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Overview

1. The types and nature of high-throughput molecular biological data

2. Descriptive, visual, statistical and causal data analysis

3. Distance, correlation, association, similarity

4. Dimensionality reduction

(a) Distance preservation mappings: multidimensional scaling

(b) Topology preservation mappings: self-organizing maps

(c) Factor/variance preservation mappings

5. Clustering

(a) Types: partitioning (parametric, non-parametric), hierarchical

(b) Parametric partitioning (density-based) clustering

(c) Non-parametric partitioning clustering

(d) Hierarchical clustering: error functions, methods

(e) Evaluation (external, internal) and fusion (early, mid, late)

(f) Extensions: asymmetric, rejection,bi-clustering, proximity-based,etc
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The knowledge- and data-rich biomedicine

High-throughput measuring methods at genomic, proteomic, metabolic level ⇒

1. sequencing robots:genome sequences,

2. gene chips: gene expression data (mRNA),

3. protein chips: protein-protein interaction,

Types of data: (consensus) sequence, expression, interaction, (protein) structure, (protein)
location, sequence variations (SNPs), . . . (recall: Collins: A vision for the future of the
genomics research)
Nature of biomedical data (analysis):

1. high-dimensional,

2. noisy,

3. unexplored,

4. embedded in rich qualitative knowledge,

5. multilevel/structured, distributed,

6. for biologists (direct probabilistic, qualitive/graphical inferences) and clinicians (validity,
ethical issues, practicality)
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Types of data analysis

Assume a ”preprocessed"a gene expression (GE) data set Dn about the objective expressed
quantity of 103 genes containing 103 samples under 10 different conditions without and with
knocking-out/silencing 9 genes separately. Data preprocessing and particularly GE
preprocessing is an art, we focus on the more general
Questions and types (phases?) of data analysis (descriptive, visual, statistical and causal ):

1. Descriptive statistics of the data set, e.g. means, variances, histograms,
univariate/multivariate/joint, etc.

2. Visualization in lower dimensions with preserving distance, topology, factors, variance

3. Visualization by graphs (with weighted edges), by trees (with hierarchy), by partitions
(clusters)

4. Statistical inference of (in)dependency models for each condition and intervention

5. Inference of causal model

a
Instead of the specific GE preprocessing, here we focus on the general issues of data analysis
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Bayesian data analysis

Bayes statistical framework for statistical and causal data analysis, because biomedical data
(analysis) is

1. high-dimensional ⇒ relative scarcity of data w.r.t. model complexity,

2. noisy ⇒ robustness by model averaging,

3. unexplored ⇒ large model classes without overfitting,

4. embedded in rich qualitative knowledge ⇒ priors,

5. multilevel/structured, distributed ⇒ normative fusion,

6. for biologists ⇒ direct probabilistic statements

7. for clinicians ⇒ own subjective priors, credibility, Bayes factor
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Distances, associations, similarities I.

Dot/scalar product of vectors a,b is

a · b = a
T
b =

n∑

i=1

aibi

It is the standard inner product for Euclidean space, denoted by 〈a,a〉). The norm ‖a‖ in
such space is defined as

√

〈a,a〉. It defines the Euclidean metric (distance) d(a,b) as

d(a,b) = ‖a − b‖ =

(
n∑

i=1

|ai − bi|
p

) 1
p

with p = 2.
Using the geometric interpretation a ”similarity" s(a,b) called cosine metric can be defined
also as

s(a,b) = cos θ =
〈a,b〉

‖a‖ ‖b‖
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Distances, associations, similarities II.

The correlation of random variables X, Y is defined as

ρX,Y =
cov(X, Y )

√

var(X)
√

var(X)
=

E(XY ) − E(X)E(Y )
√

E(X2) − E2(X)
√

E(Y 2) − E2(Y )
.

