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Abstract—We present a novel nonparametric approach for
identification of nonlinear systems. Exploiting the framework of
Gaussian regression, the unknown nonlinear system is seen as a
realization from a Gaussian random field. Its covariance encodes
the idea of “fading” memory in the predictor and consists of a
mixture of Gaussian kernels parametrized by few hyperparam-
eters describing the interactions among past inputs and outputs.
The kernel structure and the unknown hyperparameters are
estimated maximizing their marginal likelihood so that the user
is not required to define any part of the algorithmic architecture,
e.g., the regressors and the model order. Once the kernel is esti-
mated, the nonlinear model is obtained solving a Tikhonov-type
variational problem. The Hilbert space the estimator belongs to
is characterized. Benchmarks problems taken from the literature
show the effectiveness of the new approach, also comparing its
performance with a recently proposed algorithm based on direct
weight optimization and with parametric approaches with model
order estimated by AIC or BIC.

Index Terms—Bayesian estimation, direct weight optimization,
Gaussian processes, kernel-based methods, nonlinear system iden-
tification, regularization.

I. INTRODUCTION

B LACK-BOX identification approaches are widely used to
learn models from observed data. When the system to be

modeled can be well approximated by a linear one, many iden-
tification techniques are available in the literature [1], [2]. In
particular, the classical identification paradigm postulates a set
of competitive parametric models and chooses the most suit-
able one using complexity criteria such as the Bayesian infor-
mation criterion (BIC) or Akaike’s information criterion (AIC)
[3]–[5]. The recent work [6] introduced an alternative nonpara-
metric paradigm for linear system identification, based on the
framework of regression via Gaussian processes. Instead of pos-
tulating finite-dimensional models, the system impulse response
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is searched for in a suitable infinite-dimensional space. This type
of scheme has proved especially effective for model order selec-
tion, see also [7] where advantages are described in the context
of predictor estimation.

Much recent research has been devoted to extend classical
parametric methods for linear system identification to nonlinear
systems modeling [8], [9]. In this scenario, NARX/NARMAX
models [10] are often employed. If the parametric functional
relationship among present output and past input/output data
is specified, the resulting estimation problem can be solved by
standard optimization algorithms. Even in this ideal scenario in
which the parametric structure has been fixed, one is faced with
non trivial issue related to non-convexity of the functional to be
optimized as a function of the model parameters. One is eventu-
ally faced with a non-convex optimization problem, possibly in
high dimension, where finding the optimizer is often out of reach.

On top of this, the user is faced with the challenge of deter-
mining the optimal structure of the model which is often de-
scribed by a set of basis functions, see also [11], [12] for ap-
proaches relying upon neural and fuzzy networks. A significant
difficulty is to handle the large number of potentially relevant
regressors, e.g., related to delays and powers of monomials en-
tering a polynomial model. Beyond classical complexity cri-
teria, such as AIC and BIC, step-wise regression algorithms
exploiting a validation data set are often used in this context,
see [13], [14]. The forward-regression orthogonal estimator pro-
vides suboptimal solutions by iteratively incrementing model
structure on the basis of the ability of model terms to describe
the output variance [15], see also [16] where simulation (in place
of prediction) error reduction ratio is exploited. Another class
of algorithms relies upon Direct Weight Optimization [17], e.g.,
equipped with the so called minimal probability approach dis-
cussed in [18]. Here, after fixing the model order, the predictor
function is computed using a weighted linear combination of the
observed outputs in a neighborhood of the target point. The ex-
tent of the neighborhood is determined by a parameter that has
to be tuned by the user. The reader is also refereed to [9] for an
approach for regressor selection that uses ANOVA.

The aim of this paper is to extend the linear identification
techniques developed in [6] to the nonlinear context. We will
present a novel estimator for nonlinear system identification
whose architecture depends on parameters that are all learnt
from data. In particular, our numerical procedure does not
require the user to select critical variables such as regres-
sors/model order and automatically learn the basis functions
from the training set. In addition, if the system is known to
have a significant linear component, this information can be
included in the model. The new approach is cast in the frame-
work of regression via Gaussian processes, see, e.g., [19], [20].
We convexify the identification problem by placing a suitable

0018-9286/$26.00 © 2011 IEEE



2826 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 12, DECEMBER 2011

Fig. 1. Left: Parametric approach to system identification. �� � denote finite-dimensional spaces of different complexity. Model order is typically chosen by
criteria such as AIC or BIC requiring the solution of a nonlinear optimization problem for each postulated model and relying upon likelihood functions which are
only asymptotically exact. Right: Nonparametric approach for system identification using Gaussian regression. The unknown system is defined by a realization
from a zero-mean Gaussian random field � whose covariance (kernel) encodes the stability constraint. Model order selection is replaced by estimation of few
hyperparameters entering the kernel, obtained by optimizing a likelihood function that is exact, irrespective of the sample size, and accounts for the uncertainty
of � . Once such parameters are determined, the minimum variance estimate of � is available in closed form and belongs to a (generally infinite-dimensional)
Reproducing Kernel Hilbert Space �. In the linear scenario described in [6], the realization from � is the unknown system impulse response. In the nonlinear
scenario treated in this paper, it models the unknown predictor mapping the past inputs and outputs �� � � � into the predicted output �� .

normal prior on an infinite-dimensional function space. In our
approach, parametric models are replaced by nonparametric
ones, defined via a class of kernels (covariances) specifically
suited to nonlinear system identification. Each kernel encodes
the idea of “fading” memory in the predictor and consists of a
mixture of Gaussian kernels, described by a few hyperparam-
eters which account for the interactions among past outputs
inputs; each covariance is associated with an infinite-dimen-
sional space that will contain the estimators. The most suitable
kernel is determined by evaluating its posterior probability
via a Bayesian model selection paradigm. Estimating the
hyperparameters involves a non-convex but low-dimensional
optimization problem. Once the kernel is selected, the non-
linear model is obtained by solving a convex Tikhonov-type
variational problem defined on a Reproducing Kernel Hilbert
Space (RKHS), see [21] and also [22] where regularization in
RKHS for solving regression and classification problems is
widely discussed. This gives the solution in closed form solving
a set of linear equations. This new nonparametric paradigm to
system identification is graphically depicted in Fig. 1

