11

Genetic Algorithms and Neural
Networks

D. WHITLEY

11.1 INTRODUCTION

Genetic algorithms and neural networks are both inspired by computation in biological
systems. A good deal of biological neural architecture is determined genetically. It is
therefore not surprising that as some neural network researchers explored how neural
systems are organized that the idea of evolving neural architectures should arise.

Genetic algorithms have been used in conjunction with neural networks in three
major ways. First, they have been used to set the weights in fixed architectures. This
includes both supervised learning applications and reinforcement learning applications.
In related work, a genetic algorithm has been used to set the learning rates which in
turn are used by other types of learning algorithms. Genetic algorithms have also been
combined with more traditional forms of gradient based search.

Second, genetic algorithms have been used to learn neural network topologies. When
evolving neural networks topologies for function approximation, this includes the
problem of specifying how many hidden units a neural network should have and how
the nodes are connected.

A third major application is the use of genetic algorithms to select training data
and to interpret the output behavior of neural networks.

Schaffer, Whitley and Eshelman (1992) survey these various areas in an introduction
to the proceeding of a 1992 workshop on Combinations of Genetic algorithms and
Neural Networks. The current paper is tutorial in nature and highlights select cases
and briefly references some of the work that has been introduced in the last 3 years.

Genetic Algorithms in Engineering and Computer Science

Editor J. Periaux and G. Winter ©1995 John Wiley & Sons Ltd.

cbook 16/8/1995 13:52—PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

2 D. WHITLEY

11.2 GENETIC ALGORITHMS FOR PREPROCESSING AND
INTERPRETING DATA

Two examples of using genetic algorithms for preprocessing data is given in the work
of Chang and Lippmann (1991) and the work of Brill, Brown and Martin (1992). In
both cases, a large number of inputs were available as input to a K nearest neighbor
(KNN) classifier. In this case the coding can be a simple binary string indicating
whether a particular input or combination of inputs can be deleted from the input set
without significantly changing the classification behavior. In the Chang and Lippmann
application, the genetic algorithm was able to reduce the input set from 153 to 33
input features. Brill, Brown and Martin also were able to reduce the input set, but
their goal was not just to reduce the set of inputs to the nearest neighbor classifier, but
to also identify inputs that would also work well for a counterpropagation network.
The nearest neighbor classifier was used for feature selection since the evalutation
of a feature set is much faster with the KNN classifier than the counterpropagation
network. Nevertheless, the reduced input set for the KNN classifier also worked well
for the counterpropagation network.

Genetic algorithms have not only been used to reduce the input data set but also to
interpret outputs of a neural network. Eberhart and Dobbins (1991; Eberhart 1992)
used a genetic algorithm to search for the decision surface that identified boundary
cases of appendicitis as predicted by a neural network. For example, what inputs lead
to a classification of 0.5, where 0.5 indicates a borderline case, 1.e., a case that lies on
the boundary between the decision regions that classify cases as positive or negative
examples of appendicitis? It can also be useful to determine what are considered to be
what Eberhart calls ‘quintessential’ examples of appendicitis as predicted by a neural
network. In this case, what inputs lead to a classification of 1.0, where 1.0 corresponds
to a classic case of appendicitis?

Asking for an input that yields an output of 1.0 or 0.5 is really a form of network
inversion; in other words, this is analogous to running the neural network backwards.
One can literally attempt to run a neural network backwards by using backpropagation
to look for hidden node and input node activations that yield a particular output,
but the process can be time consuming and does not always work well since the
classification of a neural network is often many-to-one and not an invertible function.
Eberhart and Dobbins simply searched the input space for strings that produced the
desired output. By running a genetic algorithm multiple times they were able to obtain
multiple patterns that mapped to a particular output.

Such information can be used in two ways. First, it can be used as an explanation
tool. Knowing quintessential examples as well as borderline cases can help explain how
a network classifies novel inputs. Second, it can also be used to assess what a neural
network has learned and whether the cases that it considers to be quintessential and
borderline are reasonable.

cbook 16/8/1995 13:52—PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

GENETIC ALGORITHMS AND NEURAL NETS 3

11.3 GENETIC ALGORITHMS FOR TRAINING NEURAL
NETWORKS

The idea of training neural networks with genetic algorithms can be found in Holland’s
1975 book Adaptation in Natural and Artificial Systems. Most of the actual work in
this area is far more recent. Belew, McInernery and Schraudolph (1990), Harp, Samad
and Guha (1989;1990) and Schaffer, Caruana and Eshelman (1990) all used genetic
algorithm to set the learning and momentum rates for feedforward neural networks.
Miihlenbein also contributed to the early efforts in this area (1990; Miihlenbein and
Kindermann, 1989).

