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Abstract— System Identification has been developed, by and
large, following the classical parametric approach. In this tuto-
rial we shall discuss how Bayesian statistics and regularization
theory can be employed to tackle the system identification
problem from a nonparametric (or semi-parametric) point of
view. The present paper provides an introduction to the use
of Bayesian techniques for smoothness and sparseness, which
turn out to be flexible means to face the bias/variance dilemma
and to perform model selection.

Index Terms— Nonparametric methods, Sparsity, kernel

Methods, Sparse Bayesian Learning, Optimization

I. INTRODUCTION

System Identification is concerned with automatic model

building from measured data. Under this unifying umbrella,

this field spans a rather broad spectrum of topics, considering

different model classes (linear, hybrid, non-linear, continuous

and discrete time) as well as a variety of methodologies and

algorithms, bringing together in a nontrivial way concepts

from classical statistics, machine learning and dynamical

systems.

Even though considerable effort has been devoted to

specific areas, such as parametric methods for linear system

identification which are by now well developed (see [19],

[26]), it is fair to say that modeling still is, by far, the most

time consuming and costly step in Advanced Process Control

applications. As such, the demand for fast and reliable

automated procedures for system identification makes this

exciting field still a very active and lively one.

Suffices here to recall that, following this classic para-

metric Maximum Likelihood (ML)/Prediction Error (PE)

framework, the candidate models are described using a finite

number of parameters θ ∈ R
n. After the model classes

have been specified, the following two steps have to be

undertaken:

(i) estimate the model complexity n̂

(ii) find the estimator θ̂ ∈ R
n̂ minimizing a cost function

J(θ ), e.g. the prediction error or (minus) the log-

likelihood.

Both of these steps are critical, yet for different reasons: step

(ii) boils down to an optimization problem which, in general,

is non-convex and as such it is very hard to guarantee that a

global minimum is achieved. The regularization techniques

discussed in this paper sometimes allow to reformulate the
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identification problem as a convex program, thus solving the

issue of local minima.

In addition fixing the system complexity equal to the “true”

one1 is a rather unrealistic assumption and in practice the

complexity n has to be estimated as per step (i); this is

classically performed using model order selection criteria

such as AIC, BIC, MDL or cross validation techniques [19],

[26]. This has non-trivial implications, chiefly the facts that

classical order selection criteria are based on asymptotic

arguments and that the statistical properties of estimators θ̂
after model selection, called Post Model Selection Estimators

(PMSE), are in general difficult to study [18] and may lead

to undesirable behavior. Experimental evidence shows that

this is not only a theoretical problem but also a practical

one [21], [6]. On top of this statistical aspect there is

also a computational one. In fact the model selection step,

which includes as special cases also variable selection and

structure selection, may lead to computationally intractable

combinatorial problems. Two simple examples which reveal

the combinatorial explosion of candidate models are the

following: (a) Variable Selection: consider a high dimen-

sional time series (MIMO) where not all inputs/outputs are

relevant and one would like to select k out of m available

input signals where k is not known and needs to be in-

ferred from data, see e.g. [3], [8]); (b) Structure selection:

consider all autoregressive models of maximal lag p with

only p0 < p non-zero coefficients and one would like to

estimate how many (p0) and which coefficients are non-zero.

Given that enumeration of all possible models is essentially

impossible due the combinatorial explosion of candidates,

selection could be performed using greedy approaches from

multivariate statistics, such as stepwise methods [16].

The system identification community, inspired by work

in statistics [27], [20], machine learning [25], [28], [2] and

signal processing [12], [32], has recently developed and

adapted methods based on regularization to jointly perform

model selection and estimation in a computationally effi-

cient and statistically robust manner. Different regularization

strategies have been employed which can be classified in two

main classes: regularization induced by so-called smoothness

priors (aka Tikhonov regularization, see [17], [11] for early

references in the field of dynamical systems) and regu-

larization for selection. This latter is usually achieved by

1In practice there is never a “true” model, certainly not in the model class
considered. The problem of statistical modeling is first of all an approxima-
tion problem; one seeks for an approximate description of “reality” which
is at the same time simple enough to be learned with the available data and
also accurate enough for the purpose at hand.
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convex relaxation of the ℓ0 quasi-norm (such as ℓ1 norm and

variations thereof such as sum-of-norms, nuclear norm etc.)

or other non-convex sparsity inducing penalties which can be

conveniently derived in a Bayesian framework, aka Sparse

Bayesian Learning (SBL), [20], [28], [32].

