix E). This
motivates the calculation of the total variance of the BLA as
in (15).

C. Comparison Fast and Robust Methods

The bias in the estimate (14) introduced by ĜBLA(jωkne
)

can be neglected if the input-signal-to-distortion and input-
signal-to-noise ratios are larger than 10 dB and if the frequency
resolution is sufficiently large (proof: see Appendix E). Under
these conditions, the total variance of the BLA predicted by the
fast method coincides with that of the robust method. Note that
the robust method does not need the assumption of a sufficiently
large input-signal-to-distortion ratio. The robust method also
does not require nonexcited harmonics in the reference sig-
nal, which results in a Nsub/(Nsub − 1) or 2Nsub/(Nsub − 1)
times larger frequency resolution of the BLA estimate. More-
over, the frequency resolution of the BLA estimate and the NL
detection are the same for the robust method.

D. NL Actuator and/or Feedback Dynamics

If the actuator and/or the feedback dynamics are NL, then
the linear compensation (14) of the output DFT spectrum
for the input distortions is still valid because the proof in
Appendix B does not use the linearity of the actuator and
feedback dynamics.

If the plant is linear, then the NL distortions produced by the
actuator and/or the feedback act as generator noise: The esti-
mated BLA is equal to the linear plant dynamics, and its total
variance only depends on the input–output noise (co)variances
(proof: see Appendix C).



1338 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 62, NO. 5, MAY 2013

E. Measurement of the Feedback Dynamics

Consider the setup of Fig. 1 where the actuator and the
feedback are linear. For NL systems, the frequency response
function calculated at the nonexcited harmonics equals minus
one over the feedback dynamics. Indeed, assuming that no
input–output measurement noise is present, the input–output
DFT spectra are related as [17]

U(k) = Gact(jωk)R(k)−M(jωk)Y (k) (16)

where Gact(jωk) and M(jω) stand for the actuator and feed-
back dynamics, respectively. Evaluating (16) at the nonexcited
harmonics gives

U(kne) = −M (jωkne
)Y (kne) (17)

which proves the statement. Note that U(kne) = ŨS(kne) and
Y (kne) = ỸS(kne), where ŨS(k) and ỸS(k) are defined in
(8). It shows that the feedback dynamics can be measured at
the nonexcited harmonics because of the NL distortions ys(t)
(replace the NL PISPO system in Fig. 3 by its equivalent
scheme in Fig. 2).

IV. DETECTION, CLASSIFICATION, AND

QUANTIFICATION OF THE EVEN

AND ODD NONLINEARITIES

Using odd random phase multisines with a random harmonic
grid, the frequency response function measurement of an NL
system operating in open loop and driven by a linear actuator
can be fully characterized: Aside from the estimates of the
BLA, its noise variance, and its total variance, also the level
of the odd and even NL distortions is quantified (see [9]). The
latter gives some physical insight into the NL behavior and
is useful for designing better experiments. For example, if it
turns out that the odd or the even distortions are dominant,
then the variability of the BLA measurement can be reduced
(significantly) by using periodic signals that excite respectively
all harmonics or only the odd harmonics (see [17]). The fast
method discussed in Section III-B extracts this information
from one single experiment. For NL actuators or NL systems
operating in a closed-loop configuration, the fast method still
estimates the correct BLA and its noise and total variances,
provided that the input-signal-to-distortion ratio is sufficiently
large (e.g., > 10 dB). However, the estimated level of the even
and odd NL distortions might be biased. This is illustrated in
the sequel of this section.

A. Conditions for Unbiased Estimation of the Level of the
Even and Odd Distortions

Consider an open-loop NL PISPO system (see Fig. 2) con-
sisting of the cascade of a static nonlinearity z(t) = αu2(t) +
βu3(t) and a linear dynamic system G(jω). Since u2(t) and
u3(t) combine respectively two and three frequencies of u(t),

the dominant stochastic NL contributions at the even detection
lines in z(t) are of the form

αu2(t) : αU(2k1 + 1)U(2k2 + 1)
βu3(t) : βU(2k3 + 1)U(2k4 + 1)U(2l) (18)

with 2k1 + 2k2 + 2 = 2m and 2k3 + 2k4 + 2l + 2 = 2m.
U(2ki + 1), i = 1, . . . , 4, denotes the excited harmonics, and
U(2l) denotes an even distortion line. If |βU(2l)| is not much
smaller than |α|, then the third degree contribution in (18) will
bias the estimated level of the even NL distortions. As a rule
of thumb, this bias can be neglected if the ratio of the power
spectra (power spectral densities) of the odd to the even NL
distortions is much smaller than the ratio of the power spectra
(power spectral densities) of the odd excited harmonics to the
even distortion lines

