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The standard machinery for system identification of

linear time-invariant (LTI) models delivers a nominal
model and a confidence (uncertainty) region around it,
based on (second order moment) residual analysis and
covariance estimation. In most cases this gives an
uncertainty region that tends to zero as more and more
data become available, even if the true system is
nonlinear and/or time-varying. In this paper, the
reasons for this are displayed, and a characterization
of the limit LTI model is given under quite general
conditions. Various ways are discussed, and tested, to
obtain a more realistic limiting model, with uncertainty.
These should reflect the distance to the true possibly
nonlinear, time-varying system, and also form a reliable
basis for robust LTI control design.
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1. Introduction: The Fiction of an
LTI System

Linear time-invariant (LTT) descriptions of dynamical
systems are clearly the bread and butter of control
theory. Nevertheless, they are still a fiction: No real-
life system is exactly linear and time-invariant. So,
although there are no LTI systems out there, LTI
models as a basis for control design have proved to be
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of enormous value. There are basically two reasons for
this: (1) an LTI model may be a good approximation
of a real life system and (2) feedback control is for-
giving, in the sense that you can achieve good control
based on quite an approximate model.

System identification offers an efficient machinery
to estimate LTI models from observed input—output
data. This machinery will be briefly surveyed in
Section 2. Identification techniques deliver a nominal
LTI model, with an associated uncertainty region,
reflecting the estimated statistical confidence region of
the estimated parameters. It is intuitive to visualize the
delivered model as a band around the Nyquist curve
or as bands in the Bode plots. These confidence regions
are deemed to be reliable (or at least “not falsified”) if
certain model validation tests are passed. A typical
such test is to check the correlation between the model
residuals (prediction errors) and past inputs, as well as
the correlation among the model residuals themselves.

It is important to realize that the LTI identification
machinery is always able to deliver an unfalsified linear
model with decreasing uncertainty regions as more and
more data become available, regardless of the character
of the system. The reason for this is that LTI-techni-
ques (i.e. second-order moment techniques) cannot
distinguish a system from its LTI second order equi-
valent. The details of this are discussed in Section 3.

Let us illustrate this important fact:

Example 1.1. (Rotation of a Rigid Body). Consider
the rotation of a rigid body around a fixed point. The
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input u# is a moment applied along a certain axis.
The output y is the angular velocity around one of the
principal axes of the moment of inertia. If u is applied
around the same principal axis, the rotation is de-
coupled and there is a linear relationship between u
and y. However, if u is applied along another axis, the
system will not be linear, unless the body is spherically
symmetrical. The reason is that there are nonlinear
cross-couplings between the principal axes of the
moment of inertia. To be specific, we consider a thin
and long body with moments of inertia being 0.11,
100.01, and 100.10, respectively, along the principal
axes. There is also a viscous damping factor of 0.01
around each of the axes. We perform two experiments:

e A. The input moment is applied around an axis that
deviates from the output principal axis by 0.003
radians.

e B. The input moment is applied along the line that
deviates from the output principal axis by 0.1
radians.

The first system would then be “rather linear”, while
the second one is highly nonlinear.

In each case a low frequency random input was
chosen and 10000 data points collected. Portions of
the data are shown in Figs 1 and 2. The linear iden-
tification process selected a third order BJ model in
both cases. Results from residual analysis in the two
cases are shown in Figs 3 and 4. Neither give any
reason to reject the models. Amplitude Bode plots
with confidence regions corresponding to 3 standard
deviations are shown in Figs 5 and 6. The delivered
picture is clear: Both systems can confidently be
described by LTI models with only minor uncertainty.
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Fig. 1. Portions of the data. Experiment A. The upper plot is
output (angular velocity around the second principal axis) and the
lower plot is the input (applied moment around another axis).
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For experiment A, the model is able to describe
100% of the output variation by one-step ahead pre-
diction and 99.39% in a pure simulation. The cor-
responding figures for experiment B is 99.97% and
0.13%, respectively. The last figure is low, but the
LTI-identification machinery explains the deviation
as noise that is uncorrelated with the input and can be
described as filtered white noise disturbances, giving
rise to some limited uncertainty in the estimated model.

If we know that the data collection has been
essentially noise-free, this interpretation should cause
some concern, but this is the only cloud in the LTI sky.
For us, who did the simulation and know that the
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Fig. 2. Portions of the data. Experiment B. Output and input as in
the previous figure.
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Fig. 3. Result of residual analysis. Experiment A. The upper curve
shows the autocorrelation of the residuals. The lower plot shows
the cross correlation between residuals and inputs. The shaded zone
is the confidence region.
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12 Correlation function of residuals. Output y1
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Fig. 4. Result of residual analysis. Experiment B. Same explanation
as in Fig. 3.
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Fig. 5. Amplitude Bode plot of the obtained model, with
confidence regions corresponding to 3 standard deviations marked.
Experiment A.

system in case B is highly nonlinear, the Bode plot in
Fig. 6 and the residual test plot in Fig. 4 should call for
fundamental concern.

The example points out a fundamental shortcoming
of the standard LTI identification process: With
increasing amounts of data, models will be delivered
with uncertainty zones converging to zero in Nyquist/
Bode diagrams. This does not rhyme well with our
knowledge that while LTI models may be good
approximations, no real life system is exactly LTI. It
would be much more satisfactory if the delivered LTI
model has some remaining uncertainty, no matter
how many data it is estimated from.
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Fig. 6. Amplitude Bode plot of the obtained model, with
confidence regions corresponding to 3 standard deviations marked.
Experiment B.