This tuning was often done in conjunction with other changes to the network, such
as weight initialization or changing the network topology. In addition, there have
also been several researchers that attempted to train feedforward neural networks for
decision problems using genetic algorithms (Whitley and Hanson, 1989; Montana and
Davis, 1989; Whitley et al. 1990). Related to this is the use of genetic search in the
optimization of Kanerva’s (1988) sparse distributed memories by Rogers (1990) and
Wilson’s work (1990) which learned predicates over input features to construct new
higher order inputs to a perceptron.

Rogers (1990) has used genetic algorithms to optimize the “location addresses”
(i.e. the layer mapping inputs to hidden units) of a sparse distributed memory. Das
and Whitley (1992) extend the work of Rogers by using a genetic algorithm for
“location address” optimization that actively extracts information about multiple local
minima based on relative global competitiveness. Each local optimum in this particular
definition of the search space represents a different and distinct data pattern that
correlates with some output or event of interest. This allows multiple data patterns to
be tracked simultaneously, where each pattern corresponds to a different local optimum
in location address space.

The application of genetic algorithms to simple weight training for neural networks
has been hampered by two factors. First, gradient methods have been developed that
are highly effective for weight training in supervised learning applications where input-
output training examples are available and where the target network is a simple feed
forward network. Second, the problem of training a feed forward Artificial Neural
Network (ANN) may represent an application that is inherently not a good match for
genetic algorithms that rely heavily on recombination. Some researchers do not use
recombination (e.g. Porto and Fogel, 1990) while other have used small populations
and high mutation rates in conjunction with recombination. We first look at why
optimizing the weights in a neural network may cause problem for algorithms that
rely heavily on simple recombination schemes.

11.3.1 The Problem With ANN

One reason that genetic algorithms may not yield a good approach to optimizing
neural network weights is the Competing Conventions Problem. Nick Radcliffe (1990;
1991) has also named this the Permutations Problem. The source of the problem is
that there can be numerous equivalent symmetric solutions to a neural network weight
optimization problem.

cbook 16/8/1995 13:52—PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

4 D. WHITLEY

A ® © O

Figure 11.1 A simple feedforward neural network. Note that rearranging the
positions of the hidden units does not change the functionality of the network.

Figure 11.1 illustrates a simple feedforward network. Assume that the vector
Wa 1, Wq,2, Wq 3, Wh,1, W 2, Wp 3, We 1, We, 2, We 3, W4 1, Wd,2, Wd,3

is an arbitrary assignment of weights to this neural network, where w, ; passes through
hidden node o and ¢ = 1,7 = 2 are input connections and ¢ = 3 is the output
connection. Note that for every vector of this form there are 4! = 24 equivalent vectors
representing exactly the same solution. All permutations over the set of hidden unit
indices, {a,b, ¢, d}, are equivalent vectors in terms of neural network functionality and
in terms of the resulting evaluation function. This is because rearranging the order
of the hidden units has no effect on the functionality of the network. Thus, given H
hidden units in a simple fully connected feedforward network, there are H! symmetries
and up to H! equivalent solutions.

The problem this creates for a genetic algorithm that uses simple recombination is
as follows. If one does simple crossover on a permutation such as [A B C D] and [D
A C B] then the offspring will duplicate some elements of the permutation and will
omit others. Similarly, if different strings try to map functionality of hidden nodes in
different ways, then recombining these strings will result in duplication of some hidden
units and omission of other hidden units. In this case, using a population-based form
of search can be a disadvantage, since different strings in the population may not map
functionality to the different hidden units in the same way.