Its estimator from sample is the Pearson correlation coefficient

rxy =

∑
(xi − x̄)(yi − ȳ)

(n − 1)sxsy

, where sx =

√
√
√
√ 1

N − 1

N∑

i=1

(xi − x)2,

which is equivalent to the cosine metric if the data is mean-centered.
Note that uncorrelated variables can be dependent in general (but e.g. not in normal
distribution).
The (passive observational) dependency of (discrete) random variables X, Y is better
represented by the mutual information

MI(X, Y ) = KL(p(X, Y ‖p(X)p(Y ))) =
∑

x,y

p(x, y) log(
p(x, y)

p(x)p(y)
)

Note that dependency, or specifically ”correlation does not imply causation".
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Distances, associations, similarities III.

The Spearman’s rank correlation coefficient can test any (not just linear) monotonic relation
of scores X, Y using their generated rankings of N objects rX

i , rY
i . It is defined as

ρ = 1 −
6
∑

i(r
X
i − rY

i )2

N(N2 − 1)
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Distance preservation mappings

Multidimensional scaling: hidden dimensions
Idea: map data points xi ∈ Rn to yi ∈ Rm m < n preserving the original distances
d(xi, xj = dij), as much as possible. E.g. by minimizing this distortion/error function
(Sammon’s mapping)

E =
1

∑

i

∑

j>i dij

∑

i

∑

j>i

(dij − ‖yi − yj‖)
2

dij

;

(A symmetric, positive matrix D with 0 diagonal representing distances of n objects can be
exactly represented in Rm, iff HAH is positive semidefinite with rank less than m, where
H = . . . , A = . . .. The exact solution can be found as . . . )
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Topology preservation mappings

Idea: crumpled thread, paper in 3D
Self-Organizing Maps (SOMs): The SOM defines a mapping from high dimensional input
data space onto a regular two-dimensional array of neurons. Every neuron i of the map is
associated with an n-dimensional reference vector, where n denotes the dimension of the
input vectors. The reference vectors together form a codebook. The neurons of the map are
connected to adjacent neurons by a neighbourhood relation, which dictates the topology, or
the structure, of the map. Adjacent neurons belong to the neighbourhood Ni of the neuron i.
The number of neurons determines the granularity of the mapping.
In the learning process of the SOM sample vectors are randomly drawn from the input data
set and the closest codebook vector and its neighbours are drifted towards it (by using
similarity or distance, e.g. the common Euclidean distance measure).
Standard application: mapping high dimensional irregular data to a low dimensional regular
grid
A reversed application (eg finding layout for graphs): mapping an irregular topology to
regular data
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Factor/variance preservation mappings

Factor analysis is a statistical technique used to explain variability among observed random
variables in terms of fewer unobserved random variables called factors. The observed
variables are modeled as linear combinations of the factors, plus "error" terms.
Principal components analysis (PCA) is a technique for simplifying a dataset, by reducing
multidimensional datasets to lower dimensions for analysis.PCA is a linear transformation
that transforms the data to a new coordinate system such that the greatest variance by any
projection of the data comes to lie on the first coordinate (called the first principal
component), the second greatest variance on the second coordinate, and so on. PCA has
the distinction of being the optimal linear transformation for keeping the subspace that has
largest variance.
Assuming that the empirical mean of the distribution has been subtracted from the data set
X, the Karhunen-Loève transform is defined by the eigenvectors W of the matrix of observed
covariances

C = XX
T = WΣ

2
W

T ,

where the matrix Σ is n-by-n with the nonnegative eigenvalues on the diagonal and zeros off
the diagonal.
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Clustering

Dividing objects into hierarchical vs non-hierarchical, non-overlapping sets by minimizing an
error function expressing coherence and distance preservation.

1. Types: partitioning (parametric, non-parametric), hierarchical

(a) Parametric partitioning (density-based) clustering

(b) Non-parametric partitioning clustering

(c) Hierarchical clustering

2. Evaluation (external, internal) and fusion (early, mid, late)

3. Extensions: asymmetric ”distance", sample rejection, overlapping clusters, bi-clusters,
proximity-based,etc
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Parametric partitioning clustering

Parametric (density-based) clustering (unsuperwised learning).
Assume a Naive Bayesian network model with

1. discrete random variable Y as root, features X = {X1, . . . , XN} X1,

2. conditional distribution and prior from a given parametric family (i.e. for the number of
values of Y!)