The purpose of this paper is to guide the reader through

the most interesting and promising results on this topic as

well as areas of active research; of course this subjective

view only reflects the authors’ opinion and of course

different authors could have offered a different perspective.

We also refer the reader to [24] for a recent survey.

II. BAYESIAN APPROACH TO SYSTEM IDENTIFICATION

Let us consider, for the sake of exposition, only Output Er-

ror models. The extension to more general model classes can

be found in [21], [6], [8] and references therein. Therefore

we consider models of the form

y(t) = [h ∗ u](t)+ e(t) y(t) ∈ R
p (1)

where h(t) ∈ R
p×m is the impulse response of the system,

u(t) ∈ R
m is the measurable input and e(t) is a zero mean

Gaussian white noise process uncorrelated from u(t); we

consider both t ∈ R for continuous time systems and t ∈ Z

for discrete time systems. The symbol [h ∗ u](t) denotes

convolution which is a linear operator mapping the impulse

response h onto outputs y:

[h ∗ u](t) = Lu[h] : h(t)→ y(t)

The linear operator Lu is completely specified by the input

process u(t). The problem of system identification is to

estimate the (matrix valued) function h(t) starting from a

finite set of input output data points {u(t),y(t)}t∈T . Here T

denotes a discrete set of time instants where measurements

are available. Without loss of generality we assume T :=
{0,1,2, ...,T − 1}.

In the Bayesian (or regularization) approach to system

identification one postulates a probability description of the

unknown impulse response2. Let us say that

h ∼ pη (h) (2)

where the prior pη (h) may depend upon some unknown

parameters (hyperparameters hereafter) which need to be

estimated from data.

One typical and convenient choice is to postulate that h(t)
is a zero mean Gaussian process [25], independent of the

noise e(t) with covariance function Kη (t,s) := Eh(t)h(s),
which is sometimes called kernel in the Machine Learning

community. In the rest of the paper we shall interchangeably

encode the prior model on h(t) either providing a description

of the Gaussian process in terms of (stochastic) differential

equations, or via its covariance function/kernel.

2This may be a delicate point from the probabilistic point of view since
h(t) is an infinite dimensional object. We shall skip the technical details
here.

Let us denote with Y the vector with components y(t),
t ∈ T . Since h and e are Gaussian and independent, and

Lu[h] is linear, then Y and h(t) are jointly Gaussian so that3

pη(h|Y ) :=
p(Y |h)pη(h)

pη (Y )
pη(Y ) =

∫

p(Y |h)pη(h)dh (3)

is Gaussian. Hence, the posterior estimate

ĥ := Eη [h|Y ] (4)

can be computed in closed from for any fixed η .

One popular approach to estimating η is to maximize the

so-called marginal likelihood pη (Y ), i.e. the likelihood of

the hyper parameters η once the unmeasurable quantities

(h) have been integrated out. Let us denote with

η̂ := arg max
η

pη (Y ) (5)

the marginal likelihood estimator of η . Then replacing η in

(4) with its estimate η̂ (5) we obtain the so-called empirical

Bayes estimator of h:

ĥ := Eη̂ [h|Y ] (6)

In the remaining part of the paper we shall discuss the

design of a prior pη(h). For Gaussian priors this will be

translated into the problem of designing the kernel Kη (t,s).
For convenience of notation we shall first assume that the

system is continuous time, i.e. t ∈ R. The kernel for the

discrete time problem can be found sampling the continuous

time version.

It is useful to observe that another commonly used esti-

mator of h is the so-called MAP estimator, i.e.

