
Notation∗

List of symbols

x,x,x scalar, (column)vector or set, matrix
X, x, p(X) random variable X , value x, probability mass function/density of X
EX,p(X)[f(X)] expectation of f(X) w.r.t. p(X)
varp(X)[f(X)] variance of X w.r.t. p(X)
Ip(X |Z|Y ) observational conditional independence of X and Y given Z w.r.t. p
(X ⊥⊥ Y |Z)p Ip(X|Z|Y )

(X 6⊥⊥ Y |Z)p) ¬Ip(X |Z|Y )

CIp(X; Y |Z) interventional conditional independence of X and Y given Z w.r.t. p
≺ (partial) ordering
≺c a complete reference ordering of the domain variables
G, θ Bayesian network (BN) structure, BN parameters
G∼ essential graph of Directed Acyclic Graph (DAG) G

Ĝ≺
C(D) an optimal graph w.r.t. ordering ≺, data set D, and score/method C
G(n)/Gk(n) set of DAGs over n nodes/with maximum k parents
G≺ set of DAGs compatible with ordering ≺
∼ compatibility relation
pa(Xi, G) ∼≺ pa(Xi, G) parental set is compatible with ordering ≺
F,F , f feature function, its range, a feature value
F≺ set of values f compatible with ≺
Si(f,≺) the set of valid parental sets of Xi in feature f given ordering ≺
Ci(f,≺, pa) a clause expressing pa ∈ Si(f,≺)
MBp(Xi) a Markov Blanket of Xi in p
SMLP /S, ω Multilayer perceptron (MLP) structure, MLP parameters
pa, pa(Xi, G) set of parental variables, set of parents of Xi in G
paij the jth configuration of the values of the parents of Xi in an ordering
bd(Xi, G) set of parents, children and the children’s other parents of Xi in G
MBG(Xi, G) the Markov Blanket/Mechanism Boundary Graph of Xi in G
MB(Xi, G) Markov Blanket of Xi defined by bd(Xi, G) in p compatible with G
MBM(Xi, Xj , G) the binary Markov Blanket membership
n number of random variables
k maximum number of parents in DAGs

∗See also the remarks about style and notation in Section ??
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ii Notation

N number of observed samples
N+/N...,+,... the appropriate sum of Ni/N...,i,...

DN/DL
N real/literature data set with N complete observations

D|X data set D restricted to the set of variables X

DIO1/IO2 clinical data sets

DMEHMR
O/R , DPMHMR

O/R literature data sets based on a Medline (ME)
and Pubmed (PM) corpus with H/M/R filters
binarized with Occurence/Relevance

D∗/D′ artifical data set by bootstrap or Monte Carlo methods
|| cardinality
1() indicator function

S
h/m/r/n
i set of undirected edges with node i with high, medium,

reasonable, and negligible pairwise relevance

GH/M/R the three prior DAG structures with high, medium,
and reasonable relevance

S
H/M/R
i the set of parents of node i in DAGs GH/M/R

f ′, f ′′ first and second derivatives of function f
AT transpose of the matrix A
A() free-text annotation for an object
ξ+/ξ− informative/noninformative background knowledge
KB knowledge base (axioms)
KB |= α the entailment of sentence α w.r.t. knowledge base KB
M(KB) the set of models of a knowledge base KB
¬,∧,∨, 6=,→ operations of negation, and, or, exclusive or, implication
∩,∪, \, ∆ the intersection, union, difference, and symmetric difference
KB ⊢i α the provability of sentence α by method ⊢i from axioms KB
Γ the Gamma function
Beta(x|α, β) the probability density function (pdf) of the Beta distribution
Dir(x|α) the pdf of the Dirichlet distribution
N(x|µ, σ), N(x|µ, Σ)the pdf of the normal distribution
BD,BDe Bayesian Dirichlet prior, observationally equivalent BD prior
BDCH a Bayesian Dirichlet (BD) prior with hyperparameters 1
BDeu a BD prior, where the hyperparameters are the converse

of the number of parameters in the local dependency model
L(θ; DN ) the likelihood function p(DN |θ)
H(X, Y ), I(X ; Y ) the entropy and the mutual information of X and Y
KL(X‖Y ) the Kullback-Leibler divergence of X and Y
H(X‖Y ) the cross-entropy of X and Y
L1(, ), L2(, ) the Manhattan and the Euclidean distances

the absolute and the quadratic losses
L0(, ) the 0-1 1oss
O()/Θ() asymptotic, proportional upper/upper and lower bound
maxKth(s) the Kth value in decreasing ordering in the set of scalars s



Notation iii

Acronyms

ABN Annotated Bayesian Network
AUC Area Under the ROC curve
BAN-BN/BAN Bayesian Network Augmented Naive Bayesian Network
BMA Bayesian Model Averaging
BN Bayesian Network
BNC Bayesian Network Classifier
DAG Directed Acyclic Graph
FSS Feature Subset Selection (problem)
FGS Feature (sub)Graph Selection (problem)
HPD High Probability Density (region)
IDO IDO/99/03 project (K.U.Leuven) entitled

“Predictive computer models for medical classification
problems using patient data and expert knowledge”

IOTA a study by the “International Ovarian Tumor Analysis”
consortium

IR Information Retrieval
LR Logistic Regression
KE Knowledge Engineering
KB Knowledge Base
MAP Maximum A Posteriori
MD MEDLINE
MI mutual information
ML Maximum Likelihood
MLP Multilayer perceptron
MBG Markov Blanket/Mechanism Boundary Graph

(a.k.a. classification or feature subgraph)
MB Markov Blanket/Boundary set
MBM Markov Blanket/Boundary Membership
(MC)MC (Markov Chain) Monte Carlo
MPFs Most Probable Features (problem)
Naive-BN/N-BN Naive Bayesian network
OC Ovarian Cancer
pABN-KB Probabilistic Annotated Bayesian Network Knowledge Base
PM PUBMED
ROC Receiver Operating Characteristic (ROC) Curve
TAN-BN/TAN Tree Augmented Naive Bayesian Network
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Chapter 1

Bayesian networks primer

RELEVANT>

We summarize the Bayesian network model class, its probabilistic and causal
interpretations and its Bayesian application. Then we overview the main issues
of knowledge engineering, model evaluation and finally the learning of Bayesian
networks.

The Bayesian framework overviewed in Chapter ?? leaves open the question
of the model class, it is equally applicable with domain models discussed in this
chapter or with conditional models discussed in Chapter ??. In this chapter we
investigate a domain model class called Bayesian networks, conditional models

are discussed in Chapter ??. <RELEVANT Bayesian networks form a subclass
of graphical models that is using directed acyclic graphs (DAGs) instead of
more general graphs to represent a probability distribution and optionally the
causal structure of the domain. In an intuitive causal interpretation, the nodes
represent the uncertain quantities, the edges denote direct causal influences,
defining the model structure. A local probabilistic model is attached to each
node to quantify the stochastic effect of its parents (causes). The descriptors of
the local models give the model parameters.

The widespread popularity of this representation is probably the consequence

of its applicability in multiple disciplines. FULLVERSION> These includes the
research of causality investigating conditions for experimental and observational
identification of causal effect, knowledge engineering (knowledge acquisition, for-
malization, verification, refinement and maintenance), probability theory (ax-
iomatization of independencies of a distribution and decomposition, low-order
approximation of a distribution), graph theory (graph representation of inde-
pendencies of a distribution and decomposition of a distribution using graphs),
and in (Bayesian) statistics/machine learning application (practical methods for
prior incorporation and for performing Bayesian inference over observables and

the model itself). <FULLVERSION The multifaceted nature of Bayesian net-
works follows from the fact that this representation addresses jointly three au-
tonomous levels of the domain: the causal model, the probabilistic dependency-

1



2 Chapter 1. Bayesian networks primer

independency structure, and the distribution over the uncertain quantities.

FULLVERSION> These levels are generally connected with one-to-many rela-
tions, for example equivalence classes can be defined for distributions and causal
models w.r.t. their conditional independence structure. Respectively, the ques-
tions of knowledge engineering (prior acquisition and formalization), inference
and learning (i.e., Bayesian inference) is immediately tripled, additionally be-
comes highly entangled on these three levels. That is how can we represent,
learn and perform inference with probabilistic causal relations. How can we
represent, learn and perform inference with conditional independencies. How
can we represent, learn and perform inference with complex, high-dimensional

distributions. <FULLVERSION Additionally, the Bayesian network, as a com-
plete probabilistic domain model, can be applied as an input-output model, for
example as a classifier, so it can be investigated in the conditional framework
as well (see Chapter ?? and ??).

FULLVERSION>

The investigation of graphical models for probabilistic causal models goes
back to 1920 in the work of Wright on path diagrams [149]. The first (medical)
applications of a special class of Bayesian networks as a probabilistic expert sys-
tem, including knowledge elicitation and learning appeared in 1970 [40], large
scale applications were reported from the late 1980’s. The axiomatic investiga-
tion of the structure of independencies in a probability distribution was reported
in 1979 [38] and complemented with the issue of representability with DAGs in
1988 [114]. The decomposition of a probability distribution using annotated
DAGs was reported in 1982 (for a general treatment of graph based decompo-
sition see [98]). The causal interpretation of Bayesian networks and the related
causal research is present from the proposal of the representation [114, 142, 134],
though first seen as auxiliary human constructs and in the probabilistic research
of causation the goals were to understand the limits of learnability from obser-
vational data and the identifyability of causal effect [114, 107, 115]. Later the
role of the causal structure behind the independence structure and distribu-
tion became central and a model-based semantics for counterfactuals and the
“probability of causation” has been formalized by using structural equations
[58, 116]. An efficient inference method for a restricted class of Bayesian net-
works (for polytrees) has appeared in 1983 (for a detalied treatment see [114])
and a generally applicable inference method (the so-called join tree algorithm)
in 1988 [130]. The Bayesian approach to the parameters using Dirichlet priors
was reported in 1990 [132], a related evaluation methodology based on the pre-
quential framework in 1993 [131] and the Bayesian approach to parameters was
axiomatized in 1995 [74]. The Bayesian approach to the structure of the model
was proposed in 1991 for models that compatible with a fixed causal ordering
of the domain variables [17], the general treatment and practical learning was
reported in 1992 [29]. A full-fledged Bayesian approach to perform Bayesian
inference over structural properties was reported in 1995 [102] and a large-scale
application in 2000 [55, 56]. A decomposed representation of Bayesian networks
has appeared in 1989 [61], though first related to representing contextual inde-
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pendencies. Later extensions related to knowledge engineering and attempts to
first-order probabilistic logical extension were reported in [68, 81, 88, 89].