Sysys,odd(jω)

Sysys,even(jω)
� Suu,odd(jω)

Suu,even(jω)
⇒ no bias even dist. (19)

(see Appendix F for a rationale). The relationship between the
DFT spectrum and the power spectral density is given by

Sxx,odd(jω2k+1) =
E

{
|X(2k + 1)|2

}
2fs

+O(N−1)

Sxx,even(jω2k) =
E

{
|X(2k)|2

}
2fs

+O(N−1) (20)

with x(t) = u(t), ys(t) and X(k) = U(k), YS(k), where the
factor 2 accounts for the frequency resolution of the even and
odd DFT lines. Note that the expected values are taken w.r.t.
the random phase realizations and the random grid of the odd
random phase multisine r(t) with random harmonic grid (e.g.,
E{|R(2k + 1)|2} = (Nsub − 1)/Nsub|R(2ke + 1)|2).

Similarly, the dominant stochastic NL contributions at the
odd detection lines 2m+ 1 in z(t) (odd nonexcited harmonics
in r(t)) are of the type

αu2(t) : αU(2k1 + 1)U(2l)
βu3(t) : βU(2k2 + 1)U(2k3 + 1)U(2k4 + 1) (21)

with U(2ki + 1), i = 1, . . . , 4, being the excited harmonics
and U(2l) being an even distortion line. If |αU(2l)| is not
much smaller than |βU(2k2 + 1)U(2k3 + 1)|, then the even
NL contribution in (21) will bias the estimated level of the odd
NL distortions. As a rule of thumb, this bias can be neglected if

Sysys,even(jω)

Sysys,odd(jω)
� Suu,odd(jω)

Suu,even(jω)
⇒ no bias odd dist. (22)

is satisfied (see Appendix F for a rationale).

B. Discussion

The bias on the estimated levels of the even and odd
NL distortions can be neglected if the even and odd distor-
tions are of the same order of magnitude (Sysys,even(jω) ∼
Sysys,odd(jω)) and if the input-signal-to-even-distortion ratio
is sufficiently large (Suu,odd(jω)/Suu,even(jω) 	 1). If, for
example, the even distortions are dominant (Sysys,even(jω) 	
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Sysys,odd(jω)), then (19) is automatically satisfied and the level
of the even NL distortions is correctly estimated. However, the
unbiased estimation of the level of the odd distortions puts a se-
vere constraint on the input-signal-to-even-distortion ratio [see
(22)]. If the odd distortions are dominant, then the opposite is
true: The level of the odd NL distortions is correctly estimated,
while the unbiased estimation of the level of the even distortions
puts a strong condition on the input-signal-to-even-distortion
ratio [see (19) with Sysys,even(jω) � Sysys,odd(jω)]. These
results are also valid for NL systems operating in feedback.
Note that conditions (19) and (22) can easily be checked
a posteriori.

V. SIMULATION EXAMPLE

The goal of the simulation example is threefold: 1) the illus-
tration of the influence of the spectral impurity of the odd ran-
dom phase multisine on the predicted levels of the odd and even
NL distortions; 2) the verification of conditions (19) and (22)
for the unbiased estimation of the levels of the even and
odd distortions; and 3) the comparison of the robust and fast
methods for measuring the BLA using spectrally impure odd
random phase multisines.

A. Simulation Setup

For the simulation, we use the setup of Fig. 1 without
feedback loop (open-loop operation), where the actuator is a
fourth-order analog Chebyshev filter with a passband ripple
of 6 dB and a cutoff frequency of 2 kHz and where the NL
PISPO system is a Wiener–Hammerstein system consisting of
the cascade of a first linear dynamic system G1(s), a static NL
system z(t) = f(x(t)), and a second linear system G2(s)

G1(s) =
1

1 + s/(Qω0) + s2/ω2
0

(23)

f (x(t)) =x(t) + 0.01x2(t) + βx3(t) (24)

G2(s) =
1

1 + τs
(25)

with Q = 10, ω0 = 2πf0, f0 = 1 kHz, and τ = 1/(600π)s.
The reference signal r(t) is an odd random phase multisine
with a random harmonic grid covering the band [4 Hz, 2 kHz]
with a frequency resolution of 4 Hz, an RMS value equal to
one, and Nsub = 2 (one out of two consecutive odd harmonics
is randomly eliminated). Two different Wiener–Hammerstein
systems are simulated: the first having a dominant odd behavior
(β = 5× 10−3) and the second having a dominant even be-
havior (β = 5× 10−4). We choose fs = 50 kHz and disturb
the input–output signals at the sampling instances by normally
distributed white noise with zero mean and standard deviation
1× 10−4. The fast method of Section III-B is applied to P = 2
consecutive periods of the steady-state response to the follow-
ing two odd random phase multisines with the same RMS value
(Riemann equivalent power spectrum):