Various solutions have been proposed to the Competing Conventions Problems.

cbook 16/8/1995 13:52—PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

GENETIC ALGORITHMS AND NEURAL NETS 5

FEarly on, Montana and Davis (1989) attempted to identify functional aspects of hidden
units during recombination in order to perform a type of intelligent crossover. Radcliffe
(1991) also suggested a solution whereby hidden units are treated as a multiset: hidden
units with the same connectivity are considered to be the same, but hidden units
might have different connectivities. During recombination, one can search through
the hidden units to determine which are identical and use this information to guide
crossover. Hancock (1992) has implement this idea as well as extensions to consider
how similar hidden units are; he concludes the permutation problem is not as bad
as has often been suggested. More recently, Korning (1994) has suggested that the
traditional use of the standard quadratic error measurement, (target — observed)?, is
part of the problem and suggests the use of other fitness measurements. Korning also
suggests “killing off” any offspring that do not meet minimal fitness requirements,
which might filter out offspring from incompatible parents. Overall however, it is very
difficult to find cases where genetic algorithms have been shown to yield results better
than gradient based methods for supervised learning applications.

One recent report returns to a theme initially put forward by Belew et al. (1990).
Part of the traditional wisdom (folklore?) which has grown up around genetic
algorithms is that a genetic algorithm is good at roughly characterizing the structure of
a search space and finding regions of good average fitness, but not adept at exploiting
local features of the search space. One way to use a genetic algorithm then is to use
it to find an initial set of good weights and then to turn the search over to a gradient
based method. Skinner and Broughton (1995) have reported good results with this
kind of approach and suggests this method is better than using gradient methods
alone for complex problems involving large weight vectors.

11.3.2 Genetic and Fvolutionarly Algorithms for Reinforcement Learning

Another stratgey is to use genetic and evolutionary algorithms for weight optimization
in domains where gradient methods cannot be directly applied, or where gradient
methods are less effective than in simple supervised learning applications. One
such application is the use of evolutionary algorithms to train neural networks for
reinforcement learning problems and neurocontrol applications. Some results suggest
that evolutionary algorithms can be quite competitive against other algorithms
that are applicable to reinforcement learning problems. For reinforcement learning
applications the set of target outputs that correspond to some set of inputs used
to train the net are not known a priori. Rather, the evaluation of the network is
performance based. Most existing algorithms attempt to convert the reinforcement
learning problem to a supervised learning problem by indirectly or heuristically
generating a target output for each input. Some approaches compute an inverse of
a system model. The system model maps inputs (current state and control actions)
to outputs (the subsequent state). Given a target state, the inverse of the system
model can be used to generate actions, which can then be used as a output target (the
appropriate action) for a separate controller. This general description is applicable
to methods such as “Back propagation through time.” “Adaptive critic” methods
use a separate evaluation net that learns to predict or evaluate performance at each
time step. The prediction can then be used to heuristically generate output targets
for an “action” net which controls system behavior. Note, however, that both of

cbook 16/8/1995 13:52—PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

6 D. WHITLEY

these methods compute target outputs and the resulting gradients either indirectly
or heuristically.

Genetic algorithms can be directly applied to reinforcement learning problems
because genetic algorithms do not use gradient information, but rather only a relative
measure of performance for each set of weight vectors that is evaluated. Genetic
algorithms and evolutionary algorithms have been successfully applied to training
neural nets to controlling an inverted pendulum. Weiland (1990; 1991) for example
trained recurrent networks to balance two inverted pendulums of different lengths at
the same time, as well as a jointed pendulum. These algorithms often use smaller
population sizes and higher mutation rates to cope with the “Competing Conventions
Problems.” Whitley et al. (1991; 1993) compared a genetic hill-climber to the well
known work of Anderson (1989) which uses the “temporal difference method” (Sutton
1988) to train an “Adaptive Heuristic Critic” (AHC) which in turn is used to
generate target outputs for doing reinforcement backpropagation. The results suggests
that that the genetic algorithms produced training times comparable to the AHC
with reinforcement backpropagation, while generalization was better for the genetic
algorithm. .

Whitley et al. (1991; 1993) have argued that comparisons of algorithms for
reinforcement learning (and other decision problems) should not only consider learning
time but also generalization. Algorithms that learn very quickly can potentially fail
to produce an adequate generalized model of the process being learned. Thus, fast
learning is not in and of itself a good measurement for evaluating a training algorithm.
Generalization is also effected by how the evaluation function i1s constructed. In
reinforcement learning and control problems, the number of possible initial states
can be intractable. Thus, evaluation involves sampling the set of possible start states.
Evaluation based on a single fixed start state can result in fast learning, but very poor
generalization. Evaluation based on a single random start state 1s somewhat better,
but the resulting evaluation is noisy and it difficult to compare the evaluation of one
string against another. Evaluation based on a set of start states that uniformly samples
the input space would appear to be the best strategy.