Our selection of the Bayesian network model class as a representation for
the domain is mainly explained by our goal to analyze the compatibility be-
tween observations and heterogeneous, voluminous prior domain knowledge in
a biomedical field, in which prior knowledge is mostly uncertain and includes
the causal level, the associative level and the parametric level. The causal inter-
pretation was frequently used in practice in the knowledge engineering phases
and it was important in the development of knowledge discovery and informa-
tion extraction methods. Consequently, we follow the recent trend (actually
the revival of the original interpretation from 1920), which accepts the primacy,
though not exclusivity of the causal interpretation.

<FULLVERSION

First we summarize the probabilistic interpretation of Bayesian networks,
which is based on a DAG representation of an independence model of a distri-
bution and on a decomposed representation of a distribution by DAGs annotated
with local probabilistic models. Then we introduce the causal interpretation of
Bayesian networks. Next we discuss the Bayesian approach to the parameters
and to the structure. Then we discuss the knowledge acquisition methods and
model (prior) evaluation methodologies. Finally we discuss fundamental results
for model identification.

1.1 Representational issues

1.1.1 Three aspects: belief, relevance and causation

Suppose that our goal is to model uncertain events, furthermore we assume that
the number of events and the corresponding outcomes (observables) are finite.
According to the discussion in Chapter ??, it corresponds to modeling a subjec-
tive joint distribution over the event space with elementary events defined by the
Cartesian product of the possible outcomes. We denote the joint set of random
events with V , p(V ) denotes the joint (mass) probability distribution represent-
ing the personal belief over events. If it is necessary to differentiate, capitals
with underline such as X, Y , Z denotes subsets and capitals such as X, Y, Z sin-
gle random events, lowercase letters denotes values (outcomes) such as X = x.
To simplify terminology we call each discrete random event a random variable

(i.e., as if their outcomes would be always in R). FULLVERSION> Note that
because of the coherence argument in Section ?? a representation for p(V ) de-
fines each of the respective marginals and conditionals corresponding to passive

(i.e., non-interventionist) observations. <FULLVERSION

1.1.1.1 The model of observational independencies

We introduce now the notation for the independencies of random events.
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Definition 1.1.1. Let p(V ) be a joint distribution over V and X, Y , Z ⊆ V are
disjoint subsets. Then denote the conditional independence of X and Y given
Z with Ip(X |Z|Y ), that is

Ip(X|Z|Y ) iff (∀x, y, z p(y|z, x) = p(y|z) whenever p(z, x) > 0). (1.1)

Note that conditional independence is required for all the relevant values of Z.
A weakened form of independence is the contextual independence, if conditional
independence is valid only for a certain value c of another disjoint set C. Then
denote the contextual independence of X and Y given Z and context c with
Ip(X|Z, c|Y ), that is

Ip(X |Z, c|Y ) iff (∀x, y, z p(y|z, c, x) = p(y|z, c) whenever p(z, c, x) > 0). (1.2)

Another notation for Ip(X |Z|Y ) is (X ⊥⊥ Y |Z)p. If it is nonambiguous, the
subscript from Ip(.) is omitted as well as the empty condition part. The negated
independence proposition (i.e., dependency) is denoted with (X 6⊥⊥ Y |Z)p. It is
a direct dependency, if for any disjoint X, Y, Z ⊆ V (X 6⊥⊥ Y |Z) holds. A set of
independence statements is called independence model (note that this is always
a finite set in our case). We use the terms (probabilistic) independence and
(information) irrelevance interchangeably.

FULLVERSION>
A standard measure for the strength of the dependence (association) between

X and Y is the (conditional) mutual information

MIp(X ; Y |Z) = KL(p(X, Y |Z)|p(X |Z)p(Y |Z)). (1.3)

<FULLVERSION

Whereas the independencies or the complete independence model is an ideal
candidate to represent qualitatively the target distribution, the autonomous,
local mechanisms (rules) composing modularly the domain are the basis of both

common sense and scientific understanding and explanation. FULLVERSION> The
primary reason of it is their autonomy, which allows (1) the prediction of the
effect of intervention (control) in the domain, (2) potential reuse of mechanisms
with slight changes and (3) its use in other domains (which can be conceived as

complex imaginary interventions). <FULLVERSION The autonomous relations
are asymmetric w.r.t. time and interventions suggesting a causal interpretation.

1.1.1.2 The model of causal (in)dependencies

For the discussion of causality, we need a concept and notation for intervention.

Definition 1.1.2. Let do(x) denote the intervention of setting variable(s) X to
value x and p(Y |do(x)) the corresponding interventional distribution [115].

Note that despite the symmetry of the probabilistic dependence relation, the
causal dependence relation is asymmetric. For example in a hypothetical world
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with two variables X, Y and a single causal relation X → Y inducing p(X, Y ),
the intervention on X and the observation of X are identical operations, but the
intervention on Y will not influence the cause X (i.e., p(Y |do(x)) = p(Y |x), but
p(X |do(y)) is equal to p(X) and not to p(X |y)). Now we introduce a notation

for the causal irrelevance (independency) [116, 58]. FULLVERSION> Note that
the definition does no meant to be an exhaustive definition of causation (e.g.,
the counterfactual aspects remains outside this definition), and it formalizes the

concept of randomized clinical trials [148, 66]. <FULLVERSION

Definition 1.1.3. Let p(.|do(.)) denote the appropriate interventional distri-
butions over V and X, Y , Z ⊆ V are disjoint subsets. Then denote the causal
independence of X and Y given Z with CIp(X ; Y |Z), that is

CIp(X; Y |Z) iff (∀x, y, z p(y|do(z), do(x)) = p(y|do(z))) (1.4)

The negated independence proposition (i.e., causal relevance or dependency)
is denoted by CDp(X ; Y |Z). If Z = {V \X, Y }}, then the causal relevancy/dependency
relation is called direct causal dependency and denoted by DCDp(X ; Y |Z) (or
(X → Y |Z)p). A set of causal (in)dependence statements is called causal model.

FULLVERSION>
Measures for the strength of a causal relation are usually defined for binary

X and Y and corresponds to standard measures in epidemiology for the strength
of a (putatively) causal relation between a binary X (i.e., exposure) and Y (i.e.,
disease), such as the risk difference (or causal effect) (δ), the excess risk ratio
or attributable risk (θ) and the odds ratio (Ψ) (see [148] p.133 and [116] p.292).

δ = p(y|do(x)) − p(y|do(¬x)), (1.5)

θ =
p(y|do(x)) − p(y|do(¬x))

p(y|do(x))
, (1.6)

Ψ =
p(y|do(x))/p(¬y|do(x))

p(y|do(¬x))/p(¬y|do(¬x)).
(1.7)

In epidemiology these measures are usually defined using a non-interventional
terminology, using “adjusted” estimates of observational probabilities (p̃(y|x))
instead of their interventionist counterparts p(y|do(x)). The operation of adjust-
ing (or “ controlling”), refers to the elimination of the effect of “confounders”
Z, which are common causes of X and Y , by evaluating the effect of change of
X under the same values of the potential confounders, that is by conditioning
and “holding” them fixed:

p̃(y|x) =
∑

z

p(y|x, z)p(z). (1.8)

For an epidemilogical overview of confounder selection and techniques see [148].
Beside this interventional definition of “X is a cause of Y ” based on the P (.|do())
semantics other standard conditions for causation are the following (adapted
from the list of “principles of causality” suggested within epidemiology [148]:
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(1) strong dependency between X, Y (e.g., see Def. 1.3), (2) X precedes tem-
porally Y , (3) plausible explanation of the mechanism between X, Y without
alternative explanations based on confounding, (4) necessity (i.e., if the cause is
removed, effect is decreased), (5) sufficiency (if exposure to cause is increased,
effect is increased).

The probabilistic definition of causation in Def. 1.4 formalizes many, but for
example not the counterfactual aspects. The last two conditions can be refor-
malized using counterfactuals as (4’) y would not have been occurred with that
much probability if x had not been present and (5’) y would have been occurred
with larger probability if x had been present. Furthermore, in biomedical do-
mains an equally important condition for the establishment of a causal relation
is the existence of a scientific explanation for the relation between X and Y ,
usually based on a hypothesized autonomous, local rule or mechanism, that is
the concept of causation and intervention is deeply connected with the scien-
tific understanding of “stable and transportable” mechanism as indicated above,
what makes the causal interpretation highly relevant for knowledge discovery
from scientific publications and for prior incorporation in Chapters ??, ??. For
the general treatment of causation in scientific explanations and in philosophy
of science see [123, 147].

<FULLVERSION

FULLVERSION>

1.1.1.3 Summary

Now the multiple goals of the Bayesian network representation can be more
specifically circumscribed:

P representation for the joint distribution (e.g., to support knowledge acqui-
sition, learning and inference),

M sound and complete representation for the independency model,

P-M understanding relation between P and M (i.e., the use of a representation
of independence model for a compact representation of the joint),

C sound and complete representation for the causal model with a causal
interpretation,

M-C understanding the relation between M and C (i.e., the relation between
the observationally defined, symmetric (in)dependence relations and the
interventionally defined asymmetric causal relation),

P-C understanding the relation between P and C (i.e., the conversion of causally
defined quantities P (y|do(x), z) into “do()”-free observational quantities
P (y|w) or to more appropriate causal quantities P (y|do(x′), z′)),

C’ definition of counterfactuals with a (logical) model-based probabilistic se-
mantics and respectively a probabilistic account of (actual/individualistic)
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causation using structural equations (e.g., the probability of y would not
have occurred if x had not been present conditioned on that x was present
and y occurred).

Results necessary for the development of the thesis are related to the issues
of P, M, C, P −M, M −C in case of full observation (i.e., no hidden variables).
For the general treatment of these issues and for references, see [114, 66, 134].