ĥMAP := argmax
h

pη̂(h|Y ) (7)

which clearly coincides with (6) if the posterior density

pη̂(h|Y ) is unimodal and symmetric around its mean (which

holds, e.g., if h is, conditionally on Y , a Gaussian random

process). A simple application of the Bayes rule shows that

ĥMAP can also be written as

ĥMAP = arg minh JF(h)+ JR(h; η̂) (8)

where

JF(h) :=−log(p(Y |h)) JR(h;η) :=−log(pη (h)) (9)

are, respectively, the “Fit” and “Regularization” terms. The

first measures how well the model h describes the data

Y while the second penalizes certain “unlikely” systems

h. Equation (8) can be seen as a way to deal with the

bias-variance tradeoff. The regularization term JR(h;η) may

depend upon some regularization parameters η (called also

hyper parameters) which need to be tuned using measured

data. The Bayesian interpretation (see (9), (3)) offers one

possible route to estimating the hyper parameter vector η

3Note that the conditional p(Y |h) is just the noise density. For simplicity
here we assume the noise variance σ2 to be known and fixed. Of course
one can also include σ2 in the hyper parameter vector η and estimate it
using (5).
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via marginal likelihood optimization (5). From now on we

shall interchangeably use JF(h) and JR(h;η) or p(Y |h) and

pη(h) which will be always linked as in (9). We now discuss

different forms of regularization JR(h;η) which have been

studied in the literature.

The prior pη(h) (or equivalently the regularization term

JR(h;η)) can be roughly classified in regularization for

smoothness, which attempts to control complexity in a

smooth fashion and regularization for sparseness which, on

top of estimation, also aims at selecting among a finite (yet

possibly very large) number of candidate model classes.

We shall first discuss regularization for smoothness (see

Section III), introducing a family of kernels Kη (t,s) known

as stable spline kernels and then regularization for sparse-

ness, see Section IV.

III. PRIORS FOR SMOOTHNESS AND TIKHONOV

REGULARIZATION

Let us consider the OE model (1) and further assume that

h(k) = 0, ∀k > T , so that H(q) := ∑T
k=1 h(k)z−k. Let h be the

vector containing all the unknown coefficients of the impulse

response {h(k)}k=1,..,T and define ŷt|t−1(h) :=∑T
k=1 h(k)u(t−

k). Define also y ∈R
N be the vector of output observations,

Φ the regressor matrix with past input samples and e the

vector with innovations (zero mean, variance σ2I). With this

notation the convolution input-output equation (1) takes the

form

Y = Φh+ e

The linear least squares estimator

ĥLS := arg minh JF(h)

JF(h) := 1
N ∑N

t=1 ‖yt − ŷt|t−1(h)‖2 (10)

is ill-posed unless the number of data N is larger (and in

fact much larger) that the number of parameters T . From

the statistical point of view the estimator (10) would result,

for large T in small bias and large variance. The purpose

of regularization is to render the inverse problem of finding

h from the data {yt}t=1,...,N well posed, thus better trading

bias versus variance. The simplest form of regularization is

indeed the so called ridge-regression or its weighted version

(aka generalized Tikhonov regularization), where the 2-norm

of h is weighted w.r.t. a positive semidefinite matrix Kη ,

ĥ(η) := arg minh JF(h)+ JR(h;η)
JR(h;η) := h⊤K−1

η h
(11)

For system identification problems the matrix Kη , aka kernel,

will have to capture specific properties of impulse responses

(exponential decay, BIBO stability, smoothness etc. [23],

[10]). Early references include [11], [17], while more recent

work can be found in [21], [6] where several choices of

kernels are discussed, see Section III-A for more details.