The paper is organized as follows. Section II reports the
problem statement while in Section III the new prior for non-
linear system identification is formulated. In Section IV the
full Bayesian model used to solve the nonlinear identification
problem is presented. In Section V the algorithm for nonlinear
system identification is provided. Section VI is a bit more
technical and provides an in-depth discussion on the RKHS the
estimator belongs to. In Section VII the new method is tested
on six benchmarks problems taken from the literature and a
system close to be linear. In addition, a comparison with the
minimal probability estimator described in [18] is also reported.
Conclusions are finally offered in Section VIII while proofs are
gathered in Appendix.

Notation

In the paper , , or denote random fields while or indi-
cate deterministic functions. In addition, given a column vector
or sequence , is its -th element. We shall use the notation of
finite dimensional linear algebra, such as matrix products, also
with (infinite dimensional) sequences

. This is perfectly legitimate provided convergence is guar-
anteed. The symbol indicates the Euclidean norm if is
a vector or the norm in (the space of square-summable se-
quences) if is a sequence, i.e., .

The symbols and denote, respectively, expectation
and conditional expectation.

We also use to indicate the natural numbers not including
0, indicates the integers and denotes the space of con-
tinuous functions equipped with the classical sup-norm (uni-
form topology). In addition, , , denotes the classical
Lebesgue spaces while indicates a Gaussian random
vector with mean and covariance . The terms kernel and co-
variance will be hereby used interchangeably. The symbol is
also used to indicate statistical independence between random
variables.

With some abuse of notation the symbol will both denote
a random variable (from the random process ) and its
sample value. We use to denote the set of noisy output
measurements from a nonlinear dynamic system fed with a mea-
sured input . In particular we define the sets of past mea-
surements at time

and the vector

The shorthand is reserved for the
past at time .

Given two fixed time instants and we also define, for
, , as

...
... (1)

with and given by

...
...

(2)

II. PROBLEM STATEMENT

Given the scalar1 input and output time series and ,
, we assume that the one-step ahead predictor

(3)

1The results of this paper can be easily extended to the multi-input, multi-
output (MIMO) case, but for ease of exposition we restrict ourselves to the
single-input, single-output (SISO) case.
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is time invariant, i.e., does not depend explicitly on time.
Above, and in the sequel, it is always assumed that all the condi-
tional expectations are well defined and, for simplicity of expo-
sition, we shall also assume that the predictor is strictly
causal, i.e., it does not depend upon . It is then perfectly le-
gitimate to consider as the output of the nonlinear dynamic
model2:

(4)

where is the innovation sequence, i.e., the one step ahead
prediction error . The innovation sequence
is, by construction, a martingale difference sequence [23] with
respect to the sigma algebra generated by past measurements

. We shall also assume is Gaussian and it has constant
but unknown conditional variance

Note is contained in the sigma algebra gen-
erated by , ; therefore is uncorrelated with
. This, together with the Gaussianity and constant variance as-

sumptions, implies that is a stationary stochastic process and
, . Notice that (4) contains as special cases, e.g.,

NFIR, NARX and NARMAX models. Our problem is to deter-
mine from the available input-output data (training set). To
do so we shall adopt a prediction error minimization type of
criterion in Gaussian regression framework. The quality of the
obtained model will be then assessed in terms of predictive ca-
pability on new data (test set).

Remark 1: It is worth recalling that the most common nota-
tion for NARMAX model is (see, e.g., [10])

(5)

which defines a proper subclass of (4) in which a specific struc-
ture of the predictor is postulated. In fact in (5) the “orders” ,

, need to be specified. In practice they have to be esti-
mated, e.g., using variable selection techniques. Instead, in (4),
no specific structure is postulated and the predictor can depend
arbitrarily on past input-output data.

III. NEW KERNEL FOR NONLINEAR SYSTEM IDENTIFICATION

A. Gaussian Kernel Limitations in Linear and Nonlinear
System Identification

The perspective adopted in this paper consists in interpreting
in (4) as a realization from a zero-mean Gaussian random

field, denoted by , i.e., for a certain in
the sample space contained in the probability space underlying

. Notice also that the Gaussianity assumption implies that, in
order to define , we just need to specify the covariance between
the random variables and where and represent any
couple of possible arguments of .

As an introduction to our modeling problem, let’s assume just
for a while that the predictor (4) is linear and the problem is
formulated in continuous-time. For simplicity, we also neglect
the dependence on so that (4) becomes the following output
error model:

(6)

2This is often called prediction or innovation form.

where, in this linear context, is the unknown pre-
dictor impulse response. According to the Gaussian regression
approach, is assumed to be a realization from a zero-mean
Gaussian process on , which we assume independent of

. The covariance (or kernel) of has to be specified, pos-
sibly based on some prior information on the system to be mod-
eled.

The Gaussian kernel is probably the most commonly used in
nonparametric estimation and is defined by

where the kernel width and the scale factor
are hyperparameters, i.e., parameters of a prior distribution, that
need to be estimated from data. It is a known fact that the mean
of , conditional on the output measurements, belongs to that
unique RKHS associated with [24]. The next theorem
points out an important limitation of the hypothesis space
in the scenario of system identification.

Theorem 1: [25] Let on .
Then for any .

