

COMPUTATIONAL BIOLOGY and MEDICINE Biomedical decision support

Andras Falus <u>afalus@gmail.com</u>

Peter Antal antal@mit.bme.hu

Gábor Csonka csonkagi@gmail.com

AIT, Budapest 2011. fall

Overview

- Decision support
 - Markov blanket
 - Utility
 - Optimal decision
 - Sequential decision
 - Optimal stopping
 - Value of information
 - Examples for optimal decision
 - Risk models and their characterization

Bayesian networks

Directed acyclic graph (DAG)

- nodes random variables/domain entities
- edges direct probabilistic dependencies
 (edges- causal relations

Local models - $P(X_i | Pa(X_i))$

Three interpretations:

$$P(M, O, D, S, T) =$$

$$P(M)P(O \mid M)P(D \mid O, M)\underline{P(S \mid D)}P(T \mid S, M)$$

P(S|D

Symptom

P(O|M)

Onset

Treatment

P(T|S,M)

P(M)

Mutation

P(D|OJM)

Disease

$$M_P = \{I_{P,1}(X_1; Y_1|Z_1),...\}$$

2. Graphical representation of (in)dependencies

The Markov Blanket

A minimal sufficient set for prediction/diagnosis.

model

Markov Blanket Membership (MBM)

(symmetric) pairwise relationship induced by MBS

The Markov Blanket in preoperative diagnosis of Ovarian cancer

A minimal, but sufficient set for prediction/diagnosis

Inference in Bayesian networks

- (Passive, observational) inference
 - P(Query|Observations)
- Interventionist inference
 - P(Query|Observations, Interventions)
- Counterfactual inference
 - P(Query | Observations, Counterfactual conditionals)
- Biomedical applications
 - Prevention
 - Screening
 - Diagnosis
 - Therapy selection
 - Therapy modification

Bayesian network homework

Using BayesEye

Select a domain, select candidate variables (3-5), and sketch a structure.

- Finalize your variables, enter them (save/version the model).
- Specify a structure.
- Quantify it with probabilities.
- Test with global inference queries.

P(D|O,M)

Disease

P(S|D)

P(T|S,M)

Treatment

P(O|M)

P(M)

Mutation

- Do not use variables with more value than 5 (binary variables should be enough).
- Do not use more the 3 parents (tables will be too large).
- Do not use aggregate, semantic variables (causal and not semantic relations are better).
- Prefer causal ordering (easier estimation of conditionals).

 Send me the model and a 2-3 page documentation about the domain, variables, and the evaluation.

Bayes-omics

- Thomas Bayes (c. 1702 1761)
- Bayesian probability
- Bayes' rule

 $p(Cause \mid Effect) \propto p(Effect \mid Cause) \times p(Cause)$

- Bayesian statistics
- Bayesian decision
- Bayesian model averaging
- Bayesian networks
- Bayes factor
- Bayes error
- Bayesian "communication"

•

$$p(Modell Data) \propto p(Datal Model) p(Model)$$
 $a^* = \arg \max_i \sum_j U(o_j) p(o_j | a_i)$
 $p(prediction | data) =$
 $= \sum_i p(pred. | Model_i) p(Model_i | data)$

Decision theory probability theory

- Decision situation:
 - Actions
 - Outcomes
 - Probabilities of outcomes
 - Utilities/losses of outcomes
 - QALY, micromort
 - Maximum Expected Utility Principle (MEU)
 - Best action is the one with maximum expected utility

$$egin{aligned} a_i \ o_j \ p(o_j \mid a_i) \end{aligned}$$

$$U(o_j \mid a_i)$$

$$EU(a_i) = \sum_{j} U(o_j \mid a_i) p(o_j \mid a_i)$$

$$a^* = \arg\max_i EU(a_i)$$

Optimal binary decision in reporting

reported	Ref.:0	Ref.1
0	C _{0 0}	$C_{0 1}$
1	C _{1 0}	$C_{1 1}$

Assuming that the reporting action does NOT influence outcome, i.e. p(Outcome|Action) = p(Outcome).

If the outcome y and the prediction \hat{y} are binary, the loss is defined by a binary cost matrix $C_{\hat{y}|y}$. The minimal loss decision is defined by

$$\arg\min_{\hat{y}} C_{\hat{y}|0} P(Y=0|\mathbf{x}) + C_{\hat{y}|1} P(Y=1|\mathbf{x}), \tag{8}$$

In case of $C_{0|0}=C_{1|1}=0$, the prediction $\hat{y}=1$ is optimal if

$$\tau = \frac{C_{1|0}}{C_{1|0} + C_{0|1}} \le P(Y = 1|\boldsymbol{x}) \tag{9}$$

where $\tau \in [0, 1]$ is the optimal decision threshold.