<FULLVERSION

1.1.2 Probabilistic Bayesian networks

Before investigating the role of directed acyclic graphs (DAGs) in representing
causal relations, we have to clarify their purely probabilistic role in representing
a joint distribution numerically and its (in)dependence model.

1.1.2.1 Markov conditions

Assume that each vertice (node) in DAG G corresponds to a random variable.
We need the following concepts (cited from [114, 98, 33, 116]).

Definition 1.1.4. A distribution p(X1, . . . , Xn) is Markov relative to DAG G
or factorizes w.r.t G, if

p(X1, . . . , Xn) =
n∏

i=1

p(Xi|Pa(Xi)), (1.9)

where Pa(Xi) denotes the parents of Xi in G.

Definition 1.1.5. A distribution p(X1, . . . , Xn) obeys the ordered Markov con-
dition w.r.t. DAG G, if

∀ i = 1, . . . , n : (X≺(i) ⊥⊥ {{X≺(1), . . . X≺(i−1)} \ Pa(X≺(i))}|Pa(X≺(i)))p,
(1.10)

where ≺ is some ancestral ordering w.r.t. G (i.e., compatible with arrows in
G) and {X≺(1), . . . X≺(i−1)} \ Pa(X≺(i)) denotes all the predecessors of X≺(i)

except its parents.

Definition 1.1.6. A distribution p(X1, . . . , Xn) obeys the local (or parental)
Markov condition w.r.t. DAG G, if

∀ i = 1, . . . , n : (Xi ⊥⊥ Nondescendants(Xi)|Pa(Xi))p, (1.11)

where Nondescendants(Xi) denotes the nondescendants of Xi in G (i.e., without
directed path from Xi).

Definition 1.1.7. A distribution p(X1, . . . , Xn) obeys the global Markov con-
dition w.r.t. DAG G, if

∀ X, Y, Z ⊆ V : (X ⊥⊥ Y |Z)G ⇒ (X ⊥⊥ Y |Z)p, (1.12)

where (X ⊥⊥ Y |Z)G denotes that X and Y are d-separated by Z, that is if every
path p between a node in X and a node in Y is blocked by Z as follows
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1. Either path p contains a node n in Z with non-converging arrows (i.e.,
→ n→ or ← n→),

2. Or path p contains a node n not in Z with converging arrows (i.e., → n←)
and none of the descendants of n is in Z.

FULLVERSION> For an equivalent definition of a global (X ⊥⊥ Y |Z)G based

on “m-separation” in the moralized graph of G, see [98]. <FULLVERSION

Now we can state a central result connecting the DAG representation of the
joint distribution and the DAG representation of the independence model [98].

Theorem 1.1.1 ([98]). Let p(V ) be a probability distribution and G a DAG,
then the conditions in Def. 1.1.4, 1.1.5, 1.1.6, and 1.1.7 are equivalent:

(F) p is Markov relative G or p factorizes w.r.t G,

(O) p obeys the ordered Markov condition w.r.t. G,

(L) p obeys the local Markov condition w.r.t. G,

(G) p obeys the global Markov condition w.r.t. G.

Because of their equivalence, we can refer to these as the (directed) Markov
condition for the pair (p, G). To show the necessity and sufficiency of these
conditions, we refer to a result that a sound and complete, computationally
efficient algorithm exists to read off exactly (!) the independencies that are
valid in all distributions that are Markov relative to a given DAG G [114].

Theorem 1.1.2 ([114]).

∀ X, Y, Z ⊆ V : (X ⊥⊥ Y |Z)G ⇔ ((X ⊥⊥ Y |Z)p in all p Markov relative to G.

Two further properties are implied by any of the (FOLG) conditions: the
pairwise Markov condition [98] and the boundary Markov conditions [114].

Definition 1.1.8. A distribution p(X1, . . . , Xn) obeys the pairwise Markov con-
dition w.r.t. DAG G, if for any pair of variables Xi, Xj nonadjacent in G and
Xj ∈ Nondescendants(Xi), (Xi ⊥⊥ Xj |Nondescendants(Xi) \ {Xj})p holds [98].

To state the other implication, we need the following concepts.

Definition 1.1.9. A set of variables MBp(Xi) is called a Markov blanket of
Xi w.r.t. the distribution p(X1, . . . , Xn), if (Xi ⊥⊥ V \MB(Xi)|MB(Xi))p (see
Fig. 1.1). A minimal Markov blanket is called Markov boundary [114].

Definition 1.1.10. A distribution p(X1, . . . , Xn) obeys the boundary Markov
condition w.r.t. DAG G, if the boundary bd(Xi, G) is a Markov blanket of Xi,
where bd(Xi, G) denotes the set of parents, children and the children’s other par-
ents for Xi (i.e., parents with common child with Xi, see Fig. ?? and Fig. 1.1):

bd(Xi, G) = {Pa(Xi, G) ∪ Ch(Xi, G) ∪ Pa(Ch(Xi, G), G)}. (1.13)
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The boundary bd(Xi, G) coincides with the standard graph-theoretic notion
of boundary (i.e., set of neighbours) of Xi in the moral graph of G, which is
the graph where edges are added between parents with a common child and the
orientation is dropped [33].

Theorem 1.1.3 ([114]). The (FOLG) Markov condition for (p, G) implies that
the set bd(Xi, G) is a Markov blanket (MBp(Xi)) for Xi.

Note that the set bd(Xi, G) is not necessarily Markov boundary as it may not
be minimal (because of the non-optimality of G to p). In the Bayesian context
this problem is negligible as Th. 2.1.2 and the discussion in Section 1.1.2.3
show, so we will also refer to bd(Xi, G) as the Markov blanket for Xi in G using
the notation MB(Xi, G) by the implicit assumption that p is Markov compatible
with G and stable. The induced (symmetric) pairwise relation MBM(Xi, Xj, G)
w.r.t. G between Xi and Xj

MBM(Xi, Xj , G)⇔ Xj ∈ bd(Xi, G) (1.14)

is called Markov blanket membership [54]. In short, the set {MBM(Xi, G)}
includes the variables with non-blockable pairwise (observational) dependen-
cies 1.1 to Xi including the unconditionally related variables (parents and chil-
dren) and the purely conditionally related ones (the rest).

Finally, we introduce here the definition of the Markov Blanket (sub)Graph
(MBG) (for a discussion of the MBG feature, see Section 2.2).

Definition 1.1.11. A subgraph of G is called the Markov Blanket (sub)Graph
or Mechanism Boundary (sub)Graph MBG(Xi, G) of variable Xi if it includes
the nodes in the Markov blanket defined by bd(Xi, G) and the incoming edges
into Xi and into its children Ch(Xi, G) (see Fig. ?? and Fig. 1.1).

Fig. 1.1 shows an example for a Markov Blanket set and the Markov Blanket
graph in a Markov chain.

X
1

X
2

Y X
4

X
5

Figure 1.1: A Bayesian network structure G defining a Markov chain
p(X1, X2, Y, X4, X5). Underscore denotes the members of a Markov Blanket set of
variable Y MBp(Y ), which is the unique Markov Boundary MB(Y, G) as well (de-
fined by the boundary bd(Xi, G)). Solid lines denote the edges of the Markov Blanket
Graph MBG(Y, G).

1.1.2.2 Definitions of Bayesian networks

The equivalence of the conditions FOLG in Th. 1.1.1 allows versatile definitions

of Bayesian networks. FULLVERSION> Each condition has its own appeal to
base the definition on it and leaves the others as derived theorems. The con-
dition (O) is useful for constructing a DAG to factorize P . The condition (L)
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is attractive in the causal interpretation as fixing the direct causes renders the
nondescendant other variables independent. The condition (G) is important be-
cause it emphasize that a DAG G offers a logical representation for the qualita-

tive description of the joint distribution. <FULLVERSION A neutral definition
is as follows.

Definition 1.1.12. A directed acyclic graph (DAG) G is a Bayesian network
of distribution p(V ), if the variables are represented with nodes in G and (G, p)
satisfies any of the conditions F, O, L, G such that G is minimal (i.e., no edge(s)
can be omitted without violating a condition F, O, L, G).

If the distribution P is strictly positive, then the Bayesian network compat-
ible with a given ordering ≺ is unique (i.e., composed of the unique minimal
parental sets that makes the variable independent of the variables before w.r.t
≺) [114]. Note that depending on the ordering different Bayesian networks can
be gained, representing more or fewer independencies of P .

In engineering practice Bayesian networks are frequently informally defined
as a DAG annotated with local probabilistic models for each node.

Definition 1.1.13. A Bayesian network model M of a domain with variables V
consists of a structure G and parameters θ. The structure G is a directed acyclic
graph (DAG) such that each node represents a variable and local probabilistic
models p(Xi| pa(Xi)) are attached to each node w.r.t. the structure G, that is
they describe the stochastic dependency of variable Xi on its parents pa(Xi). As
the conditionals are frequently from a certain parametric family, the conditional
for Xi is parameterized by θi, and θ denotes all the parameters of the model.

When the conditionals are combined together as in Eq. 1.9, they define an
overall joint distribution p. It trivially satisfies Markov relativity to G and the
structure satisfies the conditions O, L, G. The lack of minimality requirement
causes only potential redundancy (parameters) and fewer implied independen-
cies. In most cases, we use the term Bayesian network to refer to both structure
and parameters.

1.1.2.3 Stability

A limitation of DAGs to represent a given (in)dependency model is that (1)
probabilistic dependencies are not necessarily transitive and (2) lower order
(e.g., pairwise) probabilistic independencies does not imply higher order (e.g.,

multivariate) independencies. RELEVANT> These are illustrated with the fol-
lowing examples.

Example 1.1.1. Consider p(X, Y, Z) with binary X, Z and ternary Y in a
Markov chain (X → Y → Z). The intransitivity condition — (X 6⊥⊥ Y ), (Y 6⊥⊥ Z),
and (X ⊥⊥ Z) — can be rewritten as an equation system with the probabilities.
Its solvability demonstrates that the “naturally” expected transitivity of depen-
dency can be destroyed by properly selected values. For the other case, con-
sider p(X, Y, Z) with binary variables, where p(x) = p(y) = 0.5 and p(Z|X, Y )
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is defined by the logical function Z = XOR(X, Y ). In this case (X ⊥⊥ Z) and
(Y ⊥⊥ Z), but ({X, Y } 6⊥⊥ Z), which demonstrates that pairwise independence does
not imply total independence.