The topic of this contribution is to discuss this issue.

Dealing with remaining bias errors in models is by
no means a new problem. There are many contribu-
tions in the literature that deal with the problem to live
with both bias errors and the classical statistical var-
iance errors. We could point to, among many refer-
ences, [1] for a characterization of the bias error in the
frequency domain, [2] and [3] for the concept of sto-
chastic embedding, [4] for model error models, [5] for
total error estimates [6—8] for more deterministic
measures, [9] for explicit analysis of bias and variance
contributions, [10] for model approximations tailored
to control design, and [11] for explicit robustness
measures for identified models.

Most of these references, however, deal with the
problem that the model is of lower order than the true
system, which still is assumed to be given as an LTI
description. In this paper we will specifically discuss
model discrepancies that are caused by systems that
are more difficult to describe. An early treatment of
LTI models and ill-defined systems is given in Chapter
8 of [12].

2. The Machinery of Estimating
LTI Models

A general LTI-model of a dynamical system can
always be described as

y(t) = G(q, 0)u(r) + H(g, 0)e(1). (1)

Here, ¢ is the shift operator, and G and H are the
transfer matrices from the measured input « and the
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noise source e, which is modeled as white noise
(sequence of independent random variables). For
notational convenience we will from now on only
consider Single-Input—Single-Output systems, but the
theory is the same in the multivariable case.

We shall also use the following shorthand notation
for the corresponding frequency function

Gy = G(e“, 0). (2)

The transfer functions are parameterized by a finite-
dimensional parameter vector 6, and this parameter-
ization can be quite arbitrary. For black-box models,
it is common to parameterize G and H in terms of the
coefficients of numerator and denominator polyno-
mials, perhaps constraining G and H to have the same
denominators. This leads to well established model
classes, known under names like ARX, ARMAX, OE,
BJ, etc.

Another possibility is to parameterize the model
as a state-space model, in discrete or continuous
time:

x(t+1) = A(0)x(t) + B(@)u(t) + K(0)e(r), (3a)
y(1) = C(0)x(2) + D(O)u() + e(2) (3b)

which gives

The parameterization of the state—space matrices can
be of black-box character as canonical forms, or even
filling all the matrices with parameters. It can also be
in terms of a grey-box, where physical insight (typi-
cally in continuous time descriptions) is used, mixed
with parameters with unknown values.

Whatever the parameterization, the problem is to
estimate the parameters in (1) based on observed
input—output sequences {y(t), u(t) t=1,2, ..., N}.
Among many suggested algorithms for this, two
major approaches are dominating today:

e Sub-space methods
e Prediction error methods

Sub-space methods, e.g. [13—15], can be described
as first estimating the state sequence in (3a) and
then treating the two equations, with assumed
known x, as linear regressions to find the state space
matrices.
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Prediction error methods first determine the pre-
diction errors associated with (1):

e(1,0) = H'(q.0)(v(1) — G(g. O)u(1)). 4)

This requires 6 be confined to a region D, so that
the filters H~' and H'G are stable. Then the 6 that
minimizes the norm of the errors

Oy = arg raréig Vn(6), (5a)
|
COEES SEIN) (50)

=1

is determined, typically by numerical search. A good
combination of the two approaches, in the black-box
case, is to initialize the search at the estimate provided
by the subspace method.

How will these methods perform? Well, that depends
on the input—output data. A typical approach to ana-
lysis is to assume that the data indeed have been gener-
ated by a system like (1) for some particular parameter
vector 6y, and for e being a sequence of independent
random variables. In that case the asymptotic statis-
tical properties (convergence and asymptotic dis-
tribution) of fy can be calculated readily. We refer to
[16] for a comprehensive analysis of this kind, as well
as for more details on model structures and estimation
techniques. Just one thing will be pointed out, though:
It is part of the standard LTI-identification machinery
to compute the resulting residuals:

e(r) = &(1,0n). ()

It is then tested whether () is uncorrelated with past
inputs u(s), s < ¢ and if they are mutually uncorrelated.
If such a residual analysis test is passed (i.e. there is
no convincing statistical evidence that correlation
is present), the assumption of a true system within
(1) corresponding to a particular value 6y is “not
falsified”, and the distribution of 6y — 6, can be
calculated using the aforementioned theory. This
means that a confidence region for the true system can
be estimated. The delivered LTI model thus comes
with a quality tag, corresponding to confidence regions
around the estimate. This was depicted in Fig. 5.

Instead of reviewing this standard material, we shall
in this paper develop an independent analysis of the
limit of the prediction error method estimate 0. This
will use minimal assumptions on the properties of the
input—output data. In particular, it will not be
assumed that they have been generated by an LTI
system, and it will not employ a stochastic framework.
Some related results were presented in [17].
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3. Second-Order Equivalent LTI Models
3.1. Quasistationary Signals

A deterministic signal z(¢) will be called quasista-
tionary, [16], if

|z(t)| < C, ¥t for some C < oo, (7a)
1 T

lim N;z(t)z (t—1) = R(7), (7b)
exists V7.