Frequentist vs Bayesian decision theory

- Bayesian decision theory:
 - Probabilities of outcomes
 - Utilities of outcomes
 - Expected Utility Principle
- Classical decision theory:
 - Neyman-Pearson
 - "Hippocratic Oath"(?)

reported	Ref.:0	Ref.1
0	C _{0 0}	$C_{0 1}$
1	C _{1 0}	$C_{1 1}$

repo rted	Ref.:	Ref.1
0	TN	FN
1	FP	TP

reported	Ref.0/null	Ref.:1
0		Type II
1	Type I ("false rejection")	

Utilities

Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities: compare a given state A to a standard lottery L_p that has "best possible prize" u_{\perp} with probability p "worst possible catastrophe" u_{\perp} with probability (1-p) adjust lottery probability p until $A \sim L_p$

Utility of money

Money does not behave as a utility function

Given a lottery L with expected monetary value EMV(L), usually U(L) < U(EMV(L)), i.e., people are risk-averse

Utility curve: for what probability p am I indifferent between a prize x and a lottery [p, \$M; (1-p), \$0] for large M?

Typical empirical data, extrapolated with risk-prone behavior:

Decision networks

Add action nodes and utility nodes to belief networks to enable rational decision making

Algorithm:

For each value of action node compute expected value of utility node given action, evidence Return MEU action

Extensions

- Bayesian learning
 - Predictive inference
 - Parametric inference
- Value of further information
- Sequential decisions
 - Optimal stopping (secretary problem)
 - Multiarmed bandit problem
 - Markov decision problem
 - **–**

Sensitivity of the inference

Value of (perfect) information: Vo(P)I

Current evidence E, current best action α Possible action outcomes S_i , potential new evidence E_j

$$EU(\alpha|E) = \max_{a} \sum_{i} U(S_i) P(S_i|E, a)$$

Suppose we knew $E_j = e_{jk}$, then we would choose $\alpha_{e_{jk}}$ s.t.

$$EU(\alpha_{e_{jk}}|E, E_j = e_{jk}) = \max_a \sum_i U(S_i) P(S_i|E, a, E_j = e_{jk})$$

 E_j is a random variable whose value is currently unknown \Rightarrow must compute expected gain over all possible values:

$$VPI_E(E_j) = \left(\sum_k P(E_j = e_{jk}|E)EU(\alpha_{e_{jk}}|E, E_j = e_{jk})\right) - EU(\alpha|E)$$

(VPI = value of perfect information)

Properties of VoPI

Nonnegative—in expectation, not post hoc

$$\forall j, E \ VPI_E(E_j) \geq 0$$

Nonadditive—consider, e.g., obtaining E_i twice

$$VPI_E(E_j, E_k) \neq VPI_E(E_j) + VPI_E(E_k)$$

Order-independent

$$VPI_E(E_j, E_k) = VPI_E(E_j) + VPI_{E, E_j}(E_k) = VPI_E(E_k) + VPI_{E, E_k}(E_j)$$

Note: when more than one piece of evidence can be gathered, maximizing VPI for each to select one is not always optimal

 \Rightarrow evidence-gathering becomes a sequential decision problem

Example: preoperative diagnosis (evidence-based medicine)

reported	Ref.:0	Ref.1
0	C _{0 0}	$C_{0 1}$
1	$C_{1 0}$	$C_{1 1}$

Assume

- Correct decision has no penalty: $C_{0|0} = C_{1|1} = 0$
- FalsePositive decision causes a modest loss: $C_{1|0}$ =10000\$
- FalseNegative decision causes a heavy loss: $C_{0|1}$ =90000\$
- If our belief is p(Y=1|X=x)=p, then
 - Expected loss of decision 0 is pC_{0|1}
 - Expected loss of decision 1 is (1-p) $C_{1|0}$
 - → Decision 1 is optimal if its loss is smaller: $pC_{0|1} > (1-p) C_{1|0}$ then $p > C_{1|0}/(C_{0|1}+C_{1|0})$, i.e. if p > 0.1