11.4 GENETIC ALGORITHMS FOR CONSTRUCTION
NEURAL NETWORKS

Some of the early efforts to encode neural network architectures assume that
the number of hidden units was bounded; the genetic algorithm could then be
used to determine what combinations of weights or hidden units yield improved
computational behavior within a finite range of architectures. These directly coded
network architectures have usually been trained using back propagation. A common
fitness measurement is the training time. Miller and Todd (1989) have explored these
ideas, as have Belew, McInerney and Schraudolf (1990). Whitley, Starkweather and
Bogart (1990) show that the genetic algorithm can be used to find network topologies
that consistently display improved learning speeds over the typical fully connected feed
forward network. They also explore how to create selective pressure toward smaller
nets and to reduce training time by initializing the reduced networks using weights
that have already been optimized for larger fully connected networks.

cbook 16/8/1995 13:52—PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

GENETIC ALGORITHMS AND NEURAL NETS 7

O Indicates a Nonzero Threshold

Figure 11.2 A standard feedforward networks for adding two 2-bit numbers
and an architecture evolved using a genetic algorithm. The special architecture
learns much faster.

An example of the effort to reduce the network topology for a 2-bit adder is given
in Figure 11.2. Network C was evolved by a genetic algorithm and learned to add in
between 8,000 and 9,000 training epochs on 50 out of 50 tests. Network A failed to
converge on 5 of the 50 tests, and over half of the networks required more than 50,000
training epochs to train. A Network B was created by adding direct connections to
the input-output nodes of Network A. Network B learned the training set in between
10,000 and 50,000 training epochs on 46 out of 50 tests.

Such early results were encouraging, but the difficulty with directly optimizing
a network architecture is the high cost of each evaluation. If we must run a back-
propagation algorithm (or some faster, improved form of gradient descent) for each
evaluation, the number of evaluations needed to find improved network architectures
quickly becomes computationally prohibitive. The computation cost 1s typically so
high as to make genetic algorithms impractical except for optimizing small topologies.
For example, if an evaluation function for a modest-sized neural network architecture
on a complex problem involves one hour of computation time, then it requires one
year to do only 9,000 architecture evaluations. If the architecture is complex then
9,000 evaluations is most likely inadequate for genetic search to be effective.

cbook 16/8/1995 13:52—PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

8 D. WHITLEY

Also, one trend in neural networks that partially addresses the architecture issue is
constructive algorithms such as the Cascade Correlation Learning Architecture, which
incrementally adds hidden units to the neural network as it learns. Thus, the basis for
comparison is not just simple fully connected feedforward networks.

Another more recent effort to evolve neural networks is the work of Angeline
et al (1994). The GeNeralized Acquistion of Recurrent Links, or GNARL system,
uses selection and mutation to search the space of possible recurrent neural network
architectures. GNARL attempts to learn weights and topology at the same time. This
type of approach differs from constructive algorithms such as Cascade Correlation in
that the space of possible architectures is explored in a nonmonotonic fashion.

11.4.1 Neurogenesis: Growing Neural Networks

In the last 5 years some of the most advanced work for using genetic algorithms
to develop neural network have focused on growing neural network. Weights and
architectures are often developed together. This can include systems such as GNARL.
Other researchers have also looked at genetic programming as a way of developing
architectures and weights together (Koza and Rice 1991).

Grammar based architecture descriptions have been explored by Kitano (1990),
Mjolsness et al. (1988) and by Gruau (1992). Nolfi et al. (1990) have also looked
at grammar based systems that retain may of the characteristics of L-systems. By
optimizing grammar structures that generate network architectures instead of directly
optimizing architectures this research hopes to achieve better scalability, and in some
sense, reusability of network architectures. In other words, the goal of this research
is to find rules for generating networks which will be useful for defining architectures
for some general class of problems. In particular, this would allow developers to define
neural structures for smaller problems that could reused as as building blocks for
solving larger problems.