If R. is such that the Z-transform

00

0.()= > R(r)= ®)

T=—00

is well defined on the unit circle, we call ®.(¢') the
spectrum or spectral density of z. ®.(z) will be called
the spectral function. It can be shown that R. and &.
possess all the properties normally associated with
covariance functions and spectra, defined for stationary
stochastic processes. In Section 4.2 we shall specifi-
cally prove how they transform under linear filtering.

We will also use the following standard concepts:
A filter

Gz = > =" ©)

k=—00

will be called

stable if Y |gk| < o0,

causal if g, =0, k<0,

strictly causal if g, =0, k<0,
anti-causal if g, =0, k> 0.

Moreover, a family of filters

Go(z)= Y _ giz*, 0eD (10)
k=—00
is called uniformly stable if
> suplgf| < oo (11)
fk=—00 0eD

3.2. Description of Systems that Produce
Quasistationary Data

Let the input—output data collected from the process
be {u(?), y(¢); t=1,2,...}. Let
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Assume that the data are quasistationary and that the
spectral function

®-(2) = |:q)uy(z) (%:((ZZ))] (12)

is well defined.
Now, do spectral factorization

®.(z) = L(z)L"(1/z)

so that L(z) and L™'(z) are stable and causal 2-by-2
transfer function matrices. Then define

P(z) = [Dyu(z) y(2)]LT(1/2)”"

0 00
= Z ez + Zpszk
k=1

k=—00

= P_(2) + P, (2),

where P, (z) is the strictly causal part of the left hand

side. Next define W, and W, by
P.(2)L7'(z) = [W.(z) W,(2)]. (13)

By construction W, and W, will be strictly causal,
i.e. start with a delay (contain a factor 1/z). The reader
will recognize

(|t =1) = Wilq)u(r) + Wy (q)y(1) (14)

as the Wiener filter, [18], for estimating (predicting)
y(2) from u(s), y(s); s<t—1. Let

eo(t) = y(1) = (e[ 1 = 1).

Then (14) can be rearranged as

y(1) = Go(q)u(r) + Ho(q)eo(t) (15a)
with

Ho(z) = (I— W,(z))”", (15b)

Gol(2) = Ho(2) Wa(2). (15¢)

By the properties of the Wiener filter ey(¢) will be
uncorrelated with y(s), u(s), s<t—1, i.e.

m%g“(” BE;:ZH = m (16)
vr > 1.

Since ey(s) is constructed from y(r),u(r), r<s, this
also implies that

N—oo

1 N
lim NZ%([)EQ(I-T)ZO, for 7 #0. (17)
=1
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The corresponding limit for 7= 0 we denote by Aq. Let

=[]

eo(1)
Defining spectra analogously to (7b)—(8) gives

¢da={§ﬁ2 ¢§”} (8)

where ®,,.(z) will be an anti-causal function, in view
of (16).

Remark. Note that ®,, will normally not be zero, even
if there is no feedback in the data. An explicit example
of a nonlinear, causal, feedback-free relationship
between u and y that still gives a non-zero (but non-
causal) correlation between u and e is given in
Example 1 of [19].

The point of this discussion is of course that any
quasistationary input—output data set

{z(¢), t=0,1,...}

can be seen as being produced by (15a), with a signal
eo which has a constant spectrum (“white noise”) and
such that ey() is uncorrelated with past u(s), s < ¢ (i.e.
(16) holds.) Statistical independence between e and u
and among e will generally not hold. Anyway, we have
not introduced any stochastic framework for the data.

This means that considering just second order
properties (i.e. the spectra) of the signals y and u, we
cannot disprove that they have been generated by
(15a). In other words, the system (15a) is a second
order equivalent of the system that generated y from u.

Now, it must immediately be said that G, and H,
will in general depend on the input spectrum ®,, so
that the second order equivalent obtained for one
input may be useless to describe the true system for
another input.

4. A Characterization of the Limit Model

We shall in this section develop some results about
limits of estimated LTI-models based on data from
arbitrary systems. The theory will actually be self-
contained and it will not rely upon the traditional
convergence results for identified models, given e.g.
in [16].

4.1. The Theorem

The result is as follows:

Theorem 4.1. Consider the input—output data
{u(t), y(¢); t=1,2,...}. Assume that the data are

L. Ljung

quasistationary and that W,, W, and H, given by (12)
and (13) are well defined and stable. Consider the LTI
model structure (1) with uniformly stable predictors
(4) and let the estimate y be defined by (5a). Then

lim Oy
N—oo

1
= arg min/ ——[(Gy — Gy) (Hy— Hy)]
0 J_x |Hy|?
{ ®H éu(’,]
X
q)eu )‘0

Here Gy and H, are defined from u and y by (12)—
(15¢), the argument ¢ of all the transfer function has
been omitted as in (2), and overbar denotes complex
conjugation.

Note that this is exactly the same result that holds
w.p.l in case it is assumed that (15a) has generated the
data with eg being a sequence on independent random
variance with zero mean values and variance = ).
This is the basic, “traditional” convergence result, see
e.g. [16]. This means that all traditional analysis of
limiting estimates in open and closed loop can be
directly applied to the general, nonlinear, non-
stochastic case dealt with here, since that just amounts
to an analysis of the integral in (19). See, for
example, [20].