Thus, even if is an infinite-order Sobolev space of func-
tions which are smooth, see [26], they are not necessarily abso-
lutely integrable. In other words, the hypothesis space induced
by the Gaussian kernel does not include any information on pre-
dictor stability. In stochastic terms, this is a consequence of the
fact that models as a stationary process. Hence, its variance
does not decay to zero as time progresses. This drawback typi-
cally prevents the impulse response estimator to define a BIBO
stable linear system. This is described in [6] where a new kernel,
named stable spline kernel, that overcomes the limitations of
by including the BIBO stability constraint, has been introduced.

We now move back to the main focus of this paper, i.e., the
nonlinear system identification problem (4). Notice that, under
the framework of statistical learning theory, input locations3

now consist of the past inputs and outputs while the
training set is , for . Thus, the dimen-
sion of the input space is infinite and the problem amounts to
reconstructing the hypersurface . In fact,
maps two sequences, made of past outputs and inputs, into the
real line. Following the Gaussian regression approach, is the
realization from a Gaussian random field with kernel

In principle, the covariance of can be still defined by the
Gaussian kernel which, due to the nature of the input space, now
assumes the following form

(7)

Note that we have used and in (2) as two generic arguments
of . This kernel provides information on the smoothness of ,
i.e., on the fact that the physical system is expected to map
“similar” input-output pairs into “similar” output values, simi-
larity being measured in terms of Euclidean distance. However,

3In statistical learning, the term input space indicates the domain of the un-
known function which has to be learnt. The generic element of the input space
is called input location.
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significant limitations of this model can be pointed out also in
this nonlinear scenario. First, in (7) vanishes for most of the
inputs due to the infinite-dimensional nature of the input space.4
Furthermore, such a kernel is unable to discriminate the influ-
ence of the input locations on the system output, on the basis of
their temporal locations. Instead, it would be desirable that the
kernel included the information that, in physical systems, the
effect of over decreases as goes to infinity. In
the linear context the rate at which this happens is strictly re-
lated to BIBO stability of the predictor impulse response. In the
non-linear scenario the link with “stability” is a much trickier
point which we shall not discuss any further, see [27]. Our aim
is to introduce a novel multi-dimensional kernel encoding this
idea of “fading” memory in the predictor, extending to the non-
linear scenario the stable spline kernel introduced in [6].

B. A New Kernel for Nonlinear System Identification

In order to overcome the limitations discussed above we re-
sort to mixtures of Gaussian kernels. In particular we shall as-
sume that can be modeled as the sum of independent zero
mean Gaussian random fields , i.e., , so that

(8)

where we have still used and defined in (2) as two generic
arguments of and the kernels , are
the covariances of the ’s and are taken of the form

(9)

with

(10)

From (8), (9) and (10) we see that the new kernel depends on
the hyperparameters , , and . In particular,

• denotes the kernel width;
• and define that models the influence of the past

input-output pairs on , ensuring that this dependence van-
ishes as increases5;

• the integer parametrizes the class of new kernels by estab-
lishing the maximum allowed order of interaction between
past input-output data.

As an illustration of the role of in the model, let us first
consider the case ; we obtain

4This problem would not be present if the kernel were defined over a finite-
dimensional input space, e.g., in order to handle NARX models.

5Notice that, in the scenario of neural networks, automatic relevant deter-
mination is often used to detect and penalize inputs having few influence on
the prediction using suitable priors on the network parameters, see, e.g., Sec-
tion VII in [28]. Here, instead, input locations which are less influent on the
system output are determined by � that models the covariance of the Gaussian
random field.

(11)

Then, the random field with covariance admits the
representation

This reveals that the model associated with is able to
describe a system where only the nonlinear interactions between
inputs and outputs at the same time instants are present. Instead,
setting the complexity of the model increases since

(12)

Thus the random field can be decomposed as:

where is now the covariance of . This shows that
permits also nonlinear interactions between variables

contiguous over time.

C. Accounting for Linear Components

Very often, in practical applications, the input output behavior
is close to being linear; hence, in such situations, it might be
advantageous to explicitly include in the model a linear compo-
nent6. This can be done in the following manner: let us assume
that

(13)

where the subscripts and stand, respectively, for non
linear and linear and

• is a zero-mean Gaussian random field, with kernel
given by (8), accounting for the nonlinear part of the
model;

• and are impulse responses of causal systems, mod-
eled as zero-mean Gaussian processes mutually indepen-
dent and independent of , describing the linear part of the
system.

To fully define our model, we need to specify the kernels
for and . One suitable choice is to employ the stable spline
kernel, enriched with a parametric component (the so called bias
space), as described in [6]. A more parsimonious choice which
requires less unknown hyperparameters in the model, consists
of interpreting the components of and as independent white
noises with variance decaying to zero exponentially. More pre-
cisely, for , and , , we have

(14)

(15)

6Indeed, in Section VI we will show that the hypothesis space induced by (8)
does not contain hyperplanes even if it can approximate them arbitrarily well in
the uniform topology. This guarantees that the sum in (13) is direct.
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and , , . Therefore, introducing the covari-
ances (recall the definitions (1) and (2))7

(16)

the covariance of the linear part
is given by

(17)

Under the assumptions (14) and (15), the kernels and can
be easily shown to have the form:

(18)

(19)

Then, in view of (13) and our independence assumptions, is a
zero-mean Gaussian random field with covariance

(20)

With respect to the model developed in the previous subsection,
the additional unknown hyperparameters entering are , ,

and . Many simplifications are of course possible. For in-
stance, recalling (10), one could set .

IV. BAYESIAN MODEL FOR NONLINEAR

SYSTEM IDENTIFICATION

Let denote the vector whose components are the noise stan-
dard deviation and all the hyperparameters describing the kernel
except for . More specifically when the co-
variance of is in (8) while
when the full kernel in (20) is used. In the sequel, all the den-
sities that will be reported are conditional on the system input,
but we omit this dependence to simplify the notation.