For this choice of JF and JR, and having fixed η , the

estimator ĥ(η) is the solution of a quadratic problem and

can be written in closed form (aka Ridge Regression):

ĥ(η) = KηΦ⊤
(

ΦKη Φ⊤+σ2I
)−1

Y (12)

Two common strategies adopted to estimate the parameters

η are Cross Validation [19] and marginal Likelihood max-

imization. This latter approach is based on the Bayesian

interpretation given in equations (3) from which one can

compute the so called “Empirical Bayes” estimator ĥ := ĥ(η̂)
(6) of h plugging the maximum marginal Likelihood (5)

estimator η̂ in (12). The main strength of the marginal

likelihood is that, by integrating the joint posterior over

the unknown h, it automatically accounts for the residual

uncertainty in h for fixed η . When JF and JR are quadratic as

in (10), (11), which according to (9) corresponds to assuming

that e and h are independent and Gaussian, the marginal

likelihood in (5) can be computed in closed form so that

η̂ := arg minη log(det(Σ(η))+Y⊤Σ−1(η)Y

Σ(η) := ΦKη Φ⊤+σ2I
(13)

It is here interesting to observe that η̂ which solves (5),

under certain conditions, leads to Kη̂ = 0 (see example 1

in Section IV), so that the estimator of h in (12) satisfies

ĥ(η̂) = 0. This simple observation is the basis of so-called

Sparse Bayesian Learning (SBL); we shall return on this

issue in the next section when discussing regularization for

sparsity and selection.

Unfortunately the optimization problem (5) (or (13)) is not

convex and thus subjected to the issue of local minima. How-

ever, both experimental evidence as well as some theoretical

results support the use of marginal likelihood maximization

for estimating regularization parameters, see e.g. [25], [1].

A. Stable Kernels

One of the major breakthroughs in [23] has been to

introduce a class of prior description for impulse responses

which encoded structural properties of dynamic systems

such as BIBO stability. Even though several kernels have

been later introduced in the literature such as TC/DC [6]

and multiple versions [4], we shall here consider only one

particular instance named stable spline kernel. Let us first

introduce the stable spline kernel in continuous time as

follows. Let w(τ) be the normalized Wiener process4 which

is defined as a Gaussian zero mean process which satisfies:

w(0) = 0

w(τ)−w(s)∼ N (0,τ − s) τ ≥ s ≥ 0

w(τ2)−w(τ1)⊥ w(s2)−w(s1) τ2 ≥ τ1 ≥ s2 ≥ s1 ≥ 0

The covariance of the normalized Wiener process is

r(τ,s) = Ew(τ)w(s) = min(τ,s) τ ≥ 0, s ≥ 0

While widely used in Machine Learning [25] and Statistics

[29] as a reasonable prior for function estimation, it is not

suitable for describing the impulse response h(t), t ∈ R of

a BIBO stable linear system which should be an absolutely

integrable function. To this purpose [23] have introduced an

4The Wiener process can also be informally defined as integrated (con-
tinuous time) “white” Gaussian noise.
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exponential time change τ = e−β t which maps t ∈ R
+ :=

[0,+∞) onto τ ∈ (0,1] and defined

wβ (t) := w(e−β t) t ∈R
+ ∈ (0,+∞) (14)

whose covariance is given by

rβ (t,s) = Ewβ (t)wβ (s) = min(e−β t ,e−β s) = e−β max(t,s)

(15)

It has been shown in [23] that realizations from (14) are

almost surely absolutely integrable. Indeed, extending ideas

from [9], it can be shown that (14) can be thought of as

the “Maximum Entropy” prior model under a finite variance

constraint of its first order derivative, see [22].

Remark 1: Note that the exponential decay of h(t) guaran-

tees that, to any practical purpose, it can be considered zero

for t > T for a suitably large T . This allows to approximate

the OE model (1) with a “long” Finite Impulse Response

(FIR) model. In discrete time t ∈ Z the impulse response

h(k), k = 1, ..,T is now modeled as zero mean Gaussian

vector with covariance cov(h(t),h(s)) := Kη(t,s).
This prior has been further enriched in [21] by adding

a parametric component which has some advantages when

describing fast oscillating systems. This is indeed the basic

building bock of other multiple kernels (see e.g. [7]) which,

for reasons of space, cannot be surveyed here. We shall now

take a small detour on the structure of the process (14). This,

hopefully, will allow us to fully understand the prior, as well

as will guide us through possible modifications which make

it more suitable to describing linear systems.