To prove this theorem we first establish a result of
independent interest:

(Go — Go)

(s — Ty dw. (19)

4.2. Transformation of Spectra by Linear Systems

Theorem 4.2. Let {w(f)} be a deterministic, quasi-
stationary signal with spectrum ®,,(w) and let G(g) be
a stable filter. Let

s(t) = G(g)w(1). (20)

“0=(a))

is also quasistationary with spectrum

G(e“)®,, (w)GT(e™¥)

_ G( iw)q)w(w)
P, (w) = ( @w(w)GT(e*iw) © )

D, (w)

The proof of this theorem is given in Appendix A. We
may note that the results still parallel the theory of
stationary stochastic processes. The expressions for
transforming spectra are entirely analogous.
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For families of linear filters we have the following
results.

Theorem 4.3. Let {Gy(g), 0 € D} be a uniformly stable
family of linear filters (see (11)) and let {w(z)} be a
quasistationary sequence. Let

so(1) = Gy(q)w(),

Ry(r, ]égrolc Zs@ YQZ—T

Then, for all 7

ZS@ S(, l‘—7‘

sup Ry(7,0)|| — 0 as N — oc.

0D

Proof. We only have to establish that the convergence
in (48) (in the appendix) to zero is uniform in € D. In
the first step all the g(k) terms carry an index 60 : gy (k).
Interpreting

g(k) = sup |go (k)|
0eD

(48) will of course still hold. Since the family Gy(g)
is uniformly stable

Zoc:g(k) < 0

k=0

and this was the only property of {g(k)} used to
establish that (48) tends to zero. This completes the
proof. O

4.3. Proof of Theorem 4.1

The prediction errors according to the model (1) are
= H;l(y — Gou), (21)

where we have suppressed all arguments. The estimate
is determined by minimization of

N
fy = arg min Z £2. (22)

t=1

Studying the second order properties of 49, we can
replace y with its second order equivalent description
(15a). Inserting that expression for y in (21) gives

== HH_I (Gou — Gou + Hoeo)

= H,'[(Go — Gg)u + (Ho — Hy)eo) + ¢o

2 yo(t) + o). (23)
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According to Theorem 4.2, ¢, vy and ¢, are quasi-
stationary signals, and according to Theorem 4.3

Z ex(t 0) + Ao (24)

uniformly in § € D as N — oo (25)
1 N

where V(0 NZ: (26)

where we also used the limits in (16) and (17). With the
notation of (7b) V(6) = R,,(0), so from the inverse
Fourier transform (or Parseval’s relationship) we
have that

7 (0) = [ ’ ®,,(e“)dw, (27)

where ®,, is the spectrum of vy, which according (23)
and Theorem 4.2 is given by

5[(Go — Go) (Ho — Hy)] (28)
|Ho|
q)u cbue G_ - G_ )
. {‘I’eu Ao ] {(Hoo - 1;0)} @)

which proves the theorem.

5. General Model Error Models

Any estimated model will be an imperfect description
of the system. The term Model Error Model was
coined in [4] to denote any way to characterize the
errors associated with the model. These ways will
of course themselves be imperfect, but they may be
adequate to describe the amount of caution that
should be exercised when the nominal model is used.
The basic model error model could simply be descri-
bed by a parallel block to the nominal model as shown
in Fig. 7.

How do we gain information about the model error
model? Well, all information is in the measured data,
possibly in conjunction with some data-independent
prior knowledge. Since the nominal model has squeezed
out most — or part — of the information in the data,
the model error model will describe the relationship
between the input « and the output error v(¢) = y() —

G(q,0y)u(r) or the residuals (1) =¢e(z,0y). This is
also illustrated in Fig. 7. Consequently, developing a
model error model amounts to some kind of residual
analysis. This is a standard topic in regression theory,
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Gmem

u Gnom 7>b—> y

Fig. 7. The nominal model G, and the model error model Gep.

gmem

Fig. 8. The model error model with linear weighting functions.

see e.g. [21], and the analysis of correlation between
past inputs and residuals, depicted, e.g. in Fig. 3 is the
most common example of such analysis.

Building linear model error models is thus just an
alternative way of phrasing the result of such standard
(second order) residual analysis. See [4]. Explicit linear
model error models will consequently describe the
bias distribution of the nominal model, but will have
no information about possible errors due to non-
linearities or time-variation in the true system. The
nominal model plus the linear model error model will
just describe the LTI-equivalent, defined in Section 3.

It is therefore of more interest to discuss error
models that are nonlinear and/or time-varying. A
brief discussion of this is given in [22]. Now, the pur-
pose of an error model is not to complement the
nominal model with detailed structural information.
That should rather be done as part of the nominal
model. Instead, the purpose of the error model is to
capture the reliability of the nominal model, so that
proper robustness in the control design can be
assured.

This means that we shall work with a model error
model depicted in Fig. 8. We shall only be concerned
about the gain of the block guyen. Written out as
equations we have

e(r) = Wy (g)(n), (30a)
ur(t) = Wi(q)u(1), (30b)
(1) = Gmem (i), (30¢)
llell < Bllurl| + e (30d)

L. Ljung

=

u Up _ & v
f W,y Imem »b* W,

Fig. 9. The model error model with additive disturbance.

Some comments are in order:

e The role of the weighting functions W and W, is to
give adequate freedom for the control design.
Estimating just the gain of the middle block could
be an obtuse instrument, and the linear weights will
prove useful.

e The norms in (30d) are to be interpreted in L, sense.
With a = 0, the number [ is consequently the H,
gain of the system gyenm.-

e There are two reasons for the off-set term a:

1. To allow for external signals to enter the error
model, as depicted in Fig. 9 (a would then be the
norm of w)

2. To allow for possible very large gains for small
amplitude signals, which may not be harmful for
“practical stability”. This is further elaborated in
[23]. For discussions of such an off-set term in
connection with stability see also [24] and [25].