1) undistorted odd multisine: no signal energy at the odd
nonexcited harmonics (= the original reference signal
r(t));

Fig. 4. Quantification of the even and odd NL distortions using odd random
phase multisines with random harmonic grid—Wiener–Hammerstein simula-
tion example. Top row: Comparison between (dark gray) Suu,odd/Suu,even

and, respectively, (left plot, light gray) Sysys,odd/Sysys,even and (right plot,
light gray) Sysys,even/Sysys,odd. Middle and bottom rows: Estimated level
of the stochastic NL distortions on (YS , middle row) the output and (GBLA,
bottom row) the BLA for the (light gray) undistorted and (dark gray) distorted
odd multisines. Left column: α = 0.01 and β = 5× 10−3. Right column:
α = 0.01 and β = 5× 10−4.

2) even distorted odd multisine: no signal energy at the odd
detection lines and signal energy at the even in-band har-
monics with a constant amplitude that is ten times smaller
than the excited odd harmonics and a random phase that is
uniformly distributed in [0, 2π) (= the original reference
signal r(t) + an even distortion).

In order to have a smooth estimate of the level of the NL
distortions, the whole procedure is repeated for M = 1000
independent random phase realizations of the odd multisines,
and the mean values over these realizations of the estimated
variance of the even |ŶS(2k)|2 and odd |ŶS(2kne + 1)|2 NL
distortions (14) and of the estimated variance |ŶS(2ke +
1)|2/|U(2ke + 1)|2 of the BLA are calculated. In addition, it
allows to compare the fast (see Section III-B) to the robust (see
Section III-A) estimates.

B. Simulation Results

The simulations with the undistorted multisine result in the
unbiased estimates of the levels of the even and odd NL
distortions and serve as a reference for the simulations with the
distorted odd multisine. Fig. 4 shows the results. The following
can be observed.

1) In the first example (see Fig. 4, left column), the Wiener–
Hammerstein with β = 5× 10−3 in (24) has a dominant
odd NL behavior, and the even distorted odd multisine
overestimates the level of the even NL distortions in the
band [500 Hz, 1200 Hz].
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2) In the second example (see Fig. 4, right column), the
Wiener–Hammerstein with β = 5× 10−4 in (24) has a
dominant even NL behavior, and the even distorted odd
multisine overestimates the level of the odd NL dis-
tortions in the bands [0 Hz, 500 Hz] and [1200 Hz,
2000 Hz].

3) Inequalities (19) and (22) predict well the frequency
bands where the even distortions on the odd multisine
do not bias the estimated levels of the even and odd
NL distortions, respectively (compare the top and middle
rows of Fig. 4).

4) For both examples, the variance of the BLA measurement
using the even distorted odd multisine is larger than that
using the odd multisine in those frequency bands where
the estimates of the odd NL distortions are overbiased.
The bias on the level of the even NL distortions does not
influence the variance of the BLA.

5) For both examples, the robust and fast estimates of the
BLA (not shown here) and its variance (see Fig. 4,
bottom row) coincide. It shows that the fast method cor-
rectly predicts the variability of the BLA measurement,
even if the estimated level of the odd NL distortions is
overbiased.

Note that adding odd distortions to the odd multisine does not
introduce any bias in the estimated levels of the odd and even
NL distortions, nor does it increase the variability of the BLA
estimate.

VI. EXPERIMENTAL ILLUSTRATION

The goal of the measurement example is threefold: 1) the
experimental illustration of the fast method (see Section III-B)
on an NL system operating in feedback; 2) the experimen-
tal verification of conditions (19) and (22) for the unbiased
estimation of the even and odd distortions, respectively; and
3) the experimental illustration of the estimation of the feedback
dynamics. Therefore, we take the measurements of the open-
loop gain of an opamp from [10] and analyze a posteriori
the bias on the estimated levels of the odd and even NL
distortions. In addition, using the results of Section II-B, we
can give now an in-depth explanation of the open-loop gain
measurements.