Since we adopt a fully Bayesian viewpoint, we also inter-
pret as a random vector with mutually independent compo-
nents. It is assigned an improper prior, that does not depend on

, which has the only purpose of ensuring nonnegativity of its
components. The parameter is also modeled as a random vari-
able, in one-to-one correspondence with equiprobable compet-
itive models. In particular, it is assigned a poorly informative
prior on with arbitrarily large. Furthermore, ,
and are mutually independent. Hereafter, the dependence on
the input is omitted to simplify the notation.

In practice, is never completely available. One solution is
to set its unknown components to zero. This is similar in spirit
to the methods employed to deal with initial effects when esti-
mating linear parametric predictors, see, e.g., Section 3.2 in [2].
In view of this, it is convenient to approximate
with so that the imperfect knowledge on does not

7We remind the reader that � and �, and hence also � and � in (16), play
the role of “input locations”. Therefore � and � are fixed values at which the
functions � �� � � �������� and � �� � � �������� are evaluated;
expected values are taken w.r.t. � and �.

Fig. 2. Bayesian network describing the stochastic model for nonlinear system
identification proposed in this paper. In the network, � is the system input, 	
is the innovations sequence and � are the output samples up to time � � �. In
addition, � is a zero-mean Gaussian random field, the nonlinear map 
 in (4)
being one realization from � . The covariance of � is either the kernel � in (8)
or the kernel � in (20) when 
 is known to be close to linear. Finally, 
 defines
the complexity of the kernel and � contains the hyperparameters, i.e., the kernel
parameters and the innovation variance � .

influence the prior on , and . In particular, in all the sub-
sequent derivations, the following approximation for the joint
density of , , and

(21)

will be thought of as a perfect equality.
Our stochastic model for nonlinear system identification is

graphically described by the Bayesian network in Fig. 2.
Remark 2: It is worth stressing that all the outcomes obtained

in the sequel would still hold even if were thought of as a deter-
ministic signal or if output feedback were present in the system.
In Fig. 2, modeling as a stochastic process independent of
is just a way to simplify the notation needed in the derivation of
the results described in Sections V–VIII.

V. NONPARAMETRIC ALGORITHM FOR NONLINEAR

SYSTEM IDENTIFICATION

In what follows, the dependence of certain formulas on
is omitted to further simplify the notation. Our purpose here is
to obtain an estimator of the nonlinear map in (4) from the
data , and . However, as should be clear from the dis-
cussion in the previous paragraphs, the prior distribution for
as well as the likelihood function depend upon the unknown pa-
rameters and which, in practice, are unknown. To introduce a
numerical scheme to infer them from data, we first observe that
two important quantities can be obtained in closed form using
the Bayesian model in Fig. 2. The first one is the minimum vari-
ance estimator of for known , and , i.e.,
with a generic input location. The second one is the marginal
likelihood of the data , i.e., the joint density of , , and

, where is integrated out. This is illustrated in the following
proposition whose proof is reported in Appendix.

Proposition 1: If the approximation (21) holds and the co-
variance of is , then

(22)

where is a generic input location, is the -th component of
the vector

(23)
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and is invertible with -entry given by

(24)

where is the Kronecker delta. In addition

(25)

A. Estimating Model Structure and Hyper-Parameters

According to the empirical Bayes paradigm, the “optimal”
value of maximizes the model posterior probability. Since

and ,
using Bayes rule we have

(26)

The integration with respect to , i.e., , was obtained
in (25). Instead, integration with respect to , although numeri-
cally feasible using e.g., stochastic simulation techniques [29],
can be computationally expensive. To this aim, define

(27)

where

(28)

Notice that provides an approximation of the minus log
of the objective (26) which neglects only the uncertainty relative
to the estimator of ; in fact, marginalization w.r.t. allows to
account for the effect of different choices of on the uncertainty
in estimating .

This approximation leads to the following estimator of the
kernel structure

(29)

while the estimator of the hyperparameter vector is .
These estimators are used, according to the empirical Bayes

paradigm, to obtain the estimator in Proposition 1 by sub-
stituting the unknown and with and .

B. The Algorithm for Nonlinear System Identification

Our nonparametric algorithm for nonlinear system identifica-
tion is summarized below.

Algorithm for Nonlinear System Identification: The input to
this algorithm includes the available input-output pairs, i.e.,
together with and . The output is the estimator of the
nonlinear predictor . The main steps are as follows:

(i) Determine the kernel structure, i.e., the value of which
minimizes (29).

(ii) Set the hyperparameters to the components of ac-
cording to (27), (28), (29)

(iii) For any input location , define the prediction at as

(30)

where kernel hyperparameters are the components of
and are computed solving (23), (24).

VI. CHARACTERIZATION OF THE RKHS INDUCED

BY THE MIXTURE OF GAUSSIAN KERNELS

Using the representer theorem and the correspondence be-
tween Gaussian processes and RKHS, see, e.g., [24], one ob-
tains that in (30) is the solution of the following Tikhonov-
type variational problem:

(31)

where is the RKHS associated with . Therefore, in order to
gain information on the properties of our estimator, it is essential
to characterize the space .

Recall that, given a kernel , is the Hilbert space of func-
tions which are the completion, w.r.t. the inner product

(32)
of the manifolds given by all the finite linear combinations

for all choices of , and . Let ,
and be the RKHSs induced by the kernels , and

, respectively. Since is the sum of and , functions in
are sums of functions in and , see pag. 353 in [21],

so that and . In view of the definition
of in (17), it is rather simple to see that the elements of
are only linear functionals, i.e., hyperplanes. The aim is now
to characterize the hypothesis space associated with the
kernel in (8). Among other things, in Section VII we will
show that and have not any function besides zero in
common, so that they are complementary closed subspaces
in .

