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Overview

The data-intensive age
What is data analysis (i.e. inductive inference)?
What is intelligence?
Aspects of learning:
— Neuronal : neurobiological adaptation

— Individual: psychological development of a child, researcher
— Social: scientific discovery

A normative theory for inductive inference.
Types of data
Types of inference
Current challenges
— Fusion
— Active learning

— Transformational learning
— Deep learning..



The data-intensive science

e Data analysis and knowledge fusion is more
important than simulation of ,,simple” laws.

e 20th century: Physics vs. 21st century: Biology.

— Tony Hey, Stewart Tansley, and Kristin Tolle: The
fourth paradigm (Data-Intensive Scientific
Discovery), http://research.microsoft.com/en-
us/collaboration/fourthparadigm/, 2009

— Gordon Bell, Tony Hey, Alex Szalay: Beyond the
Data Deluge, Science, 323, pp 1297-1298, 2009



Data accumulation vs interpretation

,New data--whole new types of data--are accumulating faster than
researchers can make sense of them. The result is something like an
optical illusion. Contradictory images [of Mars] seem to flicker in
and out of focus in the mind's eye.” Hugh Keiffer

In many fields:

— Astronomy (Hubble)

— Nuclear physics (LHC)

— Biology (omics)

— Chemistry (drug research)

— Medicine (electronic patient records)

— Ecosystems (climate change, pollution, weather forecast)

— Social relations (Google ;-), security)

— Economics (financial systems)

— IT (server farms!!)



Moore’s Law (in computation)
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1965, Gordon Moore, founder of Intel:
,The number of transistors that can be
placed inexpensively on an integrated
circuit doubles approximately every two
years ”... "for at least ten years"
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Carlson’s law |.

Productivity Improvements in

DNA Synthesis and Sequencing

(as of October, 2002)
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On this semi-log plot, DNA
synthesis and sequencing
productivity are both
increasing at least as fast as
Moore’s Law  (upwards
triangles). Each of the
remaining points is the
amount of DNA that can be
processed by one person
running multiple machines
for one eight hour day,
defined by the time
required for preprocessing
and sample handling on
each instrument.

Rob Carlson: The Pace and
Proliferation of Biological
Technologies,KurzweilAl.net
March 4, 2004

http://www.kurzweilai.net/t
he-pace-and-proliferation-
of-biological-technologies-2




Carlson’s law II.

Estimated Time to Protein Structure

(Isolation/production, crystallization, The dramatic improvement in the
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time required to determine
protein structures is evidence of a
general trend towards increased
productivity in biological
technologies. Many of the
technologies used in finding
protein  structures are wused
widely in biology for other
purposes. Raw estimates of time
to collect and  crystallize
recombinant proteins, to take x-
ray data, and to build structural
models were compiled by Richard
Yu (The Molecular Sciences
Institute, Berkeley, CA) based on
his experience and a survey of
five additional crystallographers.

Rob Carlson: The Pace and
Proliferation of Biological
Technologies,KurzweilAl.net
March 4, 2004



Carlson’s law IlI.
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Rough estimates of the cost of
synthesis and raw sequencing per
base. Only very limited data are
available. Estimates of synthesis
costs are from John Mulligan,
Blue Heron Biotechnology.
Historical costs of sequencing are
generally not available in the
literature, have not been
publicized by federally funded
Genome Centers, and are, in
general, surprisingly hard to come
by:44(1) from Lander et al.;6 (2)
from Dan Rokhsar, UC Berkeley;
(3) approximate current
commercial rate.

Rob Carlson: The Pace and
Proliferation of Biological
Technologies,KurzweilAl.net
March 4, 2004



Moore’s Law for Data Explosion

NATURE, Vol 464, April 2010 | It
| e B
Sequencing EXPLOSION mw« ::
costs per mill. HlSey S
base
Publicly

available /
genetic data
* X10 every 2-3 years

» Data volumes and
complexity that IT has
never faced before...
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Rules in data-age

Being close to data (e.g. clouds),
fusion of heterogeneous information sources,

incorporation of prior knowledge,

(i.e. earlier data and earlier computation)
averaging over complex, structured models,
parallel, scalable methods,

distributed, open, community-based methods

are more important than the refined analysis of a single
information source using a single method for a single
researcher.