A. Measurement Setup

Fig. 5 shows the basic setup for measuring the open-loop gain
A(jω) = Vout(jω)/(V

+(jω)− V −(jω)) of an opamp. Be-
cause of its very high gain, measuring the opamp in open loop
would immediately drive the output into saturation. Therefore,
to limit the output voltage, a feedback resistor R2 connecting
the output of the opamp to its negative input and a resistor R1

in series with the voltage source vg(t) are added. To prevent
loading of the output of the opamp by the resistor R2, a voltage
buffer (gain 1, very high input impedance, and 50-Ω output
impedance) is put in series to R2. The negative input v−(t) and
output vout(t) of the opamp are buffered (×1 voltage buffers
with very high input impedance and 50-Ω output impedance)
before being sent to the acquisition units (HP E1430A). The

Fig. 5. Basic block diagram for measuring the open-loop gain of an opamp.
The ×1 voltage buffers prevent loading of the circuit and the opamp, and the
resistor values are matched: R1 ≈ R3 ≈ 300 Ω and R2 ≈ R4 ≈ 12 kΩ. The
circuit is excited by the voltage source vg(t) with an output impedance Rg =
50 Ω, and the input u(t) and output y(t) voltages of the opamp are measured.

systematic errors introduced by the dynamics of the voltage
buffers and the acquisition units are eliminated via a relative
calibration (see [10] for the details).

The odd random phase multisines with the random harmonic
grid vg(t) are generated by an arbitrary waveform generator
(HP E1445A) at the sampling frequency fs = 10 MHz/24 =
625 kHz. The generator signal is low-pass filtered (cutoff
frequency of 250 kHz) before being applied to the circuit.
The acquisition and generator units are synchronized, and their
sampling frequencies are derived from the same mother clock.
Of each signal, P = 5 consecutive periods of the steady-state
response with N = 216 = 64× 1024 points per period are
measured at the sampling rate fs = 625 kHz.

The frequencies of the odd random phase multisines (see (9)
with R2k = 0) are logarithmically distributed between fmin =
fs/N ≈ 9.5 Hz and fmax = 9999fs/N ≈ 95 kHz, and the
amplitude spectrum is chosen to be flat. Of each group of three
consecutive harmonics (Nsub = 3), exactly one odd excited
harmonic is randomly eliminated. The resulting odd random
phase multisines with the random harmonic grid contain F =
299 odd excited harmonics with equal amplitudes. These ampli-
tudes are chosen such that the RMS value of the negative input
v−(t) of the opamp equals 6.1 mV.

While the fast method starts from one experiment with
an odd random phase multisine, the robust method requires
multiple experiments. Therefore, M = 25 experiments are per-
formed with M = 25 independent random phase realizations of
odd random phase multisines with the same random harmonic
grid and the same amplitude spectrum.

B. Measurement of the Open-Loop Gain and Detection of the
NL Distortions

Fig. 6 shows the mean value of the Fourier coefficients Xk =
X(k)/

√
N , X = U , Y , of the input u(t) = v−(t) and output

y(t) = vout(t) signals over the P = 5 periods of the first ex-
periment. The “+” indicates the excited odd harmonics X2k+1

(X = U , Y ), and the “o” and “gray ∗” are respectively the odd
and even nonexcited harmonics X̃S (X = U , Y ) defined in (7)
and (8). The latter are uncorrelated with the voltage source Vg .
Finally, the black line is the noise standard deviation of the
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Fig. 6. Measured (left) input and (right) output Fourier coefficients of the
opamp excited by an odd random phase multisine with a logarithmic random
harmonic grid (not all excited and nonexcited frequencies are shown). “+”:
excited odd harmonic; “o”: nonexcited odd harmonic; “gray ∗”: nonexcited
even harmonics; and black line noise variance (all harmonics).

Fig. 7. Corrected output Fourier coefficients (26) of the opamp (not all
harmonics are shown). “+”: excited odd harmonics; “o”: odd nonexcited
harmonics; “gray ∗”: even nonexcited harmonics; bottom black line: noise
variance excited harmonics; and top black line: noise variance nonexcited
harmonics.

mean value of the Fourier coefficients (excited and nonexcited
harmonics). The following observations can be made.

1) The odd (o) and even (gray ∗) nonexcited harmonics are
well above the noise level (black line), except the even
input harmonics below 200 Hz.

2) The odd nonexcited harmonics (o) are significantly larger
than the even nonexcited harmonics (gray ∗).

3) The output distortions (see Fig. 6, right plot) are about
50 dB (o) to 70 dB (gray ∗) below the linear contributions.

Although it is tempting to conclude from observation 2 that
the opamp has a dominant odd NL behavior, one needs to verify
first whether (22) is fulfilled before drawing this conclusion.
From observation 3, one could wrongly conclude that the
opamp behaves fairly linearly. This is due to the linearizing
effect of the feedback loop in the test circuit (resistor R2 in
Fig. 5).