A. Characterization of the RKHS

To simplify the exposition, in this section we assume that the
kernel is composed by a finite number of mixtures
with and .
Under this assumption, for , we have

(33)

Notice that for we obtain the classical Gaussian kernel
on . Let with nonempty interior. In this section
we will describe the RKHS of functions on induced by

: we will obtain (i) an explicit orthonormal basis
for and (ii) an explicit expression for the inner product

. This allows to compute explicitly the norm in
which enters in the Tikhonov-type variational problem (31). In
order to do so we first need to set up some notation:

Notation 1: Let us define the multi-index
with , the

monomials , and the multinomial coefficients
. We also define

and the -th component kernel as
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so that

We now study in some detail the properties of the RKHSs
induced by the kernels providing an explicit or-
thonormal basis for these spaces as well as an explicit expres-
sion for the inner product. The following result can be derived
from the description of the RKHS associated with the Gaussian
kernel which is given in [30]; see also Section III-C in [25] for
a novel and short proof which exploits the concept of the Weyl
inner product. It characterizes the RKHS induced by
whose functions depend on the argument .

Theorem 2: Let be any set with non-empty interior.
Then, and

For , given by

the inner product in is

(34)

An orthonormal basis for is

(35)

For our purposes, we first need to obtain a new property of
the RKHS induced by the single Gaussian kernel

. This is described in the following the-
orem, see Appendix for the proof.

Theorem 3: Let be any set with non-empty interior.
Let . Then does not con-
tain any monomial on , including the nonzero constant func-
tion.

This result guarantees that since hyperplanes
are not contained in the space ; therefore the sum in (13) is
direct.

The next result, whose proof is reported in Appendix, pro-
vides the desired characterization of . It shows that the
RKHSs associated to the components of the
mixture (33) satisfy , . As a consequence

is the direct orthogonal sum of subspaces . Note that

orthogonality follows from the definition of the kernel as the
sum of the kernels [21].

Theorem 4: Let be any set with non-empty interior.
Let be as in Theorem 2. Then the Hilbert space in-
duced by is

(36)

that is each admits a unique orthogonal decomposition
, with . For , where

, the inner product in is

so that the norm in is

An orthonormal basis of is then

(37)

where is defined in (35).

B. Approximation Properties of

The following result, whose proof is reported in Appendix,
relies upon the characterization of reported in the previous
subsection and the well known universality8 of the classical
Gaussian kernel, see, e.g., [30]. It clarifies the role played by
the kernel hyperparameter in establishing the complexity of
the hypothesis space.

Theorem 5: Denote with any compact subset of . For
any , the kernel is not universal. However,
for any function in the space of continuous functions , there
exists , with , such that if , functions
in the space associated with can approximate
arbitrarily well under the supremum norm.

To gain further insight on the proposed hypothesis space, first
note that Theorem 3 and Theorem 4 show that the kernels ,

and in (20) induce mutually orthogonal subspaces. Recall
also that our predictor of the system output at a generic input
location is

Hence, we can define the components

(38)

and

(39)

8A kernel� is said universal if, for any � � � and � � � , there exists one
� � � such that �� � � � � �.
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which are, respectively, the orthogonal projections of the esti-
mator onto and . In particular, represents
that part of the system output which is due to the sole linear com-
ponent of the model.

Estimators for the impulse responses and in (13) can be
also promptly recovered as described in the next proposition
whose proof is discussed in Appendix.

Proposition 2: Define

(40)
and use , to denote the covariances of and

, respectively, that, in view of (14) and (15), are diagonal and
defined by

(41)

Then, the estimates of and are

(42)

where has been defined in (23).
Estimators like that reported in (31) enjoy important consis-

tency properties. In fact, they are able to reconstruct consis-
tently, e.g., in the topology of the RKHS used as hypothesis
space, a wide class of functions, dense in the space of continuous
functions [31]. Hence, if (13) and some technical assumptions
hold, our estimator will converge to the true system just
making the scale factor of the kernel go to zero with a certain
rate, as goes to , see [31] for details. But this, combined
with the fact that and do not share any function, al-
lows us also to conclude that will reproduce asymptotically
the entire contribution to the output due to the linear part of the
system. This will permit also to reconstruct consistently and
by (42). In fact, all the linear part of the model must be captured
asymptotically by since does not contain any hyper-
plane. In practice, data set size is always finite. Nevertheless, in
real applications we expect this property to greatly help in dis-
tinguishing the linear part of the system from the nonlinear one.
A numerical example will be illustrated in Section VII-B.

VII. NUMERICAL EXPERIMENTS

A. Monte Carlo Studies Involving Six Nonlinear Models

The proposed approach is tested on 6 benchmark problems
taken from [9], [16], [32] and listed in Table I. For each system
in Table I we perform a simulation study of 100 runs as follows:
the unknown system has to be reconstructed starting from 200
or 400 data points generated considering the system initially at
rest. The input fed in the systems 4, 5 and 6 is zero mean, unit
variance white Gaussian noise.

We test the new nonparametric identification algorithm with
the kernel defined in (33). For computational reasons, we set

, a value that has just to be large enough to capture
the dynamics of the predictor and does not need to establish
any kind of bias-variance trade-off. When considering the time
series generated by systems 1, 2 and 3, the dependence of
on is removed. Analogously, when system 6 is under study,
the information that the optimal predictor depends only on past
inputs is provided to the estimator. The hyperparameter vector

TABLE I
MONTE CARLO STUDIES (SECTION VII-A): THE

SIX NONLINEAR MODELS TO BE IDENTIFIED

and the structure parameter are then determined from data
by the numerical procedure reported in Section V-B.