One of the earliest efforts to look at network growth was by Mjolsness et al., (1988)
which defined a recursive equation for a matrix from which a family of integer matrices
could be derived, and then a family of weighted neural nets. The search space is defined
over the set of equation coefficients. Mjolsness uses simulated annealing instead of the
genetic algorithm to search this space.

Kitano (1990) uses a grammar to generate a family of matrices of size 2%. The
element of the matrix are characters in a finite alphabet. In order to develop matrix
M, 41 each character of the matrix My, is replaced by a 2 x 2 matrix. This connectivity
matrix describes the architecture of a neural net. To produce an acyclic graph for a
feed forward neural network, only the upper right triangle of the matrix is used.

More recently, Kitano has presented a simple model of neurogenesis that is more
biological in nature. In this approach, “axons grow while cell metabolism are being
computed.” (1995:81). Cell membranes are also modeled that are capable of chemical
transport and diffusion. This work appears to be focused on understanding the
emergent properties of this type of system.

Gruau (1992) directly develops a cellular development model for growing neural nets
called cellular encoding. Each cell has a duplicate copy of the “genetic code.” Each cell
reads the code at a different position. Depending on what is read, a cell can divide,
change internal parameters, and finally become a neuron. Arguably, the resulting

cbook 16/8/1995 13:52—PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

GENETIC ALGORITHMS AND NEURAL NETS 9

language can describe networks in a more elegant and compact way than matrix
representations, and the representation can be readily recombined by the genetic
algorithm. Gruau used a genetic algorithm to recombine grammar trees representing
cellular encodings and has showed that neural networks for the parity problem and
symmetry problem could be found. More recently Gruau (1995) has also evolved
controls for a 6 legged robot and Whitley, Gruau and Pyeatt (1995) evolve recurrent
neurocontrollers for balancing 1 and 2 poles without velocity input information.

11.4.2 A Review of Cellular Development.

Each cell carries a copy of the genetic code in the form of a grammar tree. Each cell
also has a pointer which points to a node into the grammar tree. Each node is a
program instruction. Development starts with a single ancestor cell with connections
to input cells and output cells.

In a Sequential divide, denoted by S, the parent cell splits into two cells such that
the first child inherits all of the input connections of the parent and the second child
inherits all of the output connections of the parent; the first child is also connected
by a single connection to the second child. In Figure 11.3, during a Sequential divide
the second child is placed under the first child. An S node is also a branch point, with
the top child cell moving its pointer to the left branch node below S and the bottom
child moving its pointer to the right branch node below S.

In a Parallel divide, denoted by P, the parent cell splits into two cells that inherit
all of the input and output connects of the parent. In Figure 11.3, during a Parallel
divide the two child cells are place side by side. A P node is also a branch point, with
the left hand child cell moving its pointer to the left branch node below P and the
right hand child moving its pointer to the right branch node below P.

The next symbol encountered in Figure 11.3 is the £, which is the end or termination
symbol. A cell terminates development after reading the £ symbol.

The program-symbol A increments the threshold of the hidden unit. The program-
symbol denoted “-” sets the weight of the input link pointed by the link register to
—1. In this example the link register has not been reset and so has its original default
setting such that it points to the leftmost fan-in connection.

Figure 11.3 shows an example of a simple grammar tree that generates a XOR
networks.

In order to reuse subcomponents of the neural network, cellular encoding uses a
special recurrent program-symbol denoted R. Associated with R is a counter than
controls the number of recursive jumps that can be made. When R is encountered by
a cell, the cell moves its reading head back to the root cell of the grammar tree. The
associated counter decrements each time the recursive jump is made. When the counter
equals 0 the cell does not reset it pointer, but rather moves forward in the grammar
tree, or gives up its reading head and terminates development. Gruau and Whitley
(1993) provide an example of how the solution to the XOR net can be generalized
to cover all parity problems by placing an R symbol in the leftmost leaf node of the
grammar tree in Figure 11.3. On parity and symmetry problems, after the genetic
algorithm has generated a family of recursively developed networks that handle the
lower order cases (3 to 6 inputs), the recursive network encoding represents a general
relation and automatically generalizes to handle arbitrarily large problems.