The linear compensation (14) of the output Fourier coeffi-
cients for the parasitic power at the nonexcited input harmonics
gives the corrected output Fourier coefficients Yck

Yck =
Yc(k)√

N
with

{
Yc(ke) = Y (ke)

Yc(kne) = ŶS(kne)
(26)

shown in Fig. 7. The horizontal and oblique black lines indicate
the noise standard deviations of the excited and nonexcited har-
monics, respectively. In addition to the previous observations,
the following can be seen.

1) Below 10 kHz, the noise level of the nonexcited output
harmonics is much larger after correction (compare the
oblique and the horizontal black lines). This is due to the
input noise and the high gain of the opamp.

Fig. 8. Comparison between the (solid lines) robust and (“+”) fast estimates
of the open-loop gain. Black line: Open-loop gain (both estimates coincide).
Thin black line and “black +”: Noise variance. Gray line and “gray +”: Total
variance (noise + NL distortion).

2) The NL distortions in the corrected output spectrum are
much larger than that in the original output spectrum
(compare Figs. 6 and 7). Hence, the linear correction (14)
opens the feedback loop.

In order to verify that the level of the odd NL distortions in
the compensated output spectrum (see Fig. 7) quantifies cor-
rectly the level of the NL distortions on the BLA measurement,
the results of the fast method (see Section III-B) are compared
to those of the robust method (see Section III-A). Therefore, the
fast method is applied to each of the M = 25 experiments, and
the mean value of the BLA, its noise, and total variances are
calculated over these 25 estimates. From Fig. 8, it can be seen
that the fast and robust estimates coincide. It nicely illustrates
that the linear compensation (14) for the spectral impurity of
the input in the fast method is correct.

C. Classification and Quantification of the Even and
Odd Nonlinearities

Although the odd NL distortions in the compensated output
spectrum (see Fig. 7) quantify correctly the variability of the
BLA measurement (see Fig. 8), the relationship between the
true even and odd NL behavior of the opamp and the level
of the even and odd nonexcited harmonics in the corrected
output spectrum is valid only if inequalities (19) and (22) are
satisfied. The power spectral densities in inequalities (19) and
(22) are calculated via (20), where the expected values are
approximated by the mean value of |Û(k)|2 and |ŶS(kne)|2
(14) over the 25 experiments. Fig. 9 shows the power ratios
Suu,odd/Suu,even (black), Sysys,odd/Sysys,even (light gray),
and Sysys,even/Sysys,odd (dark gray) as a function of the log-
arithm of the frequency. The following conclusions can be
drawn.

1) Over the whole frequency band, Sysys,even/Sysys,odd

(dark gray) is much smaller than Suu,odd/Suu,even

(black) so that inequality (22) is fulfilled. Hence, the level
of the odd nonexcited harmonics in the corrected output
spectrum (see Fig. 7, “o”) is a correct indication of the
level of the odd NL distortions.

2) Above 1 kHz, the power ratio Sysys,odd/Sysys,even (light
gray) is much smaller than Suu,odd/Suu,even (black) so
that inequality (19) is satisfied. Hence, the level of the
even nonexcited harmonics in the corrected output spec-
trum (see Fig. 7, “gray ∗”) is a correct indication of the
level of the even NL distortions. This is no longer true in
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Fig. 9. Comparison between the (black) input-signal-to-even-distortion power
ratio Suu,odd/Suu,even and the power ratio of the (dark gray) even
to the odd Sysys,even/Sysys,odd and the (light gray) odd to the even
Sysys,odd/Sysys,even distortions.

Fig. 10. Frequency response function evaluated at the (top black line) excited
and (horizontal black line) nonexcited harmonics and the corresponding total
variances (top light gray line: excited harmonics; horizontal dark gray line:
nonexcited odd harmonics; and horizontal light gray line: nonexcited even
harmonics).

the band [200 Hz, 1 kHz]. Below 200 Hz, the even output
harmonics are at the noise level (see Fig. 7).

D. Measurement of the Feedback Dynamics

For each of the M = 25 experiments, the BLA is also
calculated at the nonexcited frequencies kne

Ĝ
[m]
BLA (jωkne

) =
Ŷ [m](kne)

Û [m](kne)
(27)

where X̂ [m](k), X = U , Y , are the mean input–output DFT
spectra over the P = 5 periods, with m = 1, 2, . . . ,M . The
sample mean and sample variance of (27) over the M = 25
experiments are shown in Fig. 10 (horizontal black and gray
lines). The following observations can be made.