The performance measure is prediction capability on test
data, generated using zero mean, unit variance white noise as
input. In particular, for each Monte Carlo run, after obtaining

, we generate a test set of 500 new data denoted by
and (where needed) , respectively. Then, the predic-
tion error at the -th Monte Carlo run is computed as follows

(43)

(44)

where is the test set up to time .
The six panels of Fig. 3 display the boxplots of for the

six case studies; the dashed line denotes the best achievable ex-
pected prediction error, i.e., the innovation standard deviation.
It is apparent that in all examples the proposed nonparametric
estimator performs reasonably well. The prediction capability
on new data is close to that obtainable from the optimal (nom-
inal) predictor also when the training set size is 200. The re-
sults reveal that the proposed estimator performs well also when
the sole kernel is used and data are generated by polynomial
models. In fact, even if does not contain any monomial, see
Theorem 3, it is however sufficiently rich to approximate every
continuous function, see Theorem 5.

B. Identification of a Nonlinear System Using the Kernel With
the Linear Component

Consider the following nonlinear system

(45)

where innovation variance is 1 and the coefficients of the im-
pulse response are displayed in the top panel of Fig. 4 (points
connected by dashed line); the values are samples from a zero
mean white noise with variance , . We are interested
in estimating the system from 400 input-output measurements
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Fig. 3. Monte Carlo studies (Section VII-A): boxplot of prediction errors. In each panel the dashed line denotes the standard deviation of the innovation, i.e., the
best achievable expected prediction error.

Fig. 4. Simulated case study (Section VII-B). Top: true (dashed line) and estimated (solid line) impulse response �� � (linear part of the system). Middle and
Bottom: true (dashed) and estimated (solid line) � and � , i.e., output from the first and second nonlinear part of the system as a function of some input location
values, see (45).

obtained by applying to the system at rest a zero mean, unit vari-
ance white noise as forcing input. The data points are plotted in
Fig. 5 ( in the top panel).

We use the model (13), with , known to depend only
on past inputs and the covariance of given by the kernel
in (33) with . The identification procedure described
in Section V-B is used. The function , defined in (27),
(28), (29), which is inversely proportional to the posterior model
probability, is displayed in Fig. 6 as a function of the kernel hy-
perparameter . Notice that the Bayesian approach suggests that
the system is likely to exhibit additive nonlinearities, each de-

pending just on one single component of the input .
In Fig. 5 (top panel) the solid line is the output from the esti-
mated one-step ahead predictor. The bottom panel of the same
figure depicts the first 100 one-step ahead prediction errors on
the training set using the optimal and the estimated pre-
dictor, suggesting that the proposed approach introduces a right
amount of regularization in the estimation process. In the three
panels of Fig. 4 the solid lines are the estimates of , computed
using (42), and of , , obtained using (38), all of which are
close to ground-truth. Denoting by the estimator of , the rel-
ative error turns out to be 0.15.
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Fig. 5. Simulated case study (Section VII-B). Top: system output values contained in the training set (�) and (linearly interpolated) output prediction using the
estimated model (solid line). Bottom: first 100 residuals (one-step ahead prediction errors) using the optimal ��� and the estimated ��� model.

TABLE II
MONTE CARLO STUDY (SECTION VII-B): PERCENTILES OF THE VALUES ���� �, � � �� � � � � ���, COMPUTED VIA (46)

Fig. 6. Simulated case study (Section VII-B): plot of � ��� � (inversely pro-
portional to the posterior model probability, see (27), (28), (29)) as a function
of kernel hyperparameter �.

Next we consider a simulation study of 100 runs in which
the same experiment described above is repeated by considering
different realizations of . More precisely, at the -th run a new
impulse response is generated by drawing its components

from a white noise with variance . The estimator of
and the relative error at the -th run are indicated, respec-

tively, by and , where

(46)

Table II reports some percentiles of the values of . The
results show that the estimator equipped with the full kernel

(given by the sum of the kernels and ) provides good per-
formance in reconstructing , and thus also in separating
the effect of the linear part of the system (captured by ) from
that due to the nonlinear one (captured by ). In particular,
the mean and the median of the relative errors are close to 0.25
and 0.15, respectively.

C. Comparison With Direct Weight Optimization

In this subsection we compare the performance of the ap-
proach presented in this paper with an algorithm based on Direct
Weight Optimization (DWO) [17] and equipped with the min-
imal probability approach proposed in [18]. First, it is useful to
recall that DWO estimates the predictor function at a particular
input location using a weighted linear combination of the ob-
served outputs. In particular, the algorithm depends on a param-
eter, denoted by in [18], that establishes which input/output
data in a neighborhood of the input location must be used to
estimate . Note that in [18] no specific criteria are suggested
to choose and to determine the number of regressors to be in-
troduced in the algorithm.

Now, we consider Example 3 in [18]. The nonlinear system is

(47)

with the variance of equal to 0.0223. The following two case
studies are introduced:

• Experiment #1. The experimental conditions are the same
as those described in Example 3 in [18], i.e., the training
and test sets consist of 1000 and 100 data points, respec-
tively, generated using the following input:

(48)
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Fig. 7. Monte Carlo studies (Section VII-C): boxplot of ���� � using the new nonparametric approach and using DWO with oracle and correct model
order. The larger ��� , the better is the performance of the estimator.

• Experiment #2. The size of the training set is reduced to
200 while that of the test set is 300. In addition, prediction
on new data is more difficult since the training and test
sets are generated using two different inputs, i.e., a white
normal noise of SD 0.2 and 0.4, respectively.

For each experiment, a simulation study of 100 runs is con-
sidered. At each run, after generating the test set and

, we compute the coefficient of determination as fol-
lows:

(49)

Then, we obtain

(50)

This index quantifies how much of the output variance is cap-
tured by an estimator; the larger, the better is the performance
of the estimator .