3. incomplete observation DX
n = {X(1), . . . , X(n), } (i.e. with unknown/hidden/missing

label Y ).

Goal: reconstruction of the missing labels DY
n = {Y (1), . . . , Y (n), }

Solution: posterior for the labels by Bayesian model averaging (AutoClass), MAP model
reconstruction => labeling
Solution’: MAP model reconstruction and Bayes decision for labeling
Solution” (unsuperwised learning): missing data management: imputation, iterative
imputation, k-means, ML parameter estimation with EM or MCMC with Gibbs sampling
Note the possibility of a generative/causal interpretation.
Drawbacks: parametric, number of clusters
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”Non-parametric" partitioning clustering

The K-means algorithm clusters objects into k partitions by minimizing the total intra-cluster
variance, or, the squared error function.

E =
K∑

i=1

∑

j∈Si

|xj − µi|
2

where µi are the means for the clusters. It is a variant of the EM algorithm in which the goal
is to determine the k means of data generated from gaussian distributions. It

Require: feature data set DX
n , number of clusters K

Ensure: K cluster means
Ini: random or prior based selection of means µk

repeat
Label feature samples by the index of the closest cluster
Reestimate means

until NoChange, or NoImprovement(Et+1,Et,t)

Advantages: ”satisficing" in practice (fast&good enough)
Drawbacks: number of clusters, local optimum, superpolynomial time - 2Ω(

√
n) - to converge

in the worst case,
Improvement: k-medoids (using samples as cluster centers instead of means)Descriptive and visual modeling of expression data – p. 14/23



Criterion functions for clustering I.

The sum-of-squared-error criterion

E =

|C|
∑

i=1

Ei where Ei =
∑

x∈Ci

‖x − µi‖
2 and µi =

1

|Ci|

∑

x∈Ci

x

because of the Euclidean distance over x ∈ Rd (using x(i), x(j), x(k) ∈ Ci)

Ei =
∑

x(k)∈Ci

d∑

l=1

[x
(k)
l

−
1

|Ci|

∑

x(j)∈Ci

x
(j)
l

]2 =
1

|C2
i |

∑

x(k)∈Ci

d∑

l=1

[
∑

x(j)∈Ci

(x
(k)
l

− x
(j)
l

)]2

=
1

|C2
i |

∑

x(k)

d∑

l=1

∑

x(j)

j 6=k

(x
(k)
l

− x
(j)
l

)2 +
1

|C2
i |

∑

x(k)

d∑

l=1

∑

x(j)

j 6=k

∑

x(i)

i6=j,k

(x
(k)
l

− x
(j)
l

)(x
(k)
l

− x
(i)
l

)

for each l, |C2
i |Ei = 2

∑

m6=n(x(m)2 − x(m)x(n)) + (|Ci| − 2)
∑

m6=n(x(m)2 − x(m)x(n)),

i.e. we can express Ei using only the first term. By noting that this term is ‖x(k) − x(j)‖2,
we can rewrite E as
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Criterion functions for clustering II.

E =

|C|
∑

i=1

1

2|Ci|

∑

x(k),x(j)∈Ci

‖x(k) − x(j)‖2

(As can be expected as the first expression measures the spread of the cluster linearly in
|Ci|s and counting each sample once, whereas the second is quadratic in |Ci|s and counts
each pair twice.)
This suggests the generalization of the error for non-metric s(x, x′) as

E =

|C|
∑

i=1

1

2|Ci|

∑

x(k),x(j)∈Ci

s(x(k), x(j))
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Criterion functions for clustering III.

This pairwise formulation of the error function allows the separation of the inter/within- and
between/intracluster terms for a given clustering

∑

x(k),x(j)

s(x(k), x(j)) =

intracluster
︷ ︸︸ ︷
∑

k,j

s(x(k), x(j))1(x
(k)∈Ck,x(j)∈Cj ,j 6=k) +

intercluster
︷ ︸︸ ︷
∑

k,j

s(x(k), x(j))1(x
(k),x(j)∈Cj) .