<RELEVANT

However, such numerically encoded independencies correspond to solutions
of systems of equations describing these constraints, which are not stable for
numerical perturbations. This leads to the following definition.

Definition 1.1.14. The distribution p is stable∗ (or faithfull), if there ex-
ists a DAG called perfect map exactly representing its (in)dependencies (i.e.,
(X ⊥⊥ Y |Z)G ⇔ (X ⊥⊥ Y |Z)p, ∀ X, Y, Z ⊆ V ). The distribution p is stable
w.r.t. a DAG G, if G exactly represents its (in)dependencies.

FULLVERSION> Note that because there are multiple Bayesian network
models for P not necessarily representing the same independencies, P can be
stable (i.e., there is a perfect map for it), whereas unstable w.r.t. other DAGs
not representing all the independencies. The corresponding factorized repre-
sentations in such cases are sensitive to perturbations. It is an open ques-
tion whether the independence models with perfect DAG representation can
be characterized. However not only DAGs has limited capacity to represent
(in)dependency models, a result shows that in general there is no finite charac-
terization of the independence models corresponding to probability distributions
(for special cases, discussion and references see [142, 143, 19]). Because certain
distributions cannot be faithfully represented by any DAG, they pose a problem

for knowledge representation and learning. <FULLVERSION

Whereas in many domains the possibility of an unstable distributions is a real
cause for concern, particularly containing deterministic relations, the following
result shows that it is reasonable to expect that in a natural, “noisy” domain
almost all the distributions are stable in a strict sense, which is also relevant for
the applied Bayesian framework. If a “smooth” distribution is defined over the
distributions Markov relative to G (such as in Section 1.1.5.1 in the Bayesian
framework), it can be shown that the measure of unstable distributions is zero
(as being a solution of a system of equations) [107]. It allows to sharpen Th. 1.1.2
that the DAG-based relation (X ⊥⊥ Y |Z)G offers a computationally efficient
algorithm to read off exactly the independencies that are valid in a distribution
Markov relative to G in case of “almost all” such distributions.

1.1.2.4 Equivalence classes of Bayesian networks

The assumption of stability and strict positivity does not exclude the possi-
bility of having multiple perfect maps encoding the same independencies in p.

RELEVANT>

Example 1.1.2. Consider a Markov chain X = {X1, . . . , Xn} with a stable dis-
tribution. Its independence model includes i=1, . . . , n:(Xi ⊥⊥{X1, . . . Xi−2}|Xi−1),

∗For a different interpretation of this term in probability theory, see [122].
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and also the implied (Xi ⊥⊥ {X1, . . . Xi−2, Xi+2, . . . , Xn}|{Xi−1, Xi+1}). This
independence model can be exactly represented by n equivalent linear Bayesian
networks without introducing convergent arrows, including the two special cases
of the “forward” and the “backward” network (see Fig. 1.2).
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Figure 1.2: The equivalence classes of Bayesian network structures over three vari-
ables with direct dependences between X1, X2 and X2, X3, but not between X1,
X3.

<RELEVANT

The induced independence models allow the definition of an equivalence
relation between DAGs [114, 143, 107].

Definition 1.1.15. Two DAGs G1, G2 are observationally equivalent, if they
imply the same set of independence relations (i.e., (X⊥⊥Y |Z)G1

)⇔(X ⊥⊥ Y |Z)G2
).

RELEVANT> The implied equivalence classes may contain n! number of
DAGs (e.g., all the full networks representing no independencies) or just 1 (e.g.,

the empty DAG representing total independence of the variables) FULLVERSION> ,
however experimental results indicate that in practical domains on average the

number of DAGs in an equivalent class are around 3 [85] <FULLVERSION . The
characterization of the DAGs within the same equivalence class relies on two
observations. First, the undirected skeleton of the observationally equivalent
DAGs are the same, because an edge in a DAG denotes a direct dependency,
which has to appear in any Markov compatible DAG [114]. Second, the direct
dependencies between X, Y and Y, Z without direct dependence between X, Z
and without independence such that (X ⊥⊥ Z|{Y, S}) has to be expressed with
a unique converging orientation X → Y ← Z creating a so-called v-structure

according to the global semantics. <RELEVANT The theorem characterizing
the DAGs within the same observational (and distributional) equivalence class
is as follows.

Theorem 1.1.4 ([114, 24]). Two DAGs G1, G2 are observationally equivalent,
iff they have the same skeleton (i.e., the same edges without directions) and the
same set of v-structures (i.e., two converging arrows without an arrow between
their tails) [114]. If in the Bayesian networks (G1, θ1) and (G2, θ2) the vari-
ables are discrete and the local conditional probabilistic models are multinomial
distributions, then the observational equivalence of G1, G2 implies equal dimen-
sionality and bijective relation between the parameterizations θ1 and θ2 called
distributional equivalence [24].

The limitation of DAGs to represent uniquely a given (in)dependency model
poses a problem for the interpretation of the direction of the edges. It also
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poses the question of representing the identically oriented edges in observation-
ally equivalent DAGs. As the definition of the observational equivalence class
suggests the common v-structures identify the starting common edges and fur-
ther identical orientations are the consequences of the constraint that no new
v-structures can be created. This leads to the following definition (for an effi-
cient, sound, and complete algorithm, see [107]).

Definition 1.1.16. The essential graph representing DAGs in a given obser-
vational equivalence class is a partially oriented DAG (PDAG) that represents
the edges that are identically oriented among all DAGs from the equivalence
class (called compelled edges) in such a way that exactly the compelled edges are
directed in the common skeleton, the others are undirected representing incon-
clusiveness.

FULLVERSION> Note that the definition satisfies the Ockham principle in
that the essential graph of a stable distribution encompasses only the observa-
tionally equivalent DAGs, that is only the “minimal” models (inducing minimal
set of dependencies or in case of multinomial local models only models having
minimum dimensionality). Another feature is that the edges in an essential
graph of a stable distribution (irrespective of their status of orientation) exactly

represent the direct dependencies. <FULLVERSION

1.1.3 Causal Bayesian networks

Now we continue with the causal interpretation of Bayesian networks, because
of its relevance for prior acquisition and incorporation (i.e., knowledge acqui-
sition from experts, for the discovery from scientific publications and for prior
incorporation in Chapters ??, ??).

1.1.3.1 On the possibility of causal interpretation

The classical problem of “from (observational) correlation to causation”, that
is the question of determining causal status of a passively observed dependency
between X and Y can be decomposed using the concepts introduced earlier to
the question about the DAG-based representation of independencies (i.e., prob-
abilistic Bayesian network), the existence of exact representation (i.e., stability)
and the existence of unambiguous representation (i.e., essential graph). First, we
have to consider whether all direct dependencies among the constructed domain
variables are causal. This assumption is highly questionable and is discussed
in detail below. Second, we have to consider stability that would guarantee
that a corresponding Bayesian network exactly represents the independencies.
Third, we have to adopt the “Boolean” Ockham principle, namely that only the
minimal, consistent models are relevant (see Section 2.4, for the “soft” Ockham
principle in the Bayesian approach to causal discovery). The essential graph
resulting from the joint analysis of the observational conditional independencies
(i.e., “correlations) indicates causal relations under these conditions. In short,
under the condition of stability the essential graph represents the direct causal
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dependencies and the orientations that are dictated by (in)dependencies in the
domain through the minimal models (DAGs) compatible with them. Further-
more, the direction of the edges corresponds to the intuitive expectation as the
intransitive dependency triplets are represented as v-structures.

FULLVERSION> For example in an (unconfounded) v-structure X → Y ←
Z with direct dependencies between X, Y and Y, Z and with the only indepen-
dence (X ⊥⊥ Z) the direction of the arrows are compatible with the expectation
that X and Z being independent events and both of them are dependent with
Y , then X and Z are independent causes preceding temporarily Y (for a dis-
cussion of the validity of this principle on macroscopic level and the statistical

approach to time, see [116]). <FULLVERSION

Correspondingly we can define a causal model as a Bayesian network accord-
ing to Definition 1.1.13 with the causal interpretation that edges denote direct
influences.

Definition 1.1.17. A DAG is called a causal structure over a set of variables
V , if each node represents a variable and edges direct influences. A causal model
is a causal structure extended with local probabilistic models p(Xi| pa(Xi)) for
each node w.r.t. the structure G describing the causal stochastic dependency
of variable Xi on its parents pa(Xi). As the conditionals are frequently from
a certain parametric family, the conditional for Xi is parameterized by θi, and
θ denotes all the parameters, so a causal model consists of a structure G and
parameters θ.

With further assumption of stability, the essential graph shows exactly the
independency relations and exhaustively the identifiable causal relations, which
suggests that whereas the question of causation is underconstrained for a pair
of variables (restricted to “no dependency-no causation), the joint analysis of
the system of independencies allows partial identification.

1.1.3.2 The Causal Markov Condition

The following condition ensures the validity and sufficiency of a causal structure.

Definition 1.1.18. A causal structure G and distribution p satisfies the Causal
Markov Condition, if p obeys the local Markov condition w.r.t. G.

The Causal Markov condition relies on Reichenbach’s “common cause prin-
ciple” that dependency between events X and Y occurs either because X causes
Y , or Y causes X or there is a common cause of X and Y (it is possibly an
aggregate of multiple events) [116, 66]. Consequently, the precondition of the
Causal Markov condition for (p, G) is that the set of variables V is causally
sufficient for P , that is all the common causes for the pairs X, Y ∈ V are inside
V . Note that hidden variables are allowed fitting to the usually high level of
abstraction of the model, only variables that influence two or more variables in
V are necessary for causal sufficiency. Interestingly, in the presence of potential
hidden common causes (confounders), that is if the Causal Markov Condition
is violated, certain causal dependencies can still be identified [116].
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FULLVERSION>

Example 1.1.3. The Causal Markov Condition (i.e., the assumption of no hid-
den common causes) guarantees that from the observation of no more than three
variables we can infer causal relation as follows. The direct dependencies be-
tween X, Y and Y, Z without direct dependence between X, Z and without condi-
tional independence such that (X ⊥⊥ Z|{Y, S}) (i.e., with conditional dependence)
should be expressed with a unique converging orientation X → Y ← Z according
to the global semantics (i.e., DAG-based relation (X ⊥⊥ Y |Z)G from Def. 1.1.7)
resulting in a v-structure. If potential confounders are not excluded a priori, we
have to observe at least four variables to possibly exclude that direct dependency
is caused by a confounder. Continuing the example, assume furthermore that
we observe a forth variable W with the direct dependence Y, W and conditional
independence (W ⊥⊥ {X, Z}|Y ) (because of stability W depends on X and Z).
As Y induces independence the global semantics dictates an Y → W (note the
earlier v-structure) and it cannot be mediated by a confounder ∗ Y → ∗ → W
(Y as an effect would not block).