At each run, is obtained by adopting the following two es-
timators:

• : this is the new nonparametric approach that exploits the
kernel reported in (33) with . All the hyperpa-
rameters, including , are estimated from data via marginal
likelihood optimization. Then, is obtained by (22);

• DWO: this is the minimal probability approach described
in [18], equipped with the information that depends only
on and and with what we call a -oracle. More
precisely, at each Monte Carlo run the -oracle determines
that value of that maximizes using a fine grid
of step 0.02 on . This results in an ideal tuning that

provides the best possible performance obtainable by the
minimal probability estimator.

Fig. 7 displays the boxplots of obtained by the
two estimators. In Experiment #1 (left panel) obtained by

and is 0.82 and 0.819, respectively. In Experiment #2
(right panel) achieved by and is 0.61 and 0.28,
respectively. Thus, remarkably, the proposed nonparametric es-
timator (whose parameters are all learnt from data) performs ei-
ther in the same way or much better than DWO equipped with
the oracle and the exact model order.

The above results could appear surprising. To better under-
stand them, two comments are now in order:

• the DWO-based minimal probability estimator uses
weights that are optimal for any finite number of data
points but only in terms of minimizing an upper bound on
the prediction error. In other words, the theory underlying
DWO and the resulting algorithmic architecture rely upon
an inequality on the generalization error that may be
conservative. Conversely, the nonparametric scheme pre-
sented here does not adopt a conservative point of view. In
fact, the bias/variance trade-off is established by hyperpa-
rameters estimation using the marginal likelihood (25) that
is exact and depends on the specific outputs coming from
the system under study. This defines an algorithmic archi-
tecture more suited to the specific training set at hand and
hence possibly more robust also than -oracle;

• Equation (22) shows that the estimate obtained by al-
ways consists of a linear transformation of all the outputs in
the training set, with weights going smoothly to zero as the
distance from the target point increases. This may render
the proposed estimator less exposed to the curse-of-dimen-
sionality problem. In fact, can be much more predictive
than DWO when the target point falls in those regions of the
input space sampled less frequently. These are areas where
the local filters used by DWO may be forced to use neigh-
borhoods sparsely populated by training samples. This well
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Fig. 8. Monte Carlo study #2 (Section VII-C): boxplot of ���� � using the new nonparametric approach (left) and least squares (middle and right). In the
latter case, the estimator knows that the optimal prediction at time � depends only on the input and the output at �� � and that the regressors are polynomials, with
their number estimated at any run by BIC (middle) or AICc (right). The larger ��� , the better is the performance of the estimator.

explains the superiority of over in Ex-
ample #2, since in this case the test set is obtained using an
input with statistics different from those of the input used
to generate the training set.

D. Comparison With Parametric Approaches Based on AIC
and BIC

To further assess the robustness of the proposed approach,
we have also reconsidered Experiment #2 by introducing two
additional parametric estimators based either on AIC or BIC.
More specifically, we have considered the model

(51)

where each may assume values 0 or 1 while the are
real scalars. We have repeated the simulation study estimating,
at any run, the via least squares, with the number of
different from zero determined using either the corrected ver-
sion of Akaike’s criterion (AICc), see [5], or BIC. Fig. 8 reports
the boxplots of the obtained by the new approach pro-
posed in this paper (same as in the right panel of Fig. 7) and by
the two new estimators. The performance of the nonparametric
approach is superior than that obtained by the parametric esti-
mators. For example, in almost 10% of the cases the ob-
tained by BIC is close to zero or negative due to the introduction
of too many regressors in the model, a problem that is further
exacerbated when AICc is employed. This result is remarkable
since the nonparametric approach performs better than para-
metric estimators provided with the information regarding the
polynomial shape of the regressors and the fact that the optimal
predictor of only depends on and . As discussed in
[6], this is a consequence of the robustness related to the use of
the marginal likelihood for selecting model complexity in com-
parison with criteria such as AICc and BIC based on an approx-
imation of the likelihood that is only asymptotically exact.

VIII. CONCLUSION

Following the philosophy developed in [6], a new nonpara-
metric identification algorithm for nonlinear modeling has been
proposed. It relies upon regression via Gaussian processes and
the design of a new kernel specifically suited to nonlinear system
identification. The main features of the new approach can be
summarized as follows:

• the user is not required to define any part of the algorithmic
architecture, e.g., the regressors and the model order. Basis
functions encode the idea of “fading” memory in the pre-
dictor and are automatically learnt from the observed data;

• the choice of the hyperparameters of the kernel, whose
tuning plays a role similar to model order selection in para-
metric approaches, is performed by optimizing a marginal
likelihood. In this likelihood maximization the uncertainty
of the unknown nonlinear system is accounted for. As a
matter of fact, this criterion proves robust in establishing
the right trade-off between bias and variance. Benchmarks
problems taken from the literature illustrate the potential
of the new approach. They also reveal that the generaliza-
tion capability of the new estimator may be superior than
that of well established techniques such as parametric ap-
proaches equipped with AICc or BIC and direct weight op-
timization, even when the latter is combined with an oracle
which tunes optimally its parameters.

As far as the computational complexity of the new algorithm
is concerned, it depends on the cost of evaluating the minus log
of the marginal likelihood (28) that is, in general, an
problem. When is large, to speed up the computation, a
simple yet effective strategy consists of estimating the hyperpa-
rameters using only a subset of the measurements, subsequently
using the entire data set to determine in (28), see also [19] for
other more sophisticated strategies.