cbook 16/8/1995 13:52—PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

10 D. WHITLEY

input
pointer
cell

J:/P\JL l’/\
/\

S
ancestor
A T F
‘ starting Oﬂjrpn‘t‘
E network pointer
cell

cell

Figure 11.83 The cellular development process. In step 1 the ancestor cell does
a sequential divide into 2 cells. In step 2 the uppermost cell from the previous
step does a parallel divide. The two cells that are created both read termination
symbols in steps 3 and 4; in step 5 the sequential divide is executed. In step 6 a

@ o,

parallel divide is executed. In step 7 the symbol has been executed and a
negative weight is introduced feeding into the output node. In step 8 the black
cell has changed its threshold. In the final steps, the remaining cells just read

termination symbols. (This figure is taken from Gruau and Whitley, 1993).

cbook 16/8/1995 13:52—PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

GENETIC ALGORITHMS AND NEURAL NETS 11

Another way to reuse development code is to use a form of Automatic Function
Definition like that used in Genetic Programming. Subtrees are created, such that the
main tree can jump to a subtree, execute the subtree, then return to the associated
program-symbol in the main grammar tree. Subtrees thus function like program
subroutines. Gruau has used Automatic Function Definition to evolve a mechanism to
control the gait of a 6-legged robot. The use of Automatic Function Definition results
in simpler, more modular and well structured neural network (Gruau 1995).

11.5 Evolution, Learning and the Baldwin Effect

There has been considerable interest recently in the idea that learning can impact
evolution even if learned behaviors are not coded back on the chromosome, as in
Lamarckian evolution. The work of Hinton and Nowlan (1987) explains how learning
can reshape the fitness landscape, since an individual’s fitness 18 made up of both
their genetically determined behavior and learned behavior. If learned behavior has a
significant impact on fitness and if the contribution of the learned behavior is stable
over time, there can be a selective advantage to having a genetic predisposition that
makes 1t easier to acquire this learned behavior, and eventually, perhaps even to
add the behavior to the individual’s genetically determined behaviors. Note that this
can occur without Lamarckian mechanisms, since there is selection presssure for the
learned behavior which can be exploited by Darwinian selection. This idea dates back
to Baldwin (1896) and hence is known as the Baldwin Effect.

Such interactions in learning and evolution have been observed when training neural
networks using genetic algorithms. Also, the idea of using learning on top of genetic
search to speed up the search process has also been explored. Some researchers that
explore the interaction of learning and evolution in neurogenetic systems include
Ackley and Littman (1991), Gruau and Whitley (1991) and Belew (1989).

11.6 CONCLUSIONS

The challenge facing researchers interested in combinations of genetic algorithms and
neural networks is to show how genetic algorithms can make a positive and competitive
contribution in the neural networks arena. Currently, it appears that using genetic
algorithms to find a set of initial weights before applying gradient based methods
may be advantageous for supervised learning classification problems. The application
of genetic methods to the development of neural networks for reinforcement learning
application also appears to be a worthwhile area for future work. Combinations of
genetic algorithms and neural networks are likely to also continue to impact the field
of artificial life.

cbook 16/8/1995 13:52—PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

12 D. WHITLEY

cbook 16/8/1995 13:52—PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

References

Ackley D.H. and Littman M. (1991) Interactions between learning and evolution. In Proc. of
the 2nd Conf. on Artificial Life, C.G. Langton, ed., Addison-Wesley, 1991.

Anderson C. W. (1989) Learning to Control an Inverted Pendulum Using Neural Networks.
IFEEE Control Systems Magazine, 9, 31-37.

Angeline P.J., Saunders G. M. and Pollack J.B. (1994) An evolutionary algorithm that
constructs recurrent neural networks. ITEEE Transactions on Neural Networks 5(1):54-64.

Baldwin J.M. (1896) A new factor in evolution. American Naturalist, 30:441-451, 1896.

Belew R. (1989) When both individuals and populations search: Adding simple learning to
the genetic algorithm. In I.D. Schaffer (Ed.), Third international conference on genetic
algorithms (pp. 34-41). San Mateo, CA: Morgan Kaufmann.

Belew R., McInerney J. and Schraudolph N. (1990) Evolving Networks: Using the Genetic
Algorithms with Connectionist Learning. CSE Technical Report CS90-174, Computer
Science, UCSD.