1) The variance of the BLA at the nonexcited odd harmon-
ics is significantly smaller than that at the nonexcited
even harmonics. The explanation follows immediately
from Fig. 6: The input–output odd-distortion-to-noise
levels are about 20 dB larger than the input–output even-
distortion-to-noise levels.

2) Calculating the mean value of the estimated BLA over the
nonexcited frequencies (black horizontal line in Fig. 10)
gives 30.5 dB. This should be compared to the theoretical
expected value

−1/M(jω) =
(R1 +Rg +R2)

(R1 +Rg)
≈ 31.0 dB

(see (17) and Fig. 11, where R2 includes the 50-Ω output
impedance of the voltage buffer).

The second observation nicely illustrates the results of
Section III-E.

Fig. 11. Block schematic of the BLA of an opamp excited by a random phase
multisine vg(t). The voltage source of the stochastic NL distortions vs(t) is
uncorrelated with—but not independent of—the generator vg(t).

E. Discussion

Using the results of Section II-B, it follows immediately that
the new opamp model (see Fig. 11) proposed in [10] is exact
without any approximation. In this scheme (see Fig. 11), the
open-loop gain A represents the BLA (3), and vs(t) represents
the stochastic NL distortions that are uncorrelated with—but
not independent of—the source voltage vg(t). Hence, the re-
sponse (first-order moment) of the circuit to the voltage sources
vg(t) and vs(t) and its variance (second-order moment) can
be calculated using the superposition theorem. The part of
−Av−(t) that is correlated with vg(t) contains energy at the
excited harmonics only, while vs(t) has energy at all harmonics.

The open-loop gain and the variance of the stochastic NL
distortions can be estimated using the fast (see Section III-B)
or the robust (see Section III-A) method. At the nonexcited fre-
quencies of vg(t), the voltage source vs(t) has nonzero power,
and the BLA measurement equals minus one over the feedback
dynamics (see (17)). The quality of the latter depends on the
NL-distortion-to-noise ratio: The stronger the nonlinearity, the
smaller the variance (see Fig. 10, horizontal gray lines).

VII. CONCLUSION

The definition of the BLA of an NL system has been general-
ized to the closed-loop case. For NL systems operating in open
loop and excited by linear actuators, the generalized definition
reduces to the classical one. The BLA of NL systems operating
in closed loop can be measured using the existing robust
and fast methods. At the nonexcited frequencies, one recovers
minus one over the linear feedback dynamics. Hence, using
specially designed periodic signals, it is possible to measure
simultaneously the BLA and the linear feedback dynamics from
a single experiment.

An absolute interpretation of the output NL distortions re-
quires a linear compensation of the output spectrum for the
spectral impurity of the input. It has been shown that this linear
correction is exact without any approximation, even if the actu-
ator and/or the feedback are NL. Although the corrected output
spectrum quantifies exactly the variability of the BLA measure-
ment, the levels of the even and odd nonexcited frequencies in
the corrected output spectrum are unbiased estimates of the true
even and odd NL behaviors only if some inequality constraints
are satisfied. These constraints can be checked a posteriori.
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Finally, the theory has been illustrated on open-loop gain
measurements of an opamp. It follows that the new opamp
model proposed in [10] is exact.

APPENDIX A
CORRELATION BETWEEN YS(k) AND U(k) FOR NL

SYSTEMS OPERATING IN CLOSED LOOP

To simplify the notations, the arguments are omitted in this
appendix. If the feedback dynamics are linear, then the input
DFT spectrum U is related to the output of the actuator W and
the NL distortions YS as (combine Figs. 1 and 2)

U =
1

1 +GBLAM
W − M

1 +GBLAM
YS .

Hence, E{YSU} = −M/(1 +GBLAM)E{|YS |2} �= 0. If the
feedback dynamics are NL, then an explicit expression for
E{Y Ū} can be found using the results of Appendix B. Com-
bining (28) and (32), it can easily be verified that E{YSU} =

E{ỸSŨS} −GBLAE{|ŨS |2} �= 0, where ŨS and ỸS are the
observed input and output distortions, respectively.