It has also to be noticed that hyperparameters estimates are
obtained by optimizing a non convex objective. Even if the latter
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is defined in a low-dimensional space and the numerical exper-
iments reported here seem to suggest that local minima are not
critical, in the near future it would be interesting to exploit also
some new approaches recently developed in [33], [34] to learn
the kernel. For example, along this line, it would be interesting
to investigate the technique described in [35]. It would permit
to tune the hyperparameters of the new kernel proposed in this
paper optimizing an objective with no risk of local minima and
without resorting to any Gaussian assumption on the innovation
sequence which, in our scheme, permits to compute the mar-
ginal likelihood.

APPENDIX

Proof of Propositions 1 and 2: In order to streamline nota-
tion in this section we omit the dependence on the input , also
when specifying input locations, as well as the dependence on
the hyperparameters and .

Our aim is to compute the conditional expectation
(see also Chapter 1 in [24] for the connection

between estimation of Gaussian processes and regularization in
RKHS). To this purpose it is convenient to define

where the input locations , , etc., are fixed; the autoco-
variance of is defined by

(52)

Using the tower property of conditional expectation and (21) we
obtain:

The inner expected value is given by:

Therefore

(53)

As a last step have to be computed. To this pur-
pose the conditional distribution is needed, which
can be obtained as follows. Since is the random field sam-
pled at the input locations , is a mar-
ginal density from , i.e., the joint density of all
the random field , conditional on and , where ,

, is integrated out. The conditional
density can be obtained as

with given by

where the first equality uses the chain rule while the last equality
uses also the approximation (21).

In order to compute the marginal of w.r.t. to all
, it is sufficient to compute the

marginal of obtaining

From the above equations and using the fact that is a zero
mean Gaussian distribution with covariance defined in (52)
and is white Gaussian noise of variance , independent
of , we obtain

Thus, conditional on remains Gaussian. In addition, the
Hessian and the gradient, evaluated at 0, of with respect to its
second argument are respectively given by

(54)

Hence, the minimizer of , that corresponds to the min-
imum variance estimator of , is

(55)

where was defined in (24). Plugging (56) into (53) proves
(22).

As for the second part of the proposition, first recall that
given the function on a finite-dimensional domain, whose Hes-
sian matrix is constant and positive definite, Laplace’s
method provides the following expression for calculating expo-
nential integrals (see [36])

(56)

where minimizes with respect to . Then, from (56) we
obtain that is exactly equal to

(57)

Using Lemma 19 in [37] one has

(58)

Furthermore, after simple computations, we obtain

with
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where the above equation exploits the following facts

with the last equality relying upon the matrix inversion lemma,
see, e.g., [38]. This completes the proof of Proposition 1. Now,
let

where is a zero-mean Gaussian random field of kernel .
Then, in view of (40), one has

(59)

It holds that

Similarly to the previous case, from the equation above it is easy
to see that the log of the a posteriori density of , , conditional
on and is quadratic with respect to , , , i.e., a posteriori
, , remain jointly Gaussian. In view of the structure of the

posterior, computing and is equivalent
to computing the minimum variance estimates of and using
the model (59) with and thought of as known operators not
depending on the measurements. Hence, the expressions for
and in (42) are obtained exploiting standard results on estima-
tion of jointly Gaussian processes, see [38].

Proof of Theorem 3: The proof is based on the character-
ization of given in Theorem 2; exploiting it we show that
monomials do not have finite norm in and hence they do not
belong to . To do this, first the following preliminary lemma
is needed.

Preliminary Lemma: For all

where the definition for double factorial reads as follows:

Proof: Stirling’s approximation for the Gamma function is
(see [39])

for . In particular, using formula 5.6.1 in Chapter 5 of
[40], one obtains

We have first

From the formula

we obtain

Thus

Consider the function for . Let
, then

where we have used the inequality for . Thus
is a strictly increasing function on , with minimum

. Hence is also a strictly increasing function
on , with minimum . Thus we have
for all :

Finally,

This concludes the proof of the preliminary lemma.
Now, for simplicity, let us consider the case and the

mononomial , . Then
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The function is then

Thus and for . Then

One has and , thus

(60)

where we have used the inequality

which follows from Stirling’s formula. Hence we have
, which shows that does not belong

to . The proof then easily extends to the case .
Proof of Theorem 4: We claim that

for , , . For simplicity, consider the
example . Then by Theorem 2,

with orthonormal basis

(61)
From in [21, Section VIII] it comes that ,
where ,
and denotes the direct product between Hilbert spaces. Here
we make use of the crucial property that both spaces ,

, 2, do not contain the nonzero constant function. Sup-
pose that a function can be written in the
form . Then for
any constant . By the property we just stated, this is only pos-
sible if is the zero function. This means that functions in
must depend nontrivially on the two arguments and . Sim-
ilarly, functions in must depend nontrivially on the two ar-
guments and . Therefore we must have .
Then from a result on sums of kernels (see Aronszajn [21], pages

353–354), the space is the direct sum of the spaces ,
which are complementary subspaces in . Thus each
admits a unique decomposition , where
and

The results stated then follow immediately. The reasoning in the
general case is similar.

Proof of Theorem 5: For what regards the first part of the
theorem, for simplicity we will provide the proof for the case

and , with . The reasoning in the
general case is entirely similar. We know that

Thus, each function is of the form
where . Then, by the universality

of the single Gaussian kernel, can approximate, in the
uniform topology any continuous function of the
form , where .
In other words, the introduced in the statement of the
theorem needs just to be set to 1 to approximate arbitrary
well every function of two arguments that decomposes into

. However, generally can not approximate
continuous functions of the form . In fact, con-
sider the function . Suppose that for there exists a
function such that:

One has

The last expression implies that . On the
other hand, from the first three expressions, we obtain

We obtain a contradiction if , that is if . This
completes the first part of our proof. As far as the second part
is concerned, it suffices taking, e.g., and exploiting the
universality of the classical Gaussian kernel.
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