Brill F.Z., Brown D.E. and Martin W.N. (1992) Fast genetic selection of features for neural
network classifiers. IEEE Transactions on Neural Networks, 3 (2), 324-328.

Chang E.J. and Lippmann R.P. (1991) Using genetic algorithms to improve pattern
classification performance. In R.P. Lippmann, J.E. Moody and D.S. Touretsky (Eds.),
Advances in neural information processing 3 (pp. 797-803). San Mateo, CA: Morgan
Kaufmann.

Das R. and Whitley D. (1992) Genetic Sparse Distributed Memories. Combinations of Genetic
Algorithms and Neural Networks. D. Whitley and J.D. Schaffer (eds.) IEEE Computer
Society Press.

Eberhart R.C. and Dobbins R.W. (1991) Designing neural network explanation facilities
using genetic algorithms. IEEE international joint conference on neural networks (pp.
1758-1763). Singapore: IEEE.

Eberhart R.C. (1992) The role of genetic algorithms in neural network query-based learning
and explanation facilities. In Combinations of Genetic Algorithms and Neural Networks. D.
Whitley and J.D. Schaffer (eds.) IEEE Computer Society Press. Fahlman S. and Lebiere C.
(1990). The Cascade Correlation Learning Architecture. In D. Touretzky (Ed), Advances
in Neural Information Processing Systems 2, Morgan Kaufmann.

Gruau F. (1992) Genetic synthesis of Boolean neural networks with a cell rewriting
developmental process. In, Combination of Genetic Algorithms and Neural Networks, D.
Whitley and J.D. Schaffer, eds, IEEE Computer Society Press, 1992.

Gruau F. and Whitley D. (1993) Adding Learning to the Cellular Development of Neural
Networks: Evolution and the Baldwin Effect. Evolutionary Computation 1(3): 213-233.

Gruau F. (1995). Automatic Definition of Modular Neural Networks, Adaptive Behavior,3(2):151-
183.

Hancock P.J.B. (1992) Genetic algorithms and permutation problems: a comparison of
recombination operators for neural structure specification. In Combinations of Genetic
Algorithms and Neural Networks. D. Whitley and J.D. Schaffer (eds.) IEEE Computer
Society Press.

Harp S.A., Samad T. and Guha A. (1989) Towards the genetic synthesis of neural networks.
In I.D. Schaffer (Ed.), Third international conference on genetic algorithms (pp. 360-369).

Genetic Algorithms in Engineering and Computer Science

Editor J. Periaux and G. Winter ©1995 John Wiley & Sons Ltd.

cbook 16/8/1995 13:52—PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

14 D. WHITLEY

San Mateo, CA: Morgan Kaufmann.

Harp S.A., Samad T. and Guha A. (1990) Designing application-specific neural networks
using the genetic algorithm. In D.S. Touretsky (Ed.), Advances in neural information
processing 2 (pp. 447-454). San Mateo, CA: Morgan Kaufmann.

Hinton G.E. and Nowlan S.J.(1987) How learning can guide evolution. Complex Systems,
1:495-502.

Holland I. (1975) Adaptation in Natural and Artificial Systems. Ann Arbor, Univ. of Michigan
Press.

Kanerva Pentti (1988). Sparse Distributed Memory. Cambridge, Mass: MIT Press.

Kitano H. (1990) Designing neural network using genetic algorithm with graph generation
system. Complex Systems, 4:461-476.

Kitano H. (1995) A simple model of neurogenesis and cell differentiation based on
evolutionary large-scale chaos. Artificial Life, 2:79-99.

Korning P.G. (1994) Training of neural networks by means of genetic algorithm working
on very long chromosomes. Technical Report, Computer Science Department, Aarhus C,
Denmark.

Koza J.R. and Rice J.P. (1991) Genetic generation of both the weights and architecture for
a neural network. In, Intern. Joint Conf. on Neural Networks, Seattle 92.

Miller G., Todd P. and Hedge S. (1989) Designing Neural Networks using Genetic Algorithm,
In, 3rd Intern. Conf. on Genetic Algorithms, D.J. Schaffer, ed., Morgan Kaufmann.

Mjolsness E., Sharp D.H. and Alpert B.K. (1989) Scaling, machine learning, and genetic
neural nets. Advances in Applied Mathematics, 10, 137-163.