B. The Wiener process and the Brownian Bridge

It is a a result by Wiener (see e.g. [31]) that the Wiener

process w(τ), τ ∈ [0,1], admits the (almost sure) random

Fourier series expansion:

w(τ) = ψ0τ +
√

2∑∞
k=1 ψk

sin(πkτ)
πkτ ψk ∼ N (0,1) i.i.d.

= ψ0τ + b(τ)
(16)

where the last equation defines b(τ). It is a simple check that

w(1) = ψ0 so that equation (16) induces a decomposition of

w(τ) into a linear term ψ0t, which is the conditional mean

of w(t) given its value at one

E[w(τ)|w(1) = ψ0] = ψ0τ,

and a term b(τ) which vanishes at the extremes of the

interval, i.e. b(0) = b(1) = 0. The process b(τ) is called,

in the stochastic process literature, Brownian Bridge, which

models the “erratic behavior” of w(τ) around its conditional

mean ψ0τ given its value ψ0 := w(τ)|τ=1.

C. Linear systems and the β -exponential Brownian Bridge

We now take a closer look at (14) ant its relation with b(τ).
Consider now the random Fourier series (16) and introduce

the exponential time change τ := e−β t . It follows that

wβ (t) := w(e−β t) t ∈ R
+ β ∈ (0,+∞)

= ψ0e−β t + b(e−β t)

= ψ0e−β t + bβ (t)

(17)

where the last equation defines bβ (t) which we call the β -

exponential Brownian Bridge. The process bβ (t) inherits the

property of b(τ) which vanishes at the extremes of [0,1], so

that bβ (t) vanishes at the extremes of [0,+∞), i.e.

bβ (0) = lim
t→∞

bβ (t) = 0 a.s.

This implies that ψ0 represents the value at t = 0 of wβ (t).
The decomposition in equation (17) provides a nice inter-

pretation in terms of linear system theory as follows. Taking

wβ (t) as a prior model of an impulse response h(t) amounts

to assuming that h(t) can be modeled as the sum of an expo-

nential function ψ0e−β t , which also encodes the value at zero

of the impulse response through ψ0, and the β−exponential

Brownian Bridge which describes fluctuations around ψ0e−β t

(conditionally on ψ0 := wβ (0) = h(0)).

The “variation” bβ (t) around the conditional mean ψ0e−β t

allowed for by the prior (14) is determined by the random

variables ψk, k = 1, ...,+∞; recall from (16) that Var{ψk}=
1, ∀k ≥ 0. This indicates that this prior rigidly links the

variance of ψ0 (which is needed to encode the value at

zero of the impulse response) with the variance of the

stochastic component bβ (t) describing the variation around

the conditional mean. This suggests a first extension of the

stable spline model (14) allowing for different (nonnega-

tive) weightings of the conditional mean and the Browinian

Bridge:

wβ ,γ(t) :=
√

γeψ0e−β t +
√

γbbβ (t) γe,γb ∈ [0,+∞) (18)

The covariance of (18) is thus given by:

Kβ ,γ(t,s) = γee−β (t+s)+ γbEbβ (t)bβ (s) (19)

which is the sum of a rank-1 kernel γee−β (t+s) (see also [5])

and a full rank kernel γbEbβ (t)bβ (s).

Note also that in (18) the “exponential” component ψ0e−β t

is only able to describe one mode of a linear system. Thus

impulse response of an n− th order linear system, which

is the superposition of n (possibly sinusoidally modulated)

exponentials, needs to be described by the β ∗−exponential

Brownian Bridge component as variation around a sort of

“average” exponential ψ̂0e−β ∗t , for some choice of β ∗ which

need not correspond to any of the system poles. This suggests

that the single kernel (19) may be too rigid and modification

containing multiple exponentials and/or sinusoidally modu-

lated exponentials may be advantageous; such extensions are

discussed in [7].

IV. REGULARIZATION FOR SPARSITY: VARIABLE

SELECTION AND ORDER ESTIMATION

The main purpose of regularization for sparseness is to

provide estimators ĥ in which subsets or functions of the

estimated parameters are equal to zero.