<FULLVERSION

The causal Markov condition links the causal relations to dependencies and
states sufficiency to model the observed probabilistic dependencies. On the
other hand, the condition of stability of P w.r.t. a causal structure G states the
necessity of G.

These two assumptions guarantee that observational (in)dependence (1.1) is
exactly represented by the DAG-based relation (Def. 1.1.7) in a Markov com-
patible graph G and that causal (in)dependence (Def. 1.4) is exactly represented
by standard separation in the causal structure G [58]. Furthermore, the Causal
Markov condition allows the computation of interventional distributions corre-
sponding to the do() operation (1.1.2) according to the “Manipulation theorem”
([134]) or “graph surgery” ([116]). It is performed simply by deleting the in-
coming edges for the intervened variables in the do() operator and omitting

these factors from the factorization in Eq. 1.9 FULLVERSION> resulting in the

truncated factorization as explained below <FULLVERSION .

1.1.3.3 The interventionist and mechanistic views

In general, the causal structure G satisfying the Causal Markov Condition for
a domain with (observational) distribution P can encode all the interventional
distributions in a single causal model, which is formalized in the interventionist
definition of “causal Bayesian networks” [116].

FULLVERSION>

Definition 1.1.19. Let p(V |do(x)) denote an interventional distribution corre-
sponding to setting variable(s) X ⊆ V to value x and P∗ the set of all interven-
tional distributions (including p(V |do(0)) the observational target distribution
without intervention). A DAG G is said to be a causal Bayesian network com-
patible with P∗ iff for each p(V |do(x)) ∈ P∗ the following three conditions hold
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1. p(V |do(x) is Markov relative to G,

2. ∀ Xi ∈ X p(xi|do(x) = 1 if value xi and x is compatible,

3. ∀ Xi /∈ X p(xi|pai, do(x) = p(xi|pai) if value(s) pai and x is compatible.

<FULLVERSION

This definition of causal Bayesian networks explicitly shows that the concept
of causation is based on the concept of intervention, more exactly on the sys-
tematic ability to intervene. This boils down to the assumption of autonomous,
local “mechanisms” composing the domain, which can be triggered by interven-
tions independently and can be understood independently. A formalization of
this “mechanism-based interpretation” of DAG representations is offered by the
so-called “functional Bayesian networks” using a formalism of mechanisms as de-
terministic functions with disturbances (cf. with structural equation) [44, 116].
Whereas the functional Bayesian network formalism allows the probabilistic
modeling of counterfactuals, in the thesis we adopt a more modest causal in-
terpretation termed “mechanism-based interpretation” meaning that under the
Causal Markov condition the local probabilistic dependency models correspond
to the autonomous, local mechanisms in the causal model.

FULLVERSION>

1.1.3.4 The ubiquity of mechanism-based interpretation

Because of this intermingled nature of observational and interventionist inter-
pretations, the causal interpretation of Bayesian networks, particularly the cor-
responding mechanism-based interpretation of Bayesian networks is equally rel-
evant in an observational data analysis task, whenever the incorporation of prior
knowledge or the evaluation of the probabilistic Bayesian network model is rel-
evant. This is exemplified by a wide range of studies and concepts, such as the
following: the estimation of parameters in local, conditional models is preferred
and better solvable in “causal” directions [83], the intuitive causal interpretation
of the DAG structure in knowledge elicitation (w.r.t the independency-based
interpretation), the special “causal” conditional models for the “independent”
combination of the effect of causes such as the noisy-OR and logistic regression
models [114, 78, 72], the assumption of decomposability of parameter priors
for a Bayesian network w.r.t. mechanisms (for local and global parameter in-
dependence see Section 1.1.5.1) [132], the assumption of decomposability of
structure prior for a Bayesian network (for structure independence see Sec-
tion 1.1.5.2) [17, 29, 55], special conditional models for modeling the ensemble
of alternatives of (sub) conditional models

(inducing contextual (in)dependencies) [16, 114]. These show that the causal
(e.g., mechanism-based interpretation) is especially relevant in the Bayesian
framework.

<FULLVERSION
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1.1.3.5 Pairwise causal relations

The causal interpretation of Bayesian networks allows the definition of the fol-
lowing logical pairwise relations in a causal structure (recall that in stable causal
models the dependency relations always represent exactly the probabilistic de-
pendency relations):

1. Causal path (P, CaP (Xi, Xj |G)): There is a directed path from node Xi

to node Xj in DAG G (also denoted by Xi ≺G Xj).

2. Causal edge (E, CaE(Xi, Xj |G)): There is an edge from node Xi to node
Xj in DAG G (also denoted by (Xi →G Xj)).

3. Compelled edge (CompE, CompE(Xi, Xj |G)): There is a compelled edge
from node Xi to node Xj in the essential graph for DAG G.

4. (Pure) Confounded (Conf, Conf(Xi, Xj |G)): The two nodes Xi and Xj

have a common ancestor in DAG G. The confounded relation is said to
be pure, if there is no edge or path between the nodes.

5. Independent (I, Ind(Xi, Xj |G)): None of the previous.

Note that these pairwise relations can be also used in an acausal context
using the differences w.r.t. the independence relation.

1.1.4 On the relativity of the interpretations

The causal interpretation has been challenged from many points of view. The
Causal Markov assumption can be questioned as the presence of unobserved
(hidden) variables as potential confounders seriously constrains the causal in-
terpretation and automated causal discovery (for the Bayesian analysis of po-
tentially infinite number of confounders, see [66]). Another violation called
selection bias can occur if the observations depend on the joint combination of
otherwise independent events, which induces non-causal dependencies between
them. The next difficulty is related to the mixture of causal models, if condi-
tionally both X causes Y and vice versa. A similar problem is the presence of
feedback and indirectly temporality. Finally, the causal nature of the relations
can be questioned because of global physical and semantic constraints between
the variables [146]. It can occur if there is a global constraint on the joint set
of the variables, outside the scope of the modeled domain or if the definitions
of the variables are overlapping (i.e., there are logical dependencies).

In both the causal and probabilistic interpretations, the assumption of sta-
bility can be also questioned, for example because of deterministic dependencies,
resulting in the lack of guarantee for the uniqueness and exactness of the rep-
resentation.

Finally, obviously the (in)dependencies are relative to the set of variables
and specifically, also to the values of the variables (consider the conversion of
a nth order Markov chain into a first-order by augmenting the state space), so



18 Chapter 1. Bayesian networks primer

both the probabilistic and causal interpretation has to be conditional on the set
of variables and values [66].

These considerations are free of any data size issue and they are free of the
question of the subjectivity of the prior in the Bayesian analysis of causation.
The data set and the subjective prior information are further essential factors
in the relativity of the causal and probabilistic inferences.

1.1.5 Bayesian networks in the Bayesian framework

FULLVERSION> The high-dimensional, small sample data in a prior rich do-
main motivates a full Bayesian approach to the learning of Bayesian networks.
In fact, the uncertainty over the causal diagram itself, that is the uncertainty
over the causal theory itself, is of primary importance, as all the results relying
on it are and should be conditional or averaged as noted in [39]. It needs the
Bayesian generalization of the results related to the causal Bayesian networks,
such as the identification of genuine causes (for the Bayesian view of compelled
edges, see [76, 54]) or the identifiability and computation of the strength of a
causal effect from observational data (for the Bayesian inference of causal effect,
see [116], p.xx) or the design of an optimal interventionist data collection [150].

An important factor for the popularity of Bayesian networks is the possibility
to incorporate many kinds of prior knowledge into learning—ranging from logical
constraints on the model structure [135, 29, 94, 21] or qualitative monotonic-
ity relations between the variables [137, 69] to prior distributions for network
structures and parameterizations of local dependencies [131, 17, 29, 74, 18].

<FULLVERSION

In the Bayesian framework the prior probabilities over the Bayesian network
model is represented by a joint distribution p(G, θ)) over the DAG structures
G and corresponding parameters θ. Because of the generality of the Bayesian
network representation this distribution itself can be represented by a Bayesian
network as we shall see below. However the specification of the joint or the
conditionals p(G) and p(θ|G) requires practical simplifications and careful the-
oretical considerations, because of the huge size of the space and because of the
observational equivalence of the structures. As in the thesis in general, in this
section we also assume that the variables V = {X1, . . . , Xn} are discrete with
ri number of values. We start with the parameter prior and then discuss the
structure prior.

1.1.5.1 Parameter priors for Bayesian network models

The specification of parameter prior p(θ|G) for Bayesian networks poses the
following questions: the parametric form of the prior, the relation of the de-
composition of the prior to the decomposition of P , the consistent confidence of
the decomposed priors for the parts of a single structure, the consistency of the
priors for observationally equivalent structures (recall that observational equiv-
alence implies distributional equivalence in the discrete, multinomial case, see
Th. 1.1.4). There is a remarkable result to clarify these problems. First, if the
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parameter prior decomposes w.r.t. the structure and the parameter priors are
equivalent for observationally equivalent structures, then the parameter prior is
a Dirichlet distribution. Furthermore, if the parts of the decomposed parameter
prior are invariant w.r.t. the structure, then for any structure G p(θ|G) can be
derived from a point-specification θ0 of a complete model and from the number
of a priori seen complete cases. To state this formally, we need the following
concepts. The concept of parameter independence ([132, 33]) is as follows:

Definition 1.1.20. For a Bayesian network structure G, the global parameter
independence assumption means that

p(θ|G) =

n∏

i=1

p(θi|G), (1.15)

where θi denotes the parameters corresponding to the conditional p(Xi|Pa(Xi))
in G. The local parameter independence assumption means that

p(θi|G) =

qi∏

j=1

p(θij |G), (1.16)

where qi denotes the number of parental configurations (pa(Xi)) for Xi in G and
θij denotes the parameters corresponding to the conditional p(Xi|pa(Xi)j) in
some fixed ordering of the pa(Xi) configurations. The parameter independence
assumption means global and local parameter independence.