APPENDIX B
BLA OF AN NL SYSTEM OPERATING IN CLOSED LOOP

To simplify the notations and without any loss of generality,
we neglect the leakage errors in the DFT spectra. Consider
now the closed-loop setup of Fig. 1, and define the open-loop
system where r(t) is the scalar input and z(t) = [y(t) u(t)]T is
the vector of the two output signals. By assumption, this SITO
open-loop system is an NL PISPO system. Applying definition
(1) to this SITO system gives

Z(k) = Gzr(jω)R(k) + Z̃S(k) (28)

where Gzr(jω) is the 2 × 1 BLA from r(t) to z(t), with Z̃S(k)
being the 2 × 1 vector of the stochastic NL distortions that are
uncorrelated with—but not independent of—R(k) (proof: see
[6] and [23]). Note that Z̃S(k) has exactly the same properties
as YS(k) in Section II-A, where u(t) is replaced by r(t),
because both are the output distortions of an open-loop NL
PISPO system. Combining (28) with

Grz(jω) =

[
Gyr(jω)

Gur(jω)

]
=

[Syr(jω)
Srr(jω)

Sur(jω)
Srr(jω)

]
(29)

Z̃S(k) =

[
ỸS(k)

ŨS(k)

]
, Z(k) =

[
Y (k)

U(k)

]
(30)

the difference YS(k) between the actual output Y (k) of the
closed-loop system and the output predicted by the BLA (3)
can be calculated as

YS(k) =Y (k)−GBLA(jωk)U(k) (31)

= ỸS(k)−GBLA(jωk)ŨS(k) (32)

= [1 −GBLA(jωk)] Z̃S(k). (33)

It shows that YS(k) inherits all properties of Z̃S(k) (e.g., YS(k)
is uncorrelated with R(k)) which concludes the proof.

APPENDIX C
INFLUENCE OF THE ACTUATOR AND THE FEEDBACK

DISTORTIONS ON THE FRF ESTIMATE

We consider here the setup of Fig. 1, where the actuator
and/or the feedback are NL and where the plant is linear.
To simplify the notations, we assume—without any loss of
generality—that the input–output measurement errors are zero
and that the reference signal r(t) is a random phase multisine
(9).

1) BLA: Applying the definition of the BLA (3) for NL
systems operating in closed loop gives

GBLA(jω) =
Syr(jω)

Sur(jω)
=

G(jω)Sur(jω)

Sur(jω)
= G(jω) (34)

where the second equality uses the property that the plant has
linear dynamics G(jω).

2) Output Residual: Replacing GBLA(jωk) by G(jωk) in
(31) of Appendix B and taking into account that Y (k) =
G(jωk)U(k) (u(t) and y(t) are periodic, and the system is
linear) show that YS(k) = 0.

3) Variance of the Estimated BLA: Consider the robust (12)
and fast (13) BLA estimates. Since the system is linear, we
have that Ŷ [m](k) = G(jωk)Û

[m](k) for all the random phase
realizations m = 1, 2, . . . ,M of the random phase multisine (9)
(by assumption, there is no input–output measurement noise).
Hence, the BLA estimates (12) and (13) are equal to G(jωk) for
all experiments, which implies that var(G(jωk)) = 0. It shows
that the stochastic NL distortions generated by the actuator
and/or the feedback do not influence the variability of the FRF
estimate.

APPENDIX D
THE ROBUST ESTIMATE OF THE BLA (12) IS CONSISTENT

Since the M experiments are independent, the sums in the
numerator and denominator of (12) converge with probability
1 to their expected values as M → ∞ (strong law of large
numbers [24]). Hence, using (10), we find with probability 1

lim
M→∞

ĜBLA(jωk) =
E

{
Ŷ [m](k)e−j∠R[m](k)

}

E

{
Û [m](k)e−j∠R[m](k)

}

=
E

{
Ŷ [m](k)R[m](k)

}

E

{
Û [m](k)R[m](k)

}

=
Syr(jωk)

Sur(jωk)

which concludes the proof (the second equality uses the fact
that |R[m](k)| is deterministic and independent of m).

APPENDIX E
PROPERTIES OF THE RESIDUALS (14)

The bias in the fast BLA estimate (13) can be neglected if the
input-signal-to-noise and signal-to-distortion ratios are larger
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than 10 dB [17], [25]. If the BLA GBLA(jω) varies piece-
wise linearly over the frequency, then the linear interpolation
does not introduce bias errors, and hence, E{ĜBLA(jωkne

)) =
GBLA(jωkne

). Note that the piecewise linearity condition is
practically fulfilled for a sufficiently large frequency resolution.
Using this result together with Ŷ0(k)=Y0(k)+MY (k), Û0(k)=
U0(k)+MU (k), YS(kne)=Y0(kne)−GBLA(jωkne

)U0(kne),
and N(k) = MY (k)−GBLA(jωk)MU (k), the expected value
of |ŶS(kne)|2 is found to be

E

{∣∣∣ŶS(kne)
∣∣∣2

}
=E

{
|YS(kne)|2

}
+ E

{
|N(kne)|2

}

= var (YS(kne)) + var (N(kne)) (35)

which proves that |ŶS(kne)|2 is an unbiased estimate of the total
variance. As a consequence, subtracting an unbiased estimate
of the noise variance from |ŶS(kne)|2 results in an unbiased
estimate of the variance of the stochastic NL distortions.