Montana D.J. and Davis L. (1989) Training feedforward neural networks using genetic
algorithms. In Proceedings of eleventh international joint conference on artificial
intelligence (pp. 762-767). San Mateo, CA: Morgan Kaufmann.

Miihlenbein H. (1990) Limitations of multi-layer perceptrons networks - steps towards genetic
neural networks. Parallel Computing, 14:249-260.

Miihlenbein H. & Kindermann J. (1989). The dynamics of evolution and learning — Towards
genetic neural networks. In R. Pfeifer, Z. Schreter, F. Fogelman-Soulie & L. Steels (Eds.),
Connectionism in perspective (pp. 173-197). Amsterdam: Elsevier Science Publishers B.V.
(North-Holland).

Nolfi S., Elman J.L. and Parisi D. (1990) Learning and evolution in neural networks. CRL
Technical Report 9019, La Jolla, CA: University of California at San Diego.

Porto V.W. and Fogel D.B. (1990) Neural network techniques for navigation of AUVs.
Proceedings of the IEEE Symposium on Autonomous Underwater Vehicle Technology (pp.
137-141). Washington, DC: IEEE.

Radcliffe N.J. (1990) Genetic neural networks on MIMD computers. Doctoral dissertation,
University of Edinburgh, Edinburgh, Scotland.

Radcliffe N.J. (1991) Genetic set recombination and its application to neural network topology
optimization. Technical report EPCC-TR-91-21, University of Edinburgh, Edinburgh,
Scotland.

Rogers D. (1990) Predicting Weather Using a Genetic Memory: a Combination of Kanerva’s
Sparse Distributed Memory with Holland’s Genetic Algorithm; Advances in Neural
Information Processing 2.

Sutton R. (1988) Learning to Predict by the Methods of Temporal Differences, Machine
Learning, 3:9-44.

Skinner A. and Broughton J.Q. (1995) Neural Networks in Computational Materials Science:
Training Algorithms Modelling and Simulation in Materials Science and FEngineering,
3:371—390.

Schaffer J.D., Whitley D. and Eshelman L. (1992) Combination of Genetic Algorithms and
Neural Networks: The state of the art. Combination of Genetic Algorithms and Neural
Networks, IEEE Computer Society, 1992.

Schaffer J.D., Caruana R.A. and Eshelman L.J. (1990) Using genetic search to exploit the
emergent behavior of neural networks. In S. Forrest (Ed.), Emergent computation (pp.
244-248). Amsterdam: North Holland.

cbook 16/8/1995 13:52—PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

REFERENCES 15

Weiland A.P. (1990) Evolving controls for unstable systems. In D.S. Touretsky, J.L. Elman,
T.J Sejnowski & G.E. Hinton (Eds.) Proceedings of the 1990 connectionist models summer
school (pp. 91-102). San Mateo, CA: Morgan Kaufmann.

Weiland A.P. (1991) Evolving neural network controllers for unstable systems. [EEE
international joint conference on neural networks (pp. 11-667 - 11-673). Seattle, WA: IEEE.

Wilson S.W. (1990) Perceptron redux: Emergence of structure. In S. Forrest (Ed.), Emergent
Computation (pp. 249-256). Amsterdam: North Holland.

Whitley D. and Hanson T. (1989) Optimizing neural networks using faster, more accurate
genetic search. In J.D. Schaffer (Ed.), Third international conference on genetic algorithms
(pp. 391-396). San Mateo, CA: Morgan Kaufmann.

Whitley D., Starkweather T. and Bogart C. (1990) Genetic Algorithms and Neural Networks:
Optimizing Connections and Connectivity. Parallel Computing. 14:347-361.

Whitley, D., Dominic, S. & Das, R. (1991). Genetic Reinforcement Learning with Multilayered
Neural Networks. Proc. 4th International Conf. on Genetic Algorithms, Morgan Kaufmann.

Whitley D., Dominic S., Das R. and Anderson C. (1993) Genetic Reinforcement Learning for
Neurocontrol Problems. Machine Learning 13:259-284.

Whitley D., Gruau F. and Pyeatt L. (1995) Cellular Encoding Applied to Neurocontrol. In,
5th Intern. Conf. on Genetic Algorithms, L. Eshelman, ed., Morgan Kaufmann.

cbook 16/8/1995 13:52—PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

