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RNA I

RNA is single stranded sequence of bases A, U, C, G, but base pairs arise such as A-U, G-C
(canonical) or non-canonical pairs such as G-U, which are relatively stable as well. ⇒ An
RNA strand has complex structure because of (linearly) distant, but paired bases. RNA is not
just a ”messenger", but effector (autocatalytic RNAs) (⇒ ”RNA world" hypothesis).
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RNA II

Consecutive stacked base pairs called stem form A-form double helix (distorted by
non-canonical pairs). A stem is surrounded by single stranded subsequences called loops

(bulge/interior/hairpin and multibranch loops). These form the secondary structure of the
RNA sequence.
Type of interactions:

1. nested: (i, j), (i′, j′) pairs are nested-pairs if not related (e.g. i < j < i′ < j′) or
nested (e.g. i < i′ < j′ < j),

2. non-nested: base-pairs: copies, meta/reversed-copies ( 1%).
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Grammars for sequence modeling

Profile HMMs allows (1) exploration, (2) decision on membership and (3) multiple alignment
for proteins. (Semihidden) HMMs can be used for DNA. And for RNA with distant
complementer regions?
Note that first-order time-homogeneous HMMs are equivalents to stochastic FSAs and
regular grammars: a grammar scheme for profile HMMs.

Start 1 . . .

SM0
→ Î0|M̂1|D̂1 M1 → Î1|M̂2|D̂2 . . .

Î0 → aÎ0|aI0| . . . M̂1 → aM1| . . . . . .

Î1 → aI1|aÎ1| . . . . . .

. . . . . .

Goal: a semantic, static, probabilistic model for a given set of homologous sequences. That
is we would like a non-dynamic model for sequences deriving from a common ancestral
sequence through a hidden (stochastic but already fixed) evolutionary process, i.e. to avoid
the problems of modeling the underlying phylogeny process, but to model the effects of
evolutionary constraints over distant regions (more advanced basic models for mutations and
indels, which are used in a static framework).
Goal’: a stochastic canonical context-free grammar schemata, which can be specialized and
parameterized for a given set of homologous RNA sequences. Grammars in sequence modeling – p. 4/??



Grammars

Goal: definition of a given set of words (language L) over a finite alphabet Σ.
Generative/transformational grammars: Members of the language can be derived using
rewrite rules containing terminal and nonterminal symbols (denoted with small and capital letters).
Parsing consists of the reconstruction of a derivation/parse tree ( alignment).
Questions:

1. parsing: find parse T resulting in terminal sequence x

2. membership: x ∈ LG or is there any parse T resulting in terminal sequence x

Chomsky hierarchy of grammars (*:right/left, with/without ǫ;**:nondecreasing):

Grammar Rule Automaton Parsing Language

regular∗ W → aW FSA linear a reg.expression

context-free W → β push-down polynomial palindromes

context-sensitive** α1Wα2 → α1βα2 linear bounded exponential copies

unrestricted Turing machine (TM) semidecidable KB − FOL |= α

- - halting TMs

Complexity of parsing=>CFGs
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Stochastic grammars

Rewrite rules in grammar G have application probabilities (θ denotes their vector).
Questions (Tx denotes parse tree with terminal sequence x):

1. parsing: T∗

x = arg maxTx
p(Tx|θ, G)

2. membership: p(x|θ, G) =

P

Tx

p(Tx|θ, G)

3. parameter learning: θ∗ = arg maxθ p(x(1), . . . , x(n)|θ, G)

4. posterior decoding:
p(W 99K xi:j |x, θ, G) =

P

Tx

p(Tx|θ, G) 1(xi:j is generated from W in parse tree Tx”)
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SCFG algorithms

Assume: M nonterminals (W = W1, . . . , WM ), Chomsky normal form (Wv → WyWz or
(Wv → a) with transition and emission probabilities tv(y, z) and ev(a)

The inside algorithm computes the probability of sequence x p(x) summing over all possible
derivation (parse tree).
Idea: calculate recursively the probability α(i, j, v) of a parse subtree rooted at nonterminal
Wv for subsequence xi:j for all i, j, v.

Require: SCFG,x
Ensure: p(x|SCFG)

Ini: i=1 to L, v=1 to M: α(i, i, v) = ev(xi)

for i=1 to L-1 do {length}
for j=1 to L-i do {starting positions}

for v=1 to M do {states}
α(j, j + i, v) =

PM
y=1

PM
z=1

Pj+i
k=j

α(j, k, y)α(k + 1, j + i, z)tv(y, z)

End: p(x|SCFG) = α(1, L, 1)

The outside algorithm computes a probability called β(i, j, v) of a complete parse tree for
sequence x, excluding subtrees with Wv nonterminal and xi:j leaves.
The optimal parse tree can be found by the Cocke-Younger-Kasami (CYK) algorithm: same
as inside with maxy,z,k instead of

P
y,z,k and with pointers for backtracking.
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HMMs/SFSAs/SRGs versus SCFGs

The same questions for stochastic context free grammars (SCFGs) modeling RNA:
(Xh/Xo hidden/observed variables)

Goal stochastic regular grammars stochastic context-free grammars

Explanation:p(Xh|Xo, θM , M) alignment: Viterbi parse tree: CYK

Matching:p(Xo|θM , M) p(sequence): forward alg. p(seq.): inside alg.

Canonical model class:M ∈ M profile HMMs (length) covariance models

Imputation-based parameter learning:θM Viterbi-based CYK-based

EM-based parameter learning:θM forward-backward inside-outside

Time complexity O(LM2) O(L3M3)

Space complexity O(LM) O(L2M)

Note that SCFG models allows a more powerful representation of a distribution of
homologous sequences than HMMs (e.g. allowing palindrome constraints) or phylogenetic
tree with i.i. substitution stochastic process assumption.
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PCFG:Covariance model I

An SCFG model of RNA folding based on four types of recursive extension (paired,
left-unpaired, right-unpaired, bifurcation) (Nussinov)

S → aSu|cSg|gSc|uSa (paired) (1)

S → aS|cS|gS|uS (left − unpaired) (2)

S → Su|Sg|Sc|Sa (right − unpaired) (3)

S → SS (bifurcation) (4)
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PCFG:Covariance model I

A generic stem model with six states (W denotes any states):

P → aWa| . . . (pairwise, 16) (5)

L → aW | . . . (leftwise, 4) (6)

R → Wa| . . . (rightwise, 4) (7)

B → SS (bifurcation) (8)

S → W (start) (9)

E → ǫ (end) (10)
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PCFG:Covariance model III

A special CFG called Covariance Model (CM) has the following building block:
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