Challenges
I

Astronomy (Hubble)
Nuclear physics (LHC)
Biology (omics)

Chemistry (drug research)

Medicine (electronic patient
records, @home!)

Ecosystems (climate change,
pollution, weather forecast)

Social relations (Google ;-),
security)

Economics (financial systems, web,
blogs,...)



Challenges related to mankind

* Prediction, intervention at all level of humanity
— Macromolecular
— Cell
— Organs

— Individual
e Body: health industry

e Psychological:
— scientific: external memories
— commercial recommendation systems

— Society

* Economy



Data analysis = inductive inference

Dat II . L .
. R Query (partial observation-intervention)
J Literature @ @

E:> Human |:> Inference about the world/domain.

+ expert
E:> |:> Optimal action.
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Vision: the fusion dream

Biomedical knowledge Omic data

High-performance, high-througput computation



A personal learning curve in induction

* Cognitive science: nature of expertise

— Schemes, .., qguantum computing :D

* Philosophy of science

— Objective knowledge, .., paradigms

* Neurobiology: learning in neural networks

— ART, case-based reasoning

e Cognitive psychology: development of a child
— ACT-R, creativity,..

e Stastistical learnability

* |nference, causal inference

 Bioinformatics



Intelligent (inductive) inference
(Intelligent data analysis)

Think like a human (data analyst?, child?) | Think rationally.

Act like a human. Act rationally.

* Today the main bottleneck is fusion.
* Fusion of human experts cannot be imitated.

* =» rational bases is necessary for data and
knowledge representation to support
,limitless” fusion.




Rational bases for induction

Ockham’s razor: as a scientific principle.

D.Hume: A the treatise of human nature: induction
is logically impossible, both statistical and causal.
Frequentist:

— there is an unknown, fix world..

— Fisher, Pearson: the hypothesis testing framework

— K.R.Popper: falzification as a scientific paradigm

— V.Vapnik: sharp(?) bounds for finite samples
Subjectivist (Bayes,..):

— Box: ,,all models are wrong, but some are useful”



Model complexity
- Ockham razor

Construct/adjust / to agree with f on training set
(% is consistent if it agrees with f on all examples)

E.g., curve fitting:
Jx)

Ockham'’s razor: maximize a combination of consistency and simplicity



Foundation for induction:
Probability theory?

,Probability theory= measure theory+independence”
(,a computer is a tensor”)

e Joint distribution

* Conditional probability

* |Independence, conditional independence

e Bayes rule

* Marginalization/Expansion

 Chainrule

* Expectation, variance

* |Independence map, decomposition....



Interpretation of probability

Axioms in probability theory are the same (Kolmogorov)
Sources of uncertainty

— inherent uncertainty in the physical process;

— inherent uncertainty at macroscopic level,

— ignhorance;
— practical omissions;
Interpretations of probabilities: N
— combinatoric; hm—A = hm py(A)=p(A)? p(Al &)
— physical propensities; Noe IV N—>o0

— frequentist;
— personal/subjectivist;
— instrumentalist;
The three ,as if” theorems:
— Uncertainty by probabilities
— Preferences by utility function
— Optimal action by maximum expected utility principle

Note: independence and convergence of frequencies are empirical
observations (i.e., ,laws of large numbers” consequences of independencies)



On the uniqueness of probability theory I.

* Bayesian framework for induction: we start with hypothesis space and
wish to express relative preferences in terms of background
information (the Cox-Jaynes axioms).

* Axiom 0: Transitivity of preferences.
* Theorem 1: Preferences can be represented by a real number  (A).
* Axiom 1: There exists a function f such that

m(non A) =f{m(A))
*  Axiom 2: There exists a function F such that

T (A.B)=F(n(A). n(B|A))

» Theorem?2: There is always a rescaling w such that p(A)=w(n(A)) is
in [0.1]. and satisfies the sum and product rules.



Probability theory Il.

* Sum Rule:
P(non A)=1- P(A)

* Product Rule:

P(A and B)=P(A) P(BIA)
* BavesTheorem:

P(B|A)=P(AB)P(B)/P(A)

* Induction Form:

P(M|D) = P(DIM)P(M)/P(D)

Recall: utility theory!