The concept of likelihood equivalence extends observational equivalence of
the structure coherently to the parameters ([74, 59]).

Definition 1.1.21. The likelihood equivalence assumption means that for two
observationally equivalent Bayesian network structures G1, G2,

p(θV |G1) = p(θV |G2), (1.17)

where θV denotes a non-redundant set of the multinomial parameters for the
joint distribution over V . (The multinomiality of local models ensures distribu-
tional equivalence and that the Jacobian for parameter transformation exists.)

Now the following theorem can be stated [59, 74].

Theorem 1.1.5 ([59, 74]). The assumption of positive densities, likelihood
equivalence and parameter independence for complete structures Gc implies that
p(θV ) is a Dirichlet distribution with hyperparameters Nx1,...,xn.

The p(θi|Gi) = JGip(θV ), where JGi is the Jacobian of the transforma-
tion from θV to θGi

. It is remarkable that a structure level acausal constraint
(i.e., likelihood equivalence of structures with multinomial local dependency
models) implies a strong parameter-level constraint (i.e., Dirichlet parameter
priors). To state the following theorem it is convenient to rewrite the hyper-
parameters as N ′ =

∑

x1,...,xn
Nx1,...,xn called prior or virtual sample size and

p(x1, . . . , xn|ξ+) = Nx1,...,xn/N ′. Furthermore, we need the following concept:
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Definition 1.1.22. The parameter modularity assumption means that if pa(Xi)
are identical in two Bayesian network structures G1, G2, then

p(θij |G1) = p(θij |G2), (1.18)

where θij denotes the parameters corresponding to the conditional p(Xi|pa(Xi)j)
in some fixed ordering of the pa(Xi) configurations.

The assumption of parameter modularity allows to induce parameter distri-
butions for incomplete models from the parameter prior of a complete model.

Theorem 1.1.6 ([59, 74]). If N ′ is the global prior sample size and p(θV ) is
a Dirichlet distribution with hyperparameters Nx1,...,xn = N ′p(x1, . . . , xn) and
the parameter modularity assumption holds and for all complete networks Gc,
p(Gc) > 0, then for any network structure G the parameter independence and the
likelihood equivalence holds and the decomposed distribution of the parameters
is the product of Dirichlet distributions

p(θ|G, ξ+) =
n∏

i=1

qi∏

j=1

ri∏

k=1

θ
N ′p(Xi=k,pa(Xi,G|ξ+)=paij)−1

ijk , (1.19)

where ri denotes the number of values of Xi, qi denotes the number of parental
configurations pa(Xi, G) and paij denotes the values of the parents for the jth
parental configuration in some fixed ordering of the pa(Xi) configurations.

Th. 1.1.6 offers a practical method to specify (likelihood equivalent) param-
eter priors for all the structures: by specifying point parameters for a complete
or for a maximally detailed model p(V |Gc, ξ

+) and expressing confidence by
specifying a prior sample size N ′ representing the complete cases underlying
the point estimates (see Section ?? and Section ?? for its application). Then
for any other model G we can compute hyperparameters according to the theo-
rem. Note that these are determined by the marginalization of the distribution
p(V |Gc, ξ

+) into p(V |G, ξ+) (i.e., by averaging over potentially missing parents)
and it can be shown that this is the best approximation w.r.t. the KL distance of
p(V |Gc, ξ

+) by a product of lower order distributions compatible with G [127].
However, Th. 1.1.6 also indicates that incomplete prior observations induc-

ing different confidence for various parts of the network cannot be incorporated
without violating these assumptions. For example, specifying a parameter prior
as product of Dirichlets according to a structure with hyperparameters incom-
patible w.r.t. the theorem cannot be transformed to a product of Dirichlets
for another observationally equivalent structure (i.e., the parameter prior will
be different for observationally equivalent structures). In this case, the prior
knowledge can be represented by a collection of incomplete cases called prior
database instead of a prior data set with complete cases [66].

In case of a fixed structure G, the usage of Dirichlets with parameter inde-
pendence can be attractive on its own right to specify a parameter distribution
p(θ|G, ξ+) as follows
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p(θ|G, ξ+) =

n∏

i=1

qi∏

j=1

Dir(θij |Nij) ∝
n∏

i=1

qi∏

j=1

ri∏

k=1

θ
Nijk−1
ijk . (1.20)

FULLVERSION>
Note that the overall distribution p(X1, . . . , Xn, θ1, . . . , θn) can be repre-

sented in an augmented Bayesian network by introducing extra root nodes for
the continuous vector-valued parameters θij for i = 1, . . . , n and j = 1, . . . , qi

with Dirichlet distributions Dir(θij |N ij) and special conditional distributions
p(Xi = k|paij , θi) = θijk for the variables Xi [132].

<FULLVERSION

1.1.5.2 Structure priors for Bayesian network models

The Bayesian approach to the parameters of Bayesian network models (reported
from the end of the eighties [130, 131, 33]) provided answers for many long-
standing objections against the elicitation and usage of complex probabilistic
models ([20]). The Bayesian approach to the structure of Bayesian networks
was similarly proposed from the beginning of the nineties, but was hindered
by the high computational demand. An ordering-specific, analytic approach
was reported in [17], general analytic results and methodology were reported
in [29], and the application of MCMC methods to perform Bayesian inference
over structural features in [100]). With the increase in computational resources
it became possible to investigate structural properties of Bayesian networks.
Consequently, recently there is much emphasis on the automated or manual
construction of the structure prior p(G) for incorporation and for evaluation
against a reference as well (see Section ??, ??, ?? and ??). Note the structure
prior p(G) complements the earlier investigated parameter prior p(θ|G).

1.1.5.2.1 Using a prior data set Whereas the parameter prior and the
structure prior can be specified independently, the structure prior can be induced

from the prior data set D+
N ′ using Eq. 1.51 [101]. FULLVERSION> That is by

denoting the informative background belief with ξ+ and the noninformative
with ξ−,

p(θ|G, ξ+) = p(θ|G, D+
N ′ , ξ

−), implied by the assumptions (1.21)

p(G|ξ+) = p(G|D+
N ′ , ξ

−), informally. (1.22)

<FULLVERSION

1.1.5.2.2 Using reference structure and substructures Other sugges-
tions for the structure prior include the use of deviation priors (penalizing the
deviations from a prior “reference” structure) and the feature priors (penaliz-
ing the presence and absence of various independent or dependent structural
features).
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The deviation prior [74] is defined by a “reference” network structure G0

and a probability κ penalizing each missing or extra edge eij independently:

p(G) ∝ κδ, where δ =
∑

1≤i<j≤n

1(1(eij ∈ G) 6= 1(eij ∈ G0)).

The feature priors are defined proportionally by the product of priors for the
individual features (as they were totally independent). By denoting the value
of feature Fi in G with Fi(G) = fi, i = 1, . . . K, we have

p(G) = c

K∏

i=1

p(Fi(G)), (1.23)

where the c normalizing constant deals with the probability of inconsistent fea-
ture combinations f1, . . . , fK . The possible structural features include the undi-
rected edges or compelled edges (as direct relations or direct causal relations
under the causal Markov Assumption), pairwise or partial ancestral ordering
(related to causal ordering), relevance relations (Markov blankets) and even ar-
bitrary subgraphs. However, these features are dependent in general, because of
the global DAG constraint, so either the feature set should be selected carefully,
or preprocessing can be applied to increase its approximation or the strength of
the attached prior should reflect its approximative nature.

1.1.5.2.3 Modular priors It is particularly useful in the Bayesian analysis,
if the features are “modular” in the following sense [17, 29, 74, 55]

Definition 1.1.23. The structure modularity holds, if each feature function
Fi(G) depends only on the parents of Xi for i = 1, . . . n, defining the modular
prior

p(G) ∝
n∏

i=1

p(pa(Xi, G)). (1.24)

Because the DAG constraint creates dependencies, the modular features are
not independent (i.e., (Fi(G) 6⊥⊥ Fj(G)|DAG(G)), see Section 2.1.6), but it pro-
vides an efficient approach to define a decomposable ratio for the priors of valid
structures (for certain automated corrections of the distortion because of the
DAG constraint, see [18]).

A generalization of the modular prior is the ordering-modular prior, when
modularity holds only conditionally on the orderings.

1.1.5.2.4 Edge priors With further assumption about the a priori inde-
pendence of membership of edges in parental sets, we get the directed pairwise
prior that defines the probability of each parental set as a product of individual
arc probabilities. In general, the prior is defined only proportionally as follows
by denoting the parents of Xi with pa(Xi) = {pa(Xi)1, . . . , pa(Xi)Li

}:
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p(pa(Xi)) ∝
Li∏

k=1

p(pa(Xi)k ∈ Pa(Xi))
∏

Y 6∈pa(Xi)

(1− p(Y ∈ Pa(Xi))).

Originally, modular priors and directed pairwise priors were suggested con-
ditional on a fixed ordering ≺0 of the variables [17],

p(pa(Xi))=
∏

Xj≺0Xi

Xj∈pa(Xi)

p(Xj ∈ Pa(Xi)| ≺0)
∏

Xj≺0Xi

Xj /∈pa(Xi)

(1 − p(Xj ∈ Pa(Xi)| ≺0)), (1.25)

in which case these features remain independent in the joint distribution over
DAGs compatible with the ordering ≺0. In fact, the assumption of “edge inde-
pendence” first appeared implicitly in the noisy-OR canonical local dependency
model, because its parameterization can be interpreted as encoding the proba-
bility of the edges [114].