Consider now the Multi Input Multi Output OE model (1)

and denote with y j(t) the j-th component of yt ∈ R
p; let

also h ∈ R
T (m+p) be the vector containing all the impulse

response coefficients hi j(k), j = 1, .., p, i = 1, ..,m and k =
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1, ..,T . Simple examples of sparsity one may be interested

in are (see also [8], [15]):

(i) single elements of the parameter vector h, which corre-

sponds to eliminating specific lags of some variables;

(ii) groups of parameters such as the impulse response

from i-th input to the j-th output hi j(k), k = 1, ..,T ,

thereby eliminating the i-th input from the model for

the j-th output

(iii) the singular values of the Hankel matrix H (h) formed

with the impulse response coefficients h(k); in fact the

rank of the Hankel matrix equals the order (i.e. the

McMillan degree) of the system5.

To this purpose one would like to penalize the number of

non-zero terms (let them be entries of h, groups, singular

values etc). This is measured by the ℓ0 quasi-norm or its

variations (group ℓ0 and ℓ0 quasi-norm of the Hankel singular

values, i.e. the rank of the Hankel matrix). Unfortunately if JR

is a function of the ℓ0 quasi-norm the resulting optimization

problem is computationally intractable; as such one usually

resorts to relaxations. Three common ones are described

below.

One possibility is to resort to greedy algorithms such as

Orthogonal Matching Pursuit; generically it is not possible

to guarantee convergence to a global minimum point.

A very popular alternative is to replace the ℓ0 quasi-norm

by its convex envelope, i.e. the ℓ1 norm, leading to algorithms

known in statistics as LASSO [27] or its group version Group

LASSO [33]:

JR(h;η) = η‖h‖1 (20)

Similarly the convex relaxation of the rank (i.e. the ℓ0

quasi-norm of the singular values) is the so-called nuclear

norm (aka Ky-Fan n-norm or trace norm), which is the

sum of the singular values6 ‖A‖∗ := trace{
√

A⊤A} where√· denotes the matrix square root which is well defined

for positive semidefinite matrices. In order to control the

order (McMillan degree) of a linear system, which is equal

to the rank of the Hankel matrix H (h) built with the impulse

response described by the parameter h, it is then possible to

use the regularization term

JR(h;η) = η‖H (h)‖∗ (21)

thus leading to convex optimization problems [14]. Both (21)

and (20) induce sparse or nearly sparse solutions (in terms of

elements or groups of h (20) or in terms of Hankel singular

values (21)), making them attractive for selection. Yet, as

well documented in the statistics literature, both (21) and (20)

do not provide a satisfactory tradeoff between sparsity and

shrinking, which is controlled by the regularization parameter

η . As η varies one obtains the so-called regularization path.

Increasing η the solution gets sparser but, unfortunately, it

5Strictly speaking any full rank FIR model of length T has Mc-Millan
degree T × p. Yet, we consider {h(k)}k=1,..,T to be the truncation of some
“true” impulse response {h(k)}k=1,..,∞ and, as such, the finite Hankel matrix
built with the coefficients h(k) will have rank equal to the McMillan degree
of H(q) = ∑∞

k=1 h(k)z−k.
6It is interesting to observe that both ℓ1 and group-ℓ1 are special cases

of the nuclear norm if one considers matrices with fixed eigenspaces.

suffers from shrinking of non-zero parameters. To overcome

these problems several variations of LASSO have been

developed and studied, such as adaptive LASSO [34], SCAD

[13] and so on. We shall now discuss a Bayesian alternative

which, to some extent, provides a better tradeoff between

sparsity and shrinking than the ℓ1 norm.