From probability theory to decision
theory: preferences

An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations
with uncertain prizes

Lottery L = [p, A; (1 — p), B] I-p

Notation:
A-B A preferred to B
A~ B indifference between A and B
AZ B B not preferred to A



Rational preferences

|dea: preferences of a rational agent must obey constraints.
Rational preferences —-

behavior describable as maximization of expected utility

Constraints:
Orderability
(A>-B)v(B>=A)V(A~ B)
Transitivity
(A-B)A(B>=C) = (A»C)
Continuity
A-B+~C = dp pA; 1—p,C]~ B
Substitutability
A~B = [p,4 1-p,Cl~[p,B;1-p,C]
Monotonicity
A-B = (p>q & [p,A; 1-p,B]<[q,A; 1 —q, B




Utility, Maximum expected utility

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
Given preferences satisfying the constraints
there exists a real-valued function [ such that

UA)>UB) & AXB
U(lpy, S1; - ; PnySal) = 23 piU(S;)

MEU principle:

Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tictactoe



Milestones of the subjective approach

[1713] Ars Conjectandi (The Art of Conjecture), Jacob Bernoulli
— Subjectivist interpretation of probabilities
[1718] The Doctrine of Chances, Abraham de Moivre
— the first textbook on probability theory
— Forward predictions
* ..whatis the probability of drawing a black ball?”
* Predicted his own death
[1764, posthumous] Essay Towards Solving a Problem in the Doctrine of Chances, Thomas Bayes
— Backward questions: , given that one or more balls has been drawn, what can be said about the urn”
[1812], Théorie analytique des probabilités, Pierre-Simon Laplace
— General Bayes rule
[1921]: Correlation and causation, S. Wright’s diagrams
-1950 Frequentist statistics
— Ronald A. Fisher (J. Neyman and E. Pearson)
[1937], "La prévision: ses lois logiques, ses sources subjectives”, B. de Finetti
— Exchangeability (instead of independency)
[1939] "Theory of probability,,, Harold Jeffreys
1950-: ,,Bayesian” statistics (as opposed to the ,frequentist” school
— |.J. Good, B.O. Koopman, Howard Raiffa, Robert Schlaifer and Alan Turing
[1979] Conditional Independence in Statistical Theory, A.P. Dawid
— Axiomatization of indepencies in multivariate distributions
[1982] The decomposition of a multivariate distribution, S.Lauritzen
[1988] Bayesian networks, J.Pearl
— Representation of independencies



The hypothesis testing framework

Terminology:
— False/true x positive/negative
— Null hypothesis: independence

reported | Ref.:0/N |Ref.1/P
0/N TN FN
1/P FP TP

— Type | error/error of the first kind/a error/FP: p(—H,|H,)

* Specificity: p(H,|H,) =1-a
 Significance: a

e p-value: , probability of more extreme observations in repeated experiments”

— Type Il error/error of the second kind/B error/FN: p(H,| — H,) :

* Power or sensitivity: p(—H,| —H,) = 1-B

reported Ref. H, Ref.:—H,
H, Type I1
—H, Type 1

(,false rejection”)




Bayes rule, Bayesianism
,all models are wrong, but some are usefu

I"

p(Y' 1 X)p(X)

X1Y)=
p( ) )

A scientific research paradigm

p(Model| Data) < p(Datal Model) p(Model)

A practical method for inverting causal knowledge to diagnostic tool.

p(Cause | Effect) < p(Effect | Cause) X p(Cause)



Frequentist vs Bayesian prediction

In the frequentist approach: Model identification (selection) is necessary

p(prediction| data) = p(prediction| BestModel(data))

In the Bayesian approach models are weighted

p(prediction | data) = Z p(pred.l Model,) p(Model, | data)

Note: in the Bayesian approach there is no need for model selection



Decision theory
probability theory+utility theory

e Decision situation:

— Actions a;
— QOutcomes OJ'
— Probabilities of outcomes p(Oj | ai)

— Utilities/losses of outcomes
U(o;la;)

— Maximum Expected Utility
Principle (MEU) EU(a;)= ZJ.U(OJ- lai)p(Oj la;)