To reach independent pairwise features for DAGs without constraining the
ordering, we have to further simplify the features to avoid global constraints
due to their interactions. Note that with independence, the marginals are not
distorted and the prior is normalized, which allows the introduction of hyperpa-
rameters for modifying the prior to satisfy higher-order constraints as follows.
By defining the prior over the skeleton in a pairwise manner (i.e., by retaining
only the directness and omitting directionality), we get the undirected pairwise
prior pij , p(Xj ∈ Pa(Xi)∨Xi ∈ Pa(Xj)) represents the beliefs in direct influ-
ence between Xi and Xj [8]. The edge probabilities define the following prior
probability for a structure G:

P (G|ξ) ∝
n∏

i=1

i−1∏

j=1

p
1(eij∈G)
ij (1 − pij)

1(eij /∈G). (1.26)

The expectation of the number of edges L is given by
∑

0<i<j<n pij . As-
suming that there is an a priori estimate for the number of direct influences in
the overall model or related to a single variable, the prior pij can be scaled by
an exponent ν to approximate this edge density in the prior Bayesian network
(see [8]). By denoting the value that scales the expectation of the number of
parental edges to L0 with ν(L0) we define the following scaling (it is always
possible if we apply a lower limit ǫ < pij for the edge probabilities):

qij , p
ν(L0)
ij , with ν(L0) so that

∑

0<i<j<n

qij = L0. (1.27)

The deviation prior and the feature prior can be combined into a feature-
deviation prior to utilize the prior information about a global model and about
local features by penalizing the differences from a global model w.r.t. selected
features. For example, by replacing the uniform κ with an edge-specific pairwise
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prior pij :

P (G|G0, pij) ∝
∏

1≤i<j≤n

p
1({(eij∈G)∧(eij /∈G0)})
ij (1 − pij)

1({(eij /∈G)∧(eij∈G0)}).

Note that the scaling of pij provides an option to control the penalization
(i.e., to express the prior beliefs in the prior structure). These priors except
the undirected pairwise prior assign potentially different values for observation-
ally equivalent structures (i.e., violates the structural prior equivalence prop-
erty [74]). Because they are closely related to the causal, mechanism-based
interpretation of Bayesian networks, they offer the possibility of representing a
priori beliefs about the individual mechanisms in the domain and we call them

causal (structure) priors vs acausal (structure) priors. FULLVERSION> Note
that if the hypotheses are the observational equivalence classes in an acausal
approach, then a prior p(G∼) over their representant PDAGs G∼ is either spec-
ified directly (i.e., independently of member DAGs) or by inducing it from a
possibly causal structure prior for the DAGs p(G) as

p(G∼) = p(G : G ∈ G∼). (1.28)

<FULLVERSION

FULLVERSION>

1.1.5.2.5 Augmented representation of structure priors Finally, we
mention an explicit representation of structure priors in a restricted case. It
applies the same technique as the explicit representation of Dirichlet param-
eter priors for the multinomial case. Assuming furthermore conditional in-
dependence of the parental sets given a fixed ordering ≺0 of the variables,
the overall distribution p(X1, . . . , Xn, θ1, . . . , θn, pa(X1), . . . , pa(Xn)| ≺0) can
be represented in an augmented Bayesian network by introducing an addi-
tional extra root nodes for the parental sets at each variable in a complete
network or in a “covering” DAG structure that includes all parental sets with
nonzero probability. For simplicity, we assume independence between the struc-
ture prior and the parameter prior, so we assume that the parameter priors
for various parental sets are the appropriate marginals (fitting to the prop-
erty of the Dirichlet distribution that the marginal θ′ ⊆ θ for θ ∼ Dir(θ|α) is
Dir(θ′|α′) with hyperparameters α′ ⊆ α corresponding to the not marginalized
variables, see [12]). The corresponding conditional distributions for each Xi are
p(Xi = k|Pa(Xi) = pa(Xi), Θi = θi, pa(Xi) = paij , ) = θijk.

<FULLVERSION

FULLVERSION>

1.1.6 Extensions of the Bayesian network representation

We refer the reader to the following sources regarding the Bayesian multinets [61,
19] and qualitative Bayesian networks [145, 121].
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<FULLVERSION

1.2 Inference methods

The Bayesian network model makes possible various types of inferences thanks
to the possibility of

1. the multiple interpretation, such as causal vs. probabilistic,

2. the multilevel interpretation, such as at the level of domain values, inde-
pendence relations or causal relations,

3. the adoption of the Bayesian framework at the parameter or the structure
level,

4. embedding the Bayesian network model into a larger knowledge base to
formulate more complex propositions (see Chapter ??).

Next we catalogue these inferences, summarize results and techniques used
in the thesis.

1.2.1 Inference over values with observations

The goal in the following cases is to compute the value of marginal or conditional
probabilities over domain values P (y|x) and possibly related quantities.

1.2.1.1 Fixed parameter and fixed structure

In the simplest case the structure and the parameters of a Bayesian network
model are fixed. The computation of p(y|x) is NP-complete in general in the
number of variables [27]. However in practice, an exact inference method has
demonstrated its applicability, the clique-tree or join-tree algorithm [130]. We
used this exact algorithm following the recommendations for implementation
from [79]. The algorithm is exponential in the largest clique size of an inter-
mediate Markov network and our experience similarly shows that the networks
arisen in knowledge engineering and learning can be efficiently managed with

this algorithm. OPTIONAL> For estimating a marginal p(y) with i.i.d. Monte
Carlo sampling p(V ) the Hoeffding-inequality in Eq. ?? gives the sample com-
plexity N(ǫ, δ) = 1/ǫ2 log 1/delta), however with the increasing number of vari-
ables in the condition p(y|x) the number of useful samples drops exponentially.

<OPTIONAL A general result shows that the Monte Carlo approximation is
hard as well: if NP * RP , then there is no random algorithm with polynomial
time-complexity, whose estimate p̂ is |p(y|x)− p̂| < ǫ accurate with δ confidence
for all ǫ, δ < 1/2 [34].
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1.2.1.2 Bayesian parameter and fixed structure

In case of a Bayesian approach to parameters with a fixed structure G, a pa-
rameter distribution p(θ|G) is specified. The conditional probability over the
domain values p(y|x, Θ) is a random variable and its mean, variance, credible
regions are the target.

If the parameter distribution p(θ|G) is specified according to the conditions
of Th. 1.1.6, then it guarantees that p(Y |x, Θ) has a Dirichlet distribution with
hyperparameters Np0(Y , x), so the mean and credible regions can be efficiently
computed.

If the parameter distribution p(θ|G) is specified by using Dirichlet distribu-
tions and assuming parameter independence, but with arbitrary hyperparam-
eters according to Eq. 1.20, then the marginal distribution p̄(X1, . . . , Xn) over
the domain values is given by

p̄(x1, . . . , xn) =

∫

p(x1, . . . , xn, θ1, . . . , θn)

n∏

i=1

p(θi) dθ (1.29)

=

n∏

i=1

∫

p(xi| pa(xi), θi)p(θi) dθi (1.30)

=

n∏

i=1

p̄(xi| pa(xi)), (1.31)

where the p̄(xi| pa(xi)) are the local mean probabilities [132, 131, 33]. The
expectations of the parameters at each node for each parental configuration
(i.e., the integration of the Dirichlets) have a closed form solution (see Eq. ??)

p̄(Xi = k| pa(Xi) = paij) = EΘi
[p(Xi = k|paij , Θi)] = EΘij

[Θijk] = Nijk/Nij .

The closed solution for p̄(X1, . . . , Xn) ensures that any Bayesian inference
over the domain values can be equivalently performed using this mean-valued
point parameters, instead of Bayesian averaging over the parameter space [132,
29], that is

EΘ[p(y|x, Θ)] = p̄(y|x). (1.32)

For the computation of variance and credible regions in this case we used
a Monte Carlo sampling algorithm, an efficient method for the approximation

is reported in [6]. FULLVERSION> For the representation of the overall dis-
tribution p(X1, . . . , Xn, θ1, . . . , θn) by an augmented Bayesian network see Sec-
tion 1.1.5.2.5. The parameter independence assumption guarantees that the
independencies of the domain variables are the same in the marginalized distri-
bution p̄(X1, . . . , Xn) and in the original, so it can be represented by the original

DAG G. <FULLVERSION
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1.2.1.3 Bayesian parameter and structure

In the general case there is a distribution over the structures p(G) and over the
corresponding parameters p(θ|G). The conditional probability over the domain
values p(y|x, Θ, G) is a random variable itself and its mean, variance, credible
regions are the target. The computation of these quantities, for example of the
mean involves both a summation over the space of DAGs and the integration
over the parameters.

p̄(y|x) = Ep(G)[Ep(θ|G)[p(y|x, θ, G)]]. (1.33)

In general there is no closed formula for this quantity and for the marginal
distribution (“superparameters”) ¯̄p(X1, . . . , Xn), as in the case of fixed structure
and Bayesian parameter.

FULLVERSION>

However if the structure prior satisfies conditional independence of the parental
sets for each variable given an ordering ≺0, then a covering Bayesian network
Gc can be defined that ∀i : p(pa(Xi)) > 0⇒ pa(Xi) ⊆ pa(Xi, G

c). If parame-
ter independence holds for the parameter prior, then the overall distribution is
decomposed as

p(X1, . . . , Xn, Θ1, . . . , Θn, Pa(X1), . . . , Pa(Xn)| ≺0) (1.34)

=

n∏

i=1

p(Xi|X1, . . . , Xi−1, Θi, Pa(Xi))p(Θi|Pa(Xi))p(Pa(Xi)) (1.35)

This distribution can be represented in an augmented Bayesian network by
introducing an additional extra root node for the parental sets at each variable
in a DAG Gc that covers any parental set with nonzero probability and special
conditional distributions for each Xi that p(Xi = k|paij , θi, pa(Xi)) = θijk

(allowing dependence of the parameter prior on the structure prior at each
node, p(θi| pa(Xi))). The marginal distribution ¯̄p(X1, . . . , Xn) is marginalized
in a decomposed fashion

¯̄p(x1, . . . , xn) = EG|≺0
[EΘ|G[p̄(x1, . . . , xn|Θ, G)]] (1.36)

= EG|≺0
[

n∏

i=1

p̄(xi| pa(Xi, G))] (1.37)

=
∑

P (G|≺0)>0

n∏

i=1

p̄(xi| pa(Xi, G))p(pa(Xi, G)| ≺0) (1.38)

=

n∏

i=1

∑

pa(Xi|≺0)>0

p̄(xi| pa(xi))p(pa(Xi)| ≺0) (1.39)

=

n∏

i=1

¯̄p(xi| pa(xi)). (1.40)
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That is the marginal distribution is the product of expectations of the pa-
rameters at each node, which have the following closed form (i.e., the summation
over the parental sets and integration of the Dirichlets)

¯̄p(Xi = k| pa(Xi, G
c) = paij) =

∑

p(pa(Xi)|≺0)>0

p(pa(Xi)| ≺0) Ep(θij | pa(Xi))[θijk],

(1.41)
where pa(Xi, G

c) denotes a “covering” parental set. The existence of a closed
solution ¯̄p(X1, . . . , Xn) for Gc ensures that in general any Bayesian inference over
the domain values can be equivalently performed using this point parameters,
instead of the Bayesian summation over the DAGs compatible with the ordering
≺0 and averaging over the parameter space:

EG|≺0
[EΘ|G[p(y|x, Θ, G)]] = ¯̄p(y|x). (1.42)

where ¯̄p denotes the parameters in the covering DAG Gc. This “smoothed”
parameters and their computation was suggested in [17]. On the same bases,
a similar result for the posterior distributions in the special case of a naive
Bayesian network were derived in [36]. The replacement of summation and
production in step 1.39 conditional on an ordering were similarly used in deriving
closed forms for the conditional probabilities of structural features for a given
ordering in [54] (see Section 2.5.2.1).