6. Estimating the Gain of a System

We are now faced with an essential problem: Given the
sequences up and €, how to estimate (3 and o in (30d)?

There is apparently not an extensive literature on
this problem. Some “identification for robust control”
articles relate to the gain estimation, like [6,7,26—29].
These mostly deal with the gain of a LTI or an LTV
error model, though.

It is not the purpose of this section to launch a
recommended method for gain estimation of general
model error models. We shall instead point to some
possibilities, that indicate that the problem is not
infeasible.

6.1. Estimating the Gain from a Model

A rather obvious possibility is to explicitly estimate
the model in (30c) and then compute the gain of the
estimated model:

6(0 = gmem(”}:_l) + W(l).
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Use your favorite nonlinear black box model struc-
ture for gmem, such as an Artificial Neural Network,
Local Linear Models, Piece-wise linear models, etc.
(cf Chapter 5 in [16]). Then determine § and « from
the estimated model and the size of w.

As an alternative, if just the gain is of interest, it
may be simpler to directly estimate a “ceiling” for the
surface that gnem defines. See also Section 6.3.

6.2. Estimating the Gain Directly from Data

It is tempting to circumvent the laborious process of
estimating a general nonlinear black-box model and
then compute its gain, by directly estimating the gain
from the data. For example, if a local, radial basis
neural network is used to estimate the surface gnem,
the “peaks” of this surface are created by large values
of observed ¢(¢). (See Section 6.3 for more intuition
about this “surface.”) The highest gain points of the
surface are created by observations where the ratio |e|
to ||u|| is large. This leads to the following simple
method:

e Assume that it is known that most of the influence
on £(¢) from past ug(s), s < ¢, linear or not, lasts for
d samples. Simple transient experiments, or basic
prior knowledge can give insight into this. Form

o) = [urt = 1) up(t—2) - up(t — )]
(31a)
and find
)
p=max ol (310)

Here || - || is the usual 2-norm. Now, p is the largest
gain to a single value of ¢ that we have seen in the
data. To move to a corresponding norm for ¢ a
natural upper bound on the gain would be
B=vVd-p. (31c)
The reason why Bis just an upper bound, is that it does
not follow that d such large values of £ can be pro-
duced in a sequence. Now this is a very simple algo-
rithm, that does not have any provisions for dealing
with noise or off-sets. A more general version would be
to have an intelligent way of finding a noise-permissive
upper-bounding line when regressing || on ||¢||. Here
we just let that line go through the origin (oo = 0) and
did not allow any observations above the line.
Anyway, let us test how this estimator works.
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Example 6.1. (Estimating Gains for Time-varying,
Nonlinear, Noise Corrupted Systems) We create a
time-varying, nonlinear, noise corrupted system as
follows:

e Create two random, linear third order systems:
ml =idpoly (fstab([1l, randn
(1,3) %27,

[0, randn(1,3) *3]) and
similarly for m2.

e Create an input signal u as a white noise normal
signal with 1000 samples and low pass filter it by
1/(¢—0.8)

e Let u pass through a static, discontinuous non-
linearity to form u;:

_{Su
uy =
u

e Form a time varying linear system from m1 and m2
by letting its parameters vary as a cosine with period
200 samples between those of m1 and m2. The
output when simulated with u, is called y;.

e Introduce an output dead-zone so that

0 if () <5
y(t){yl(t) clsa.

if |ul <2
else.

e Add rectangular distributed noise to y so that the
signal-to-noise ratio becomes 10 (amplitude-wise)

The theoretical gain of this nonlinear, time-varying
system is 5 times the largest magnitude that the fre-
quency functions of m1 and m2 ever assume. Two
hundred systems of this kind were simulated. Only
systems m1 and m2 with impulse response solution
time (to 5%) less than 20 samples were accepted. The
reason is that systems with long impulse responses
probably require modified techniques for gain esti-
mation (see Section 6.3).

Figure 10 shows the gain estimate from algorithm
(31) versus the true gain. The root mean square
deviation of the measure

Estimated Gain

2
True Gain (32)

is 34%, which could be perceived as a surprisingly
good result.

6.3. General Gain Estimates: A Disclaimer

It is instructive to visualize the gain estimation prob-
lem as follows: Consider R*!. Let the “Floor” R be
spanned by the d-dimensional vectors () and let us
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Fig. 10. Evaluation of the gain estimator (31). The plot shows the
result for 200 simulated systems as described in the text. Each dot

corresponds to a system. Its y-coordinate is the estimated gain and
its x-coordinate is the true gain.

view ¢ as rising perpendicular to this floor. A non-
linear model gmem as in (30c¢) then is a hypersurface
over RY. Estimating the gain is a matter of finding the
highest elevations of this surface as viewed from the
origin.

Now, R%is a pretty big and “empty” space. Suppose
we use d =20 as in the example. Consider the unit
cube |up(?)] < 1 and use a grid of fineness 0.2 to dis-
tinguish between values of up, which is rather crude.
Then the unit cube will contain 10%° cells. Even with
quite a respectable number of observations, like
N = 10*, at most a portion of 107! of the cells will be
populated with observations. The surface mentioned
above will therefore have an extremely thin support
of observations. Finding and estimating the angle to
the peaks of this surface consequently will be a tricky
problem. Practically regardless of the number of
observations made, most parts of the space have not
been covered, and without prior information it is
impossible to say what the gain would have been at
those parts.