— Best action is the one with

maximum expected utility a* = argmax. EU(Cll)

Actions g, Outcomes Probabilities  Utilities, costs  Expected utilities

©< P(o;|a;) U(o)), C(a) } EU(a) = > P(ojla)U(o))
D a . : .
(oh

J



Frequentist vs Bayesian statistics

Frequentist Bayesian

- Prior probabilities

Null hypothesis -

Indirect: proving by refutation Direct

Model selection Model averaging
Likelihood ratio test Bayes factor
p-value -1

-1 Posterior probabilities

Confidence interval Credible region

Significance level Optimal decision based on Exp.Util.
Multiple testing problem Remains, so @ complex model
Model complexity dilemma Best achievable alternative
hard to combine p/qg-values Posteriors induce further

distributions




Data analysis=inductive inference

a D)
or
J o E:> |:> Optimal action
(reporting, publishing,.., surgery).
|:> Inference about the world/domain.



Types of Machine Learning
(i.e. types of data-model-inference)

e unsupervised
e Semi-supervised (reinforcement, 1class)

e Supervised



Types of data

Observational/Experimental

Uncertainty? Noise?

Completeness

Discrete/Continuous

Single table/Relational/ContextFreeGrammar
Dimension?

Sample size (with respect to dimension)



Models

Abstraction level/granularity

Free text(?)
Semi-formal
Logical
Dependency
Causal
Parametric

Conditional vs domain models

Discrete vs continuous

Deterministic vs stochastic

Feedforward vs feedback



Types of inference

(Passive, observational) inference

P(Query|Observations, Observational data)

Interventionist inference

P(Query|Observations, Interventions)

Counterfactual inference

P(Query| Observations, Counterfactual conditionals)

Biomedical applications

Prevention

Screening

Diagnosis

Therapy selection

Therapy modification
Evaluation of therapic efficiance



Association graphs, (in)dependence maps,
causal networks, control systems
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Types of data and inference

inference\Data Observational Interventional
Observational OK OK
Interventional 297? OK
Counterfactual 292229 99

= Automated, tabula rasa causal inference from (passive) observation is
possible, i.e. hidden, confounding variables can be excluded




Learning step or learning process?

?

Learning step : - Learning process

Data ‘ Domain knowledge

\“/—]/ Integration

- : >
Learning algorithm .. Interpretation and evaluation o
) — “. Running the learning algorithm «
Result
\ ] Selection of learning r@;d «

/,
Feature selection <

Data engineering «

Understand{thev domain




Data analysis in practice

Text mining
Study design
Data engineering
Analysis
Interpretation

Application

Clinical Decision

\ Support
N,

Pathway Analysis

Text Mining

Adaptive
Study Design

Data Engineering

Statistical Analysis




Study design
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Length of phases




Forwards vs iterative process”?

Domain Iteration in learning

Integration Understanding the task
Evaluation : :
Data engineering
Interpretion @ .
P The Learning Phases
Running Feature selection (in ,,waterfall” model)
Selection of learning method :
Integration
—v
The Learning Step Interpretation and evaluation N
ot Domain knowledge Running the learning algfrvlthm —
Selection of learning method <
.
———— 7
Learning algorithm :> Feature selection <
/'
— Data engineering )
Result
{ ] Understanding thmnvain )




Bayesian positivism

e Positivism (19th century-)
— experience-based knowledge
e Logical positivism (1920-)

— L. Wittgenstein: all knowledge should be codifiable in a single standard
language of science + logic for inference

e Bayesian(-www) positivism
— Data are available in public repositories
— Scientific papers are available public repositories

— In a formal, single probabilistic representation the results of statistical
data analyses are available in KBs

— In a formal, single probabilistic representation models, hypotheses,
conclusions linked to data are available in KBs



Multiple levels in biomedicine

Environment

// Phenome
// Metabolome )

Proteome -

o~ Transcriptome’ - -l

Gfeﬁoﬁwe(s)’*




The interpretational bottleneck
(~the fusion challenge)

* Free text repositories (with significances): e.g. SNPedia
 Manually curated logical knowledge bases: Ingenuity



Fusion using very large scale probabilistic logic
KBs

- 4 — i5CO
Literature Text-mining ::> =

| Probabilistic knowledge bases and world-
Web-mining ::> wide web ) ~
Domain-specific
[ kno e
) . L'\ . .
Ja KB-1 Conversion, N Large-scc?le, Explanation -0)-
i general, generation - -
discovery d papare Suory _>
knowledge- answering @
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Inductive knov%
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< 3
.....