<FULLVERSION

1.2.2 Inference over domain values with interventions

In the thesis the analyzed data set is observational. The interventional “do”
semantics was necessary only for the causal interpretation, which is used in de-
veloping models for the analysis of domain literature with Bayesian networks.
For the conversion of causally defined quantities P (y|do(x), z) into “do”-free ob-
servational quantities P (y|w) (question of identifiability) or to more appropriate
causal quantities P (y|do(x′), z′) see [115, 58, 116].

1.2.3 Inference over model parameters

After the inference over the domain values we summarize now a basic result
about the inductive Bayesian inference over the parameters. Let us assume the
observation of a complete case x, parameter independence, and Dirichlet priors
θij ∼ Dir(αij1, . . . , αijri ) for i = 1, . . . , n and j = 1, . . . , qi (where ri is the
number of values of variable Xi, qi are the number of parental configurations
pa(Xi, G)j = paij for variable Xi w.r.t. the Bayesian network G). Then the a
posteriori distribution for an “observed” parameter family θij0 where j0 is the
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index of pai(x) is given by

p(θ|x) =

∏n
i=1 p(xi|pai(x), θij0)p(θij0 )

p(x)

n∏

i=1

∏

j 6=j0

p(θij) (1.43)

∝
n∏

i=1

θij0xiDir(θij0 |αij0 ) (1.44)

∝
n∏

i=1

Dir(θij0 |αij01, . . . , αij0xi + 1, . . . , αij0ri), (1.45)

which shows that the parameter posterior preserves the parameter independence
property and that local standard Bayesian updating is performed on the hy-
perparameters of the “observed” Dirichlets (the hyperparameters for the other
parameter families θi0j with j 6= j0 are unchanged).

1.2.4 Inference over model structures

The posterior of the Bayesian network (structure) is the product of the model
likelihood and the structure prior.

p(G|DN ) ∝ p(G)

∫

p(DN |θ, G)p(θ|G) dθ = p(G)p(DN |G). (1.46)

To reach a closed form for the likelihood term we continue with the assump-
tion of the previous paragraph: N complete observations, i.i.d. multinomial
sampling, Bayesian network model with parameter independence and Dirichlet
parameter priors following [29, 131, 74]. Under these assumptions the obser-
vation of a complete case results in a local standard Bayesian updating of the
hyperparameters of the “observed” Dirichlets retaining the parameter indepen-
dence (see Eq. 1.43). The maintained parameter independence allows a standard
parental decomposition w.r.t. the Bayesian network G for each observation (see
Eq. 1.29), which allows the following rearrangement:

p(x(1), . . . , x(N)|G) =
N∏

l=1

n∏

i=1

p(x
(l)
i |pa

(l)
i ) (1.47)

=

n∏

i=1

N∏

l=1

p(x
(l)
i |pa

(l)
i ) (1.48)

=

n∏

i=1

qi∏

j=1

N∏

l=1

p(x
(l)
i |paij)

1(paij=pa
(l)
i ), (1.49)

where pa
(l)
i denotes the value(s) of parental set of Xi in case l. The marginal

probability of the data for a single Dirichlet prior and multinomial sampling
was derived in Eq. ?? and Eq. ??, ??. Now if ri denotes the cardinality of the
discrete values of variable Xi, αijk the initial Dirichlet hyperparameters, and
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nijk the number of occurrences for the variable Xi, its parental configuration
paij and its value rk, then for each variable Xi and parental configurations j
independently

N∏

l=1

p(x
(l)
i |paij , G)1(paij=pa

(l)
i ) =

∏ri

k=1 (αijk . . . (αijk + nk))

αij+ . . . (αij+ + n)
(1.50)

=
Γ(αij+)

Γ(αij+ + nij+)

ri∏

k=1

Γ(αijk + nijk)

Γ(αijk)
,

Putting everything together, if the prior satisfies the structure modularity,
then the posterior of the Bayesian network structure has the following product
form

p(G|DN ) ∝
n∏

i=1

p(Pa(Xi, G))S(Xi, Pa(Xi, G), DN ) where (1.51)

S(Xi, Pa(Xi, G), DN ) =

qi∏

j=1

Γ(αij+)

Γ(αij+ + nij+)

ri∏

k=1

Γ(αijk + nijk)

Γ(αijk)
.

FULLVERSION> For a condition when the posterior probability of a Bayesian
network structure decomposes into a product of terms expressing the (uncondi-
tional) posterior probability of the parental set Pa(Xi, G) for variable Xi given
the data, see Section 1.4.1.

<FULLVERSION

1.3 Knowledge engineering

As discussed in Section 1.1 and enumerated in List 1.2, the Bayesian network can
serve as a multilevel (structural or parametric), multiple-point-of-view (proba-
bilistic or causal) representation of the domain. Besides being a model (“surro-
gate”), it fulfills other important roles of a knowledge representation (following
the proposed roles from [37]): ontological (what kind of objects and relations
exists in the domain), inferential (what kind of inference is possible in the do-
main), computational (what kinds of embedding of the model and real-world
applications are possible), communicational (what kind of understanding and
communication is supported by the model between domain experts, knowledge
engineers, and users).

Because of the versatility of the Bayesian network representation as a knowl-
edge representation, knowledge engineering methodologies are necessary for
proper and efficient real-world applications. Particularly, if a Bayesian network
model serves as a probabilistic expert system or as the engine of a decision sup-
port system, its construction should be subject to engineering standards, which
include specifications with quantitative quality measures for the process and
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the product and complexity measures related to budgetary, personal and time
limits, etc. However, these issues are still largely unexplored and the knowledge
engineering of Bayesian networks is still in its early stage (described for exam-
ple in [1]). The main reasons are the versatility of the representation mentioned
above, the continuing extensions of the representation and the newly evolved
knowledge engineering context of the “e-science” era.

FULLVERSION>

1.3.1 The “classical” knowledge engineering

First, we summarize the general steps of the “classical” knowledge engineering of
Bayesian networks, which are synchronous with the general knowledge engineer-
ing of logical knowledge bases [126]. This list also incorporates our experience
of model construction in the ovarian cancer domain [11].

1. Identification of purpose, scopes and levels. The major factors underlying
the purpose of Bayesian network modeling are the following: probabilistic
or causal interpretation, structural or parametric level, decision-support or
explanation, domain-wide or classification (i.e., are there any specifically
interesting variable(s) or model feature). Next a reasonable scope and
level have to be identified including variables and a level of granularity.

2. Collection of informal knowledge. Make a list of all prior knowledge about
variables, discretizations, existing dependency models. Classify different
types of priors that exist (from exactly specified prior sub-models to high
level guesses about qualitative dependencies). Conversion formulas can be
constructed to compile the raw prior knowledge into compatible with the
conditions of the task and the format of the Bayesian network.

3. Adoption of terminology and ontology Adopt a terminology hopefully from
an existing domain ontology and select a “coverable variable set” that
seems to be quantifiable from the prior background knowledge.

4. S tructure elicitation Specify a complete domain model by following stan-
dard construction mechanism for Bayesian networks based on either the
Markov conditions (see Def. 1.1.5, 1.1.6, 1.1.7 or on the causal Markov
assumption (Def. 1.1.18). Consider also the existing prior sub-models.

5. Parameter and hyperparameter elicitation. Perform parameter and hyper-
parameter elicitation [141, 60, 73, 62, 125, 109, 45]. Construct secondary
conversion models and formulas to quantify the final model, considering
consistency issues [112].

6. Sensitivity analysis, refinement, verification and validation Perform sensi-
tivity analysis, possibly refining the model [31]. Evaluate the performance
of the system on test cases or possibly on benchmark cases and in real-
world circumstances.
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<FULLVERSION

The “classical” knowledge engineering of Bayesian networks in complex do-
mains was criticized as aiming at a “one-shot” and “monolithic” Bayesian net-
work. Its extension led to new representational methods, especially to modular-
ized representations [119, 104, 43, 111, 97]. The object-oriented and frame-based
approaches were partly responses to problems of modularization, validation, ver-
ification, maintenance and reuse [96, 88, 89]. Other approaches extended the
Bayesian network representation itself. The multi-net representation was partly
a response to a problem related to the elicitation and representation of contex-
tual independencies [61]. The qualitative Bayesian networks and other semantic
extension of the represented relations were partly a response to the problem of
the elicitation and refinement of parameters [145, 99, 121], similarly to the in-
vestigation of special local dependency models [72, 52].

FULLVERSION>

The semi-final result of Bayesian knowledge engineering is a prior distribu-
tion over the model space and parameters, so its evaluation in Bayesian data
analysis corresponds to the general issue of model evaluation and comparison.
A speciality of this mixture of knowledge engineering and data analysis is that
because of the modularized description of the model, the evaluation can sup-
port the detailed compatibility of the data and the parts, modules of the model,
possibly identified by the attached semantic context.

<FULLVERSION

FULLVERSION>

First we discuss the application of the predictive sequential (“prequential”)
analysis for Bayesian networks. Second we discuss the relation of the sequential
analysis of the posteriors for properties of the model. Third, we discuss methods
to define general informative utility for the network structures based on an ABN-
KB, which