It is in the light of this that the results of Fig. 10
could be considered as “surprisingly good”.

Now, the longer the effect of an input sample lasts,
the more difficult will the gain estimation be, since the
probability we will hit the “worst case” input sequence
becomes less. This was the reason that we only studied
systems with solution time less than 20 samples, which
anyway is a reasonably long response time. Systems
with longer lasting responses will require modified
estimation techniques.

What can be done about this lack of support of
observations in R?°? Well, essentially nothing. Some
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possibilities to deal with the problem could be:

1. Obtain more measurements: Will not help much,
since. R* would require a totally unrealistic
amount of data to be covered.

2. Assume that the surface is “very smooth”, and that
the collected data exhibit the behavior of the
system, that we are likely to encounter also later.
This is really the alibi behind algorithm (31).

3. Assume that the surface is a hyperplane, i.e. that
Zmem 18 a linear FIR-model. Or, assume that the
actual model surface can be effectively over-
bounded by such a hyperplane.

4. Assume that the surface can be well approximated
by a radial basis neural network. This is essentially
the same as 2.

5. Assume that the surface can be well approximated
with a ridge type neural network, such as the tra-
ditional sigmoidal networks. This, in a sense, is a
combination of 2 and the idea that you can extra-
polate along hyperplanes.

It is obvious, in the light of this, that no procedure for
estimating the gain can come with any quality guar-
antees, unless some very reliable prior information is
available about the shape of the surface. For a linear
error model, it would be possible to describe the dis-
tribution of the estimate provided by (31), but in the
general case such analytical results cannot be derived.

Estimating the gain in the general case will thus be
subject to verification in the particular applications of
interest, just as the construction of general nonlinear
black-box models.

7. An LTI Model with a General
Model Error Model as an Equivalent
Uncertain LTI Model

7.1. Linear Model Errors

Once a model with its model error uncertainty is
delivered, the question is how to design a controller
that will stabilize the system robustly. By this we
would mean that the chosen controller should stabilize
all models in the “region” defined by the nominal model
and the model error model.

In case we have used a linear model error model,
this region is easily depicted in the frequency domain.
It will look like a strip in the Bode, or Nyquist plot, i.e.

G € G=A{G|G(e") = Grom(e™)| <A(w)}. (33)
see, e.g., Fig. 5. How to achieve robust stability for
such a set of models is well known: Choose a regulator



Estimating LTI Models of Nonlinear Time-varying Systems
K, such that the complementary sensitivity function

GnomK
T=_—nom> 34
1+ GromK (34)

1s less than the inverse relative model error bound:

|Ghom (eiw) ‘

7)) < 2 S

V. (35)

H, techniques can be used to determine if such a K
exists, for given Gy, and A. See, e.g. [30].

7.2 Frequency Weighted Nonlinear Model
Error Model

The error model (30) corresponds to a closed loop
block diagram as in Fig. 11. This can be rearranged to
be seen as feedback between the nonlinear part of the
error model gyem and

KWW,
1 + KGrom

(keeping in mind that we only consider SISO models
here). Suppose that the gain of the nonlinear part is
subject to

llell < Bllurll + e (36)

as in (30d). Here the off-set term « includes both
effects of the nonlinearity and of the additive dis-
turbance w. The small gain theorem tells us that
stability is assured if

BW(e¥) Wa(e¥)K(e™)
1 + K(e“)Grom(e@)

<l Vw. (37)

w
u g : v
y
Gnom .
-K

Fig. 11. Block diagram of the feedback loop with model error.
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Comparing with (35) we realize that we just can con-
sider the set of possible system descriptions to be
linear and given by

Geg= {GHG(CM) - Gnom(eiw)| <.
< BWi(e¥)Wa(e)}. (38)

By stabilizing any linear model in this set, i.e.,
achieving (35) for A = gWW>, we have also made
the linear control design robust against nonlinear
model errors of the type (30).

We can also go beyond stability robustness and
consider sensitivity to disturbances. It follows, see
[23], that the output norm is bounded by

W\ W,
Gnom ’

Il < [ISWa]l Gy =T (39)

.
L=BlG]I”

where S is the sensitivity and 7" the complementary
sensitivity of the nominal design. Again, standard
linear techniques tell us how to design the pair S and 7'
from W, W>, a, B and Gyom so that the sensitivity
expressed by (39) is acceptable.

7.3. An Equivalent Uncertain Linear Model to be
Delivered to the User

From the discussion above it follows that if the LTI
identification process estimates a nominal model G,
and we select the weighting functions W, and W, and
then estimate the gain § of the block gnem we can
deliver an LTI uncertainty model consisting of Gom
and the band G defined by (38). If robust linear control
design is applied to this uncertainty model, LTI
regulators will be produced that are robust also to
nonlinear, time-varying model errors up to the size
determined by the gain estimator. This extends in
a quite natural way LTI-identification + LTI control
design to general systems that can be well approxi-
mated by LTI models.