This Bayesian procedure goes under the name of Sparse

Bayesian Learning and can be seen as an extension of

the Bayesian procedure for regularization described in the

previous section. In order to illustrate the method we consider

its simplest instance. Consider a discrete time MIMO FIR

system as in (1) with p = 1 and m = 2; define hi :=
[hi1(1), ...,hi1(T )]

⊤. Let h := [h⊤1 h⊤2 ]
⊤ and assume that the

hi’s are independent Gaussian random vectors with zero

mean and covariances ηiK. Letting Φi := [φ1,i, ..,φN,i]
⊤ and

following the formulation in (3) and (6), it follows that the

marginal likelihood estimator of η takes the form

η̂ := arg minηi≥0 log(det(Σ(η))+ y⊤Σ−1(η)y

Σ(η) := η1Φ1KΦ⊤
1 +η2Φ2KΦ⊤

2 +σ2I
(22)

The estimator of h is found in closed form inserting η̂ in per

equation (12). It can be shown that under certain conditions

on the observation vector y, the estimated hyperparameters

η̂i lie at the boundary, i.e. are exactly equal to zero. If η̂i = 0

then, from equation (12), also ĥi = 0; this reveals that the i-th

input does not enter into the model; see also Example 1 for

a simple illustration.

These Bayesian methods for sparsity have been studied in

a general regression framework in [32] under the name of

“Type-II” Maximum Likelihood. Further results can be found

in [1] which suggest that these Bayesian methods provide a

better tradeoff between sparsity and shrinking (i.e. are able to

provide sparse solution without inducing excessive shrinkage

on the non-zero parameters).

Remark 2: A more detailed analysis, see for instance [1],

shows that Lasso/GLasso (i.e. ℓ1 penalties) and SBL using

the “Empirical Bayes” approach can be derived under a

common Bayesian framework starting from the joint poste-

rior p(η ,h|y). While SBL is derived from the maximization

η of the marginal posterior, Lasso/GLasso correspond to

maximizing the joint posterior after a suitable change of

variables. For reasons of space we refer the interested reader

to the literature for details.

Recent work on the use of sparseness for variable selection

and model order estimation can be found in [30], [8] and

references therein.

Example 1: In order to illustrate how Sparse Bayesian

Learning leads to sparse solution we consider a very sim-

plified scenario in which the measurements equation is

yt = hut−1 + et

where et is zero mean, unit variance Gaussian and white and

ut is a deterministic signal. The purpose is to estimate the

coefficient h, which could be possibly equal to zero. Thus

the estimator should reveal whether ut−1 influences yt or not.

Following the SBL framework, we model h as a Gaussian

random variable, with zero mean and variance Kη := η ,
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independent of et . Therefore yt is also Gaussian, zero mean

and variance u2
t−1η + 1. Therefore, assuming N data points

are available, the log-likelihood function for η is given by

−2log pη(Y ) ∝
N

∑
i=1

log(u2
t−1η + 1)+

N

∑
i=1

y2
t

u2
t−1η + 1

It is a simple to see that η̂ := arg min
η≥0

−2log pη(Y ) has the

form η̂ = max(0,η∗) where η∗ is the solution of

N

∑
t=1

u4
t−1η + u2

t−1

(

1− y2
t

)

u2
t−1η + 1

= 0

which unfortunately doesn’t have a closed form solution. If

however we assume that the input ut is constant (without

loss of generality say that ut = 1 ), we obtain that

η∗ =
1

N

N

∑
t=1

y2
t − 1 ⇒ η̂ = max

(

0,
1

N

N

∑
t=1

y2
t − 1

)

Clearly this is a threshold estimator which sets η̂ to zero

when the sample variance of yt is smaller than Var{et}= 1.

Thus the Empirical Bayes estimator of h, as per equation

(12), is given by

ĥ =
η̂

∑N
i=1 u2

t−1η̂ + 1

N

∑
i=1

ytut−1

which is clearly equal to zero when Kη̂ = η̂ = 0.

V. SUMMARY AND FUTURE DIRECTIONS

We have presented a bird’s eye (and certainly incomplete)

overview of regularization methods in System Identification.

Even though regularization is quite an old topic we believe

it is fair to say that the nontrivial interaction between regu-

larization and system theoretic concepts provides a wealth

of interesting and challenging problems, including kernel

design, estimation of hyperparameters and their numerically

efficient implementation. Much work needs to be done for

multivariable (linear) systems but also non-linear system

identification, which we have not been able to address in

this short tutorial.
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