Example: personalized treatment

reported	Ref.:0	Ref.1
0	0	$C_{0 1}$
1	C _{1 0}	0

- Assume that genetic test t
 - has cost C₁
 - two outcomes t_0 , t_1 with probability $p(t_1)=q$
 - can be used in treatment selection $p(Y=1|X=x, t_i)=p_i$
- The value of the test is: EL ((1-q)EL₀+ qEL₁)
 - Expected loss without the test is: $EL=min(pC_{0|1},(1-p)C_{1|0})$
 - Expected loss with the test is $(1-q)EL_0+qEL_1$
 - t_0 : $EL_0 = min(p_0C_{0|1}, (1-p_0)C_{1|0})$
 - t_1 : $EL_1 = min(p_1C_{0|1}, (1-p_1) C_{1|0})$
 - \rightarrow If EL₀*EL, then (1-q)EL₀+ qEL₁-EL \approx q(EL₁-EL), e.g. q(p-p₁)C_{0|1}

Example: home-care

Risk models

- Multivariate methods
 - Linear models $Y = \sum_{i=0}^{n} \beta_i I_j x_i$
 - Logistic regression, decision trees, kernel methods,...

```
Logistic regression (LR): P(y|\underline{x}) = \sigma[\sum_{i=0}^n (\beta_i x_i + \sum_{j=1}^n (\beta_{i,j} x_i x_j + \ldots)))], Multilayer perceptron (MLPs): f(\underline{x},\underline{\omega}) = \sigma[\sum_{i=1}^L (\omega_i \; \tanh[\sum_{j=1}^{|\underline{X}|} (\omega_{ij} x_j + \omega_{i0})])], Naive Bayesian networks (N-BNs): p(y,x_1,\ldots,x_n|\underline{\theta}) = p(y)\prod_{i=1}^n p(x_i|y), Bayesian networks (BNs): p(x_1,\ldots,x_n|\underline{\theta},G) = \prod_{i=1}^n p(x_i|\operatorname{pa}(X_i,G)).
```

Logistic regression

Recall: NaiveBN!

Assume binary outcomes y, \bar{y} and predictors x_i, \bar{x}_i . Logistic regression without interactions can be defined by the odds ratios for the predictors $x_i, i = 1, ..., n$ and the bias Ψ_0 ($x_0 \triangleq 1$):

$$\Psi_i = \frac{P(y|x_i)P(\bar{y}|\bar{x}_i)}{P(\bar{y}|x_i)P(y|\bar{x}_i)} \triangleq \exp^{\beta_i}, \Psi_0 = \prod_{i=0}^n \frac{P(y|\bar{x}_i)}{P(\bar{y}|\bar{x}_i)} \triangleq \exp^{\beta_0}.$$

The odds $P(y|x)/P(\bar{y}|x)$ for a given x is defined as

$$P(y|\mathbf{x})/P(\bar{y}|\mathbf{x}) = \prod_{i=0}^{n} \Psi_i^{x_i}$$
(18)

$$\log(P(y|\boldsymbol{x})/P(\bar{y}|\boldsymbol{x})) = \sum_{i=0}^{n} \beta_i x_i$$
(19)

$$P(y|\mathbf{x}) = \sigma(\sum_{i=0}^{n} \beta_i x_i), \tag{20}$$

where $\sigma()$ is the logistic sigmoid function $\sigma(x) = 1/(1 + e^{-x})$.

$$P(y|x) = \sigma[\sum_{i=0}^{n} (\beta_i x_i + \sum_{j=1}^{n} (\beta_{i,j} x_i x_j + \sum_{k=1}^{n} (\beta_{i,j,k} x_i x_j x_k + \ldots)))],$$

Decision trees, decision graphs

Decision tree: Each internal node represent a (univariate) test, the leafs contains the conditional probabilities given the values along the path.

Decision graph: If conditions are equivalent, then subtrees can be merged.

E.g. If (Bleeding=absent,Onset=late) ~ (Bleeding=weak,Regularity=irreg)

Characterizing a decision function

Goal: selection of a decision function $g: \mathbb{R}^d \to 0, 1$.

Sensitivity: p(Prediction=TRUE|Ref=TRUE)
Specificity: p(Prediction=FALSE|Ref=FALSE)

PPV: p(Ref=TRUE|Prediction=TRUE)
NPV: p(Ref=FALSE|Prediction=FALSE)

independent from p(Ref), e.g. from disease prevalence!

If decision function g is defined by a scalar function $f(x): R^d \to R$ and threshold t that f(x): 0, if g(x) < t, 1 otherwise, then we can compute the Area Under the Receiver Operating Characteristics Curve (ROC,AUC). AUC is the probability that two random samples from class 0 and 1 is correctly classified.

Summary

- Decision support
 - Markov blanket
 - Utility
 - Optimal decision
 - Sequential decision
 - Optimal stopping
 - Value of information
 - Risk models
 - Measuring the quality of a decision function