These terms can be expressed also using the means as the former E and the
∑|C|

i=1 ‖µ − µi‖
2, where µ is the overall mean and their complementarity can be proved (i.e.

analogue roles of the minimization of the within-cluster and the maximization of the
within-cluster terms).
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Hierarchical clustering

Problem: |C| =?
Idea: construct clusterings of n samples for |C| = 1, . . . , n (called at level n − 1, . . . , 0)
Refinement: require embedded clusterings (i.e. x, x′ ∈ Ci at level k, then x, x′ ∈ Cj at level
k > k′) ⇒ hierarchical clustering (HC).
A representation for a HC is the HC tree or dendrogram, which is a binary tree with internal
nodes at the height of the similarity of their joined clusters i,j.
FIGURE
Definitions of similarity/distance of pair of clusters:

dmin(Ci, Cj) = min
x∈Ci

x′∈Cj

‖x − x′‖, dmax(Ci, Cj) = max
x∈Ci

x′∈Cj

‖x − x′‖

davg(Ci, Cj) =
1

|Ci||Cj |

∑

x∈Ci

∑

x′∈Cj

‖x − x′‖, dmean(Ci, Cj) = ‖µi − µj‖
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Hierarchical clustering: methods

Methods: agglomerative/divisive

Require: pairwise distances
Ensure: topology and labelling

Ini: Define a cluster Ci and leaf at height 0 in tree T for each sequence i
for i=1 to L-1 do

Select pair of clusters i,j with minimal dij

Define new cluster Ck = Ci ∪ Cj

Define a new node in T to be the parent of i and j at height dij

Remove Ci, Cj from set of clusters and insert Ck

End: Insert root for the final two clusters i,j at height dij

Optimal cluster number: analyzing the decrease of similarity by the merge
The usage of dmin and the insertion of an edge between nodes/samples i,j in case of their
merge in the AC method, gives a minimum length (weight) spanning tree. It is called the
single-linkage algorithm, if it is stopped before the distance exceeds a threshold.
The usage of dmax and the insertion of all the edges between samples in the merged
clusters in the AC method, gives cliques for the clusters. It is called the complete-linkage
algorithm, if it is stopped before the distance exceeds a threshold.
Note that d′(x, x′) = minl x, x′ ∈ Cl

i (the minimum level where they are co-members)
induces a distance from a non-metric d(x, x′), which is also ultrametric.Descriptive and visual modeling of expression data – p. 19/23



Evaluation: internal measures

Evaluation may use internal or external measures (i.e. with/without references,gold
standard).
Silhouette coefficient (external) characterize the ratio between cluster coherence
(intracluster distance) and cluster separation (intercluster distance). The Silhouette value for
each element i in cluster k is

scik =
b(i) − a(i)

max(a(i), b(i))

where a(i) is the average dissimilarity of member i to all other members of its cluster and b(i)
the dissimilarity of member i to the nearest member of the nearest cluster. With nk the size
of cluster k and n the total number of objects, the Silhouette coefficient per cluster SCk and
the overall Silhouette coefficient SC (with values between -1 and 1) are defined as

SCk =
1

nk

nk∑

i=1

scik, SC =
1

n

∑

k

SCk
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Evaluation: external measures

Given a data Dn and their clustering C, let define an nxn adjacency matrix M as
Mij = 1(∃Ck ∈ C : x(i), x(j) ∈ Ck). For two clustering calC, calC′ let N00,N10,N01,N1

denote the respective counts of elementary pairs in the induced M, M ′.
The Jaccard coefficient is defined as

J(C, C′) =
N11

N11 + N10 + N01
,

which ignores the false negative errors. The more balanced rand index is given as

R(C, C′) =
N11 + N00

N11 + N10 + N01 + N00
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Fusion

Phases for fusion from multiple sources: early, mid, late

1. Early: The combination of the raw data (i.e. distance/dissimilarity function)

2. Mid: The combination of the distance/dissimilarity matrices

3. Late: The combination of the clustering tree
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Extensions

1. asymmetric ”distance"

2. sample rejection

3. overlapping clusters

4. bi-clusters,

5. proximity-based
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