- multivariate Bayesian data analysis,

« the use of more powerful logic for representing knowledge,

« uncertainty management in knowledge representation, induction, and inference,
syntactic semantics: P(¢|KB) =) P(¢is provable| pKB,IKB)p(pKB)

pKB



“Ambient assisted” data analysis

 J.Lamb: CMap

* The ultimate objective of biomedical research is to connect human
diseases with the genes that underlie them and drugs that treat them. But
this remains a daunting task, and even the most inspired researchers still
have to resort to laborious screens of genetic or chemical libraries. What if
at least some parts of this screening process could be systematized and
centralized? And hits found and hypotheses generated with something
resembling an internet search engine? These are the questions the
Connectivity Map project set out to answer.

 http://www.altcancerweb.com/osteosarcoma/drug-design/connectivity-
map-nat-rev-cancer-2007.pdf

Our objective, therefore, is to keep all of the computation in the background
and provide a single analysis tool with no ‘knobs’ whatsoever; queries are
executed from our website in real-time with a single click.




Gene Prioritization (GP)

GP Problem: Prioritizing relevance of genes to a given set/phenomena.

G.expression Tr. regulation N. sequence Pathways P.sequence
~ \O
S 5 2 v \e U, S o \& %,
3 L = C 0 s 9 v, %
‘2 e s o 2 |3 SR
: v - 5\ a 2 )
v v @

\ y
Similarity of \ Fusion

» sequences, subsequences homology,
« transcription regulation (TFs, miRNA),
* phylogenic profile,

* CO-expression,

« homology, co-location, or common complex of products,
« taxonomic/semantic (Gene ontology),

* co-citation,

* role in pathway knowledge-bases.




Search engine in biomed?
(CMAP: mRNA as universal language?)

Diseases Genes Drugs

| | |

Genome-wide mRMNA-expression profiles

Figure 2 | A universal functional bioassay. As all of the transcripts are now known, and robust
technologies for their simultaneous measurement are available, it is possible to capture objective
high-dimensional depictions of all induced or organic biological conditions in a common global
analytical space, and thereby readily appreciate similarities between them.

e Justin Lamb: The Connectivity Map: a new tool for
biomedical research, Nature, 7,pp 54-60, 2007



Watson?
The Science Behind an Answer
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e http://www-
03.ibm.com/innovation/us/watson/what-is-
watson/science-behind-an-answer.htm|



Automated discovery systems

m Langley, P. (1978). Bacon: A general discovery system. Proceedings of the
Second Biennial Conference of the Canadian Society for Computational
Studies of Intelligence (pp. 173-180). Toronto, Ontario.

m Chrisman, L., Langley, P., & Bay, S. (2003). Incorporating biological
knowledge into evaluation of causal regulatory hypotheses. Proceedings of
the Pacific Symposium on Biocomputing (pp. 128-139). Lihue, Hawaii.

m (Gene prioritization...)
m R.D.King et al.: The Automation of Science, Science, 2009
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Lectures

Intro:
Data-rich science
bayesian dec theory as foundation
+causal inference

Learnability: consistency, no free lunch, sample complexity, VC dimension
Bayesian inference: basics

Hidden Markov Models: inference, parameter learning (EM)

Graphical models: Markov networks + Bayesian networks

Posterior over parameters of BNs

Posterior over structural features of BNs

Resampling techniques: bootstrap, permutation tests

Monte Carlo methods

Causal inference

Assocation and relevance analysis, the featre subset selection problem
Inductive Logic Programming, Bayes Logic Programming

Incomplete data

Clustering

Fusion: prior and posterior fusion, rank/order statistics/kernel-fusion
Outlier detection: low prob, opt dec, 1class

Case study: genetic association analysis: haplotypes, imputation, confounders, compliance, effect strength
Case study: systems biology based relevance analysis: BayesEye