7.4. Choice of Linear Weights

It may be quite important to correctly use the freedom
offered by the weights W, and W,. As will be seen in
the next section, different weights can produce quite
different LTI uncertainty models. The choice of W is
an interplay between shaping the uncertainty regions
to what suits the control design, and creating des-
criptions that leave the unexplained (“(3”) as small as
possible.
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Some natural choices are:

e W = Guon. This makes up = y, the model’s simu-
lated output. It is natural to compare the model
error with the simulated output, since this directly
relates to the percentage of the output’s variation
that is explained by the model. It also leads to a
quantification of the relative model error, which
naturally arises in robustness criteria (see e.g. G,, in
(39) which contains the ratio W;/Gqom)-

o W,y = Hyom, the nominal noise model. This makes e
equal to the model residuals, which gives an output
the unknown block with the smallest possible var-
iance. This should lead the smallest 3, but the shape
of the uncertainty region may perhaps be unsuitable
for control design.

There are of course many other possible choices. One
should however avoid weights with long impulse
responses, since this may make the gain estimation
more tricky.

8. Some Numerical Experimentation

Let us do some experiments to see how the outlined
works out. We first test a time-varying, nonlinear
system:

Example 8.1. (Estimating LTI models for Nonlinear,
Time-varying Systems) Consider a system that is time-
varying between the two descriptions

y(t) = 2y(t— 1)+ 1.45y(t — 2) — 0.35y(¢ — 3)
=u(t—1)+0.5u(t — 2) + 0.2u(t — 3)

and

(1) — 1.93p(t — 1) + 143p(1 — 2) — 0.41p(1 — 3)
= 1.05u(t — 1) + 0.41u(t — 2) + 0.18u(z — 3).

It is also subject to an input static nonlinearity, so that
inputs with an amplitude less than 0.8 is multiplied by
1.2, as well as an output dead-zone of length 1. The
input is white Gaussian noise with unit variance. A
third order LTI model was estimated from the data.
This passes the traditional model validations tests
well. Figure 12 shows the nominal estimated model and
the equivalent uncertain LTI-models, as described in
the previous section, with the gain estimated using (31).

Finally, we return to Example 1.1.

Example 8.2. (Rotation of a Rigid Body, Cont’d)
From the data of experiments A and B (see Figs 1
and 2) nominal third order LTI models were estimated
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as described in Example 1.1. Error models were
estimated as in (30) and (31) for some different W; and
W,. Figures 13 and 14 show the amplitude Bode plots
of the resulting error models. These should be com-
pared with Figs 5 and 6. We see that the essentially
linear case of experiment A is correctly identified as
such, while the nonlinear case of experiment B gives
an error model that clearly shows that a reliable linear
approximation is not feasible.

9. Conclusions

In this contribution four facts have been pointed out:

e Under general conditions we can explicitly specify
in which way an estimated LTI model approximates
a general system. It is essentially only required that
the system produces quasistationary signals.

e We have pointed to the possibility of directly esti-
mating the size of the distance between the true
system and the LTI-approximation.

e We have shown how the resulting model can be seen
as an LTI-model with an uncertainty region, much
in the same spirit as the traditional model with
statistical confidence intervals.

e LTI robust control design for the family of LTI
models delivered by this process will give regulators
that are robust also to model errors resulting from
the possibly nonlinear, time-varying true system.

An artifact of the standard LTI identification
machinery is that it produces a nominal model with
a confidence interval that tends to zero as the number
of observed data grows to infinity. This is really an
undesired feature, since, realistically, there are no true
LTI systems in the real world.

An attractive aspect of the outlined way of deli-
vering uncertain LTI models is that it resembles the
classical approach, with the important exception that
the uncertainty regions will typically not tend to zero
as more and more data become available. There will
be some “remaining uncertainty”, which should be
thought of as a healthy sign.

Now, the outlined process also will need several
enhancements:

e More effective gain estimators are required. There
should be a good potential for such a development.
The fundamental limitation is that you can only
base the estimate on what you have seen and typi-
cally the observations are but a tiny fraction of the
actual response surface. This is more pronounced if
the response time to an input change is long. The
need to deal with worse signal-to-noise ratios than
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Fig. 12. Results from the experiment described in Example 6.1. The amplitude Bode plots show as a light shaded region the error models
constructed as in Section 4. The dark shaded region is the nominal estimated LTI model along with an uncertainty region corresponding to 1
standard deviation. The four thin lines are the frequency functions of the two linear systems, each multiplied by 1 and by 1.2 (Recall that
there is a static nonlinearity with gain between 1 and 1.2.) The plots correspond to different weighting filters W, and W,. From above and
left to right: (1) Wy = Wy = 1;(2) Wi = Gnom» Wa = 1; (3) Wi = Guoms» W2 = Hyom (nominal noise model). (4) W) = 1/(g+0.3), W, = 1;
S) Wi =1/(q—0.95), Wr, =1.
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Fig. 13. The resulting uncertainty model for Experiment A in Example 1. Left: Relative model error (i.e W) = Gyom) With Wy = Hyom-

Right: Relative model error with W, = 1.
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Fig. 14. The resulting uncertainty model for Experiment B in Example 1.