APPENDIX F
RATIONALE FOR (19) AND (22)

The following two assumptions are made for deriving (19)
and (22): (i) The phases of the plant input multisine are in-
dependently distributed, and (ii) the plant input-signal-to-even-
distortion ratio is frequency independent. Assumption (i) is only
approximately valid for NL systems operating in open loop and
driven by an NL actuator and for NL systems operating in feed-
back (and driven by a linear actuator). In general, assumption
(ii) will be an approximation too. Therefore, the reasoning in
this appendix is a rationale and not a strict proof of inequalities
(19) and (22).

1) Rationale for (19): The bias on the estimated level of the
even distortions can be neglected if the sum of all stochastic NL
contributions of the form (18) satisfies
∣∣∣∣∣∣
∑
k3,k4

βU(2k3 + 1)U(2k4 + 1)U(2l)

∣∣∣∣∣∣
2

�
∣∣∣∣∣
∑
k1

αU(2k1 + 1)U(2k2 + 1)

∣∣∣∣∣
2

(36)

where l depends on k3 and k4, k2 depends on k1 [see (18)], and
∑
k1

αU(2k1 + 1)U(2k2 + 1) = YS,even(2m) (37)

(see [1] and [17]). We elaborate now the left-hand side of (36)
assuming that the input-signal-to-even-distortion ratio |U(2l +
1)|/|U(2l)| is independent of l and that the phases of the
multisine u(t) are independently distributed. The factor U(2l)
in the left-hand side of (36) can be rewritten as

U(2l) = |U(2l + 1)| U(2l)

|U(2l + 1)|

= |U(2l + 1)| ej∠U(2l) |U(2l)|
|U(2l + 1)| . (38)

Replacing U(2l) in the left-hand side of (36) by (38) and taking
into account that |U(2l + 1)|/|U(2l)| is independent of l gives

∣∣∣∣∣∣
∑
k3,k4

βU(2k3+1)U(2k4+1)U(2l)

∣∣∣∣∣∣
2

=
|U(2m)|2

|U(2m+1)|2

×

∣∣∣∣∣∣
∑
k3,k4

βU(2k3+1)U(2k4+1) |U(2l+1)| ej∠U(2l)

∣∣∣∣∣∣
2

. (39)

Since the phases of U(2l + 1) and U(2l) are independently
distributed, we can approximate the sum in the right-hand side
of (39) as
∑
k3,k4

βU(2k3 + 1)U(2k4 + 1) |U(2l + 1)| ej∠U(2l)

≈ YS,odd(2m+ 1). (40)

Collecting (36), (37), (39), and (40) and multiplying the result
with |U(2m+ 1)|2, we find

|U(2m)|2 |YS,odd(2m+ 1)|2 � |U(2m+ 1)|2 |YS,even(2m)|2 .
(41)

Taking the expected value of (41) and dividing by
E{|U(2m)|2} gives

var (YS,odd(2m+1))�
E

{
|U(2m+1)|2

}

E

{
|U(2m)|2

} var (YS,even(2m)) .

(42)

Combining (20) with (42) finally proves (19).
2) Rationale for (22): The bias on the estimated level of the

odd distortions can be neglected if the sum of all stochastic NL
contributions of the form (21) satisfies

∣∣∣∣∣
∑
k1

αU(2k1 + 1)U(2l)

∣∣∣∣∣
2

�

∣∣∣∣∣∣
∑
k2,k3

βU(2k2 + 1)U(2k3 + 1)U(2k4 + 1)

∣∣∣∣∣∣
2

(43)

where the sum in the right-hand side is equal to YS,odd(2m+
1). We replace U(2l) in the left-hand side of (43) by (38), where
U(2l + 1) is replaced by U(2l − 1), and take into account that

∑
k1

αU(2k1 + 1) |U(2l − 1)| ej∠U(2l) ≈ YS,even(2m).

Following the same lines of Section F1, we get

var (YS,even(2m))�
E

{
|U(2m+1)|2

}

E

{
|U(2m)|2

} var (YS,odd(2m+1)) .

(44)

Combining (20) with (44) finally proves (22).
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