Right: Relative model error with W, = 1.

that in Fig. 10 calls for techniques that allow certain
observations to be outside a bounding cone or a
bounding “ceiling” of the response surface. For a
time-invariant system this should be quite feasible,
but for a time-varying system the distinction
between signal and noise is not trivial.

e The error model of Fig. 8 could be quite con-
servative. This is not just a consequence of poor
gain estimates, but another reason is that having
just a gain measure will not reveal much of the
structure of the uncertainty. Put differently, the
small gain theorem is quite conservative. It was
illustrated in Fig. 12 how the uncertainty regions
may depend on the chosen weights in an essential
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1. Left: Relative model error (i.e. W} = Gyom) With Wy = Hyom-

way. A more general error model would be to esti-
mate the gain for a block

up= Wiu+ Wpv to &= Wzlu—&-W;lv. (40)

This corresponds to an error model as in Fig. 15,
which is well prepared for LTI control design, using
e.g. H,, techniques. The case in Fig. 9 clearly is the
special case Wi, = W, =0. The two extra
weighting functions will give more freedom to cus-
tomize the error description. At the same time, the
resulting LTI uncertainty model (consisting of
Ghom, the four transfer functions in /# and the gain
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gmem

Fig. 15. A more general model error model. The 4 transfer
functions in the linear block W are rational combinations of the
functions Wy, Wa, Wiy, Wa in (40).

estimate () is now not simply a band around the
Nyquist curve of Gpom.

e A third line of thought to pursue, is to move from
the symmetric error descriptions inherent in the
gain estimate and the small gain theorem to un-
symmetric descriptions, using e.g. IQC’s, [31], [32].
While the gain estimate in (31) amounts to finding
the scalar 3 in expressions like

fizo won[y 5]l
>0 Vupe, (41)

which also can be written in terms of the Fourier
transforms of the signals. The more general case
(40) corresponds to

Jrio) v-iv))

9 [ Wl — w2

— ——1
BW Wiy — Wy W,
BW Wiy — Wy W5l

B — Wl

x [Zii:ﬂ do>0, Vu,v. (42)

The IQC approach would be to find a matrix II(w)
such that

w)
}dl >0, VYu,v.
(43)

The kinship with the gain estimation is clear from
(43), (42). In this case, the delivered LTI uncertainty
model would be {Gyom, IT} which may contain more
structural information about the character of the
uncertainty, related to passivity properties. Control
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design based on such an uncertainty model is dis-
cussed in [32].
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Appendix A: Proof of Theorem 4.2

Proof
First assume that w(s) = 0 for s < 0 and consider

1 N
RY(7) N;S(I)ST(I—T)
1 N t -7
> glyw(t — k)T (1 — 7 — )" (0)
t=1 k=0 (=0
(44)

With the convention that w(s) =0 if s¢ [0, N
write

N
S w(t—kw (i —7—0)g"(0). (45)

Let

1
NZW wl t—T

We see that RY (7 + ¢ — k) and the inner sum in (45)
differ by at most max(k, |7 + £|) summands, each of
which are bounded by C according to (7a). Thus

IRN(T+¢—k) — Zw(l kywT(t — 1 —0)]

<Cmax(k |7+ 4]) g
- N N

2|~

(k+1|7+14]). (46)
Let us define

DL

k=0 (=0
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Then
R.(7) ~ (o)
<373 k) Ig(O)] Ry (7 + £ — k)

2()|[g(0)
—k) —Rff(7+€—k)|
B> le(0)

(=0

N

[T+ ellg(D)] - D lgk)]. (48)

k=0

+
NE
M=

X
_
|
/‘?T
+O

[

E
x>
PR

+

+
zZla =0
- T

T
(=]

Here, the first sum is over the complementary indices
of the second one i.e. k > N and/or ¢ > N. This first
sum tends to zero as N — oo since |R,,(7)| < C and
G(q) is stable. It follows from the stability of G(¢q) that

Zk\g

Hence the last two sums of (48) tend to zero as
N — o0. Consider now the second sum of (48). Select
an arbitrary € > 0 and choose N = N. such that

)] — 0as N — occ. (49)

o0

S Jg(k)] < e/[C-Cll, (50)

k=N.+1

where

This is possible since G is stable. Then select N/ such
that

max |R (7 +( — k) — Ry(T + £ — k)| <¢/C}

1<k<Ne
for N > N’. This is possible since
RY(1) — Ry(1)as N — oo (51)

(w is quasistationary) and since only a finite number
(which depends on ¢) of R,(s):s are involved (no
uniform convergence of (51) is necessary). Then for
N> N. we have that the second sum of (48) is
bounded by

>y

c=0 ¢

(o} oo
at D3 ki) 2

k=N.+1 (=0

[o.¢]
> lek)llg0)] - 2C,

0 {=N.+1

M=

lg(k)llg(€)

>

1 L

+

=~
Il
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which is less than 5¢ according to (50). Hence also the
second sum of (48) tends to zero as N — oo, and we
have proved that the limit of (48) is zero, and that
hence s(¢) is quasistationary.

The proof that lim(1/N) Zﬁ\il s(t)w(t — 7) exists is
analogous and simpler.

For ®,(w) we now find that

P(w) = z‘”: (Z zm:g(k)Rw(T +0— k)gT(€)> e ™

T=—00 \ k=0 (=0
= > ) glke ™
T=—00 k=0
> ZRH(T _ [_i_k) —i(r+l— k)ng([)eiZw
=0
=[r—Ll+k=3]
— Zg(k ﬂkw. Z R” 1sw ZgT Mw
k=0 §=—00 (=0
= G(“) D, (w)GT(e7¥).

Hence the upper left corner of ®.(w) is proven. The
off diagonal terms are analogous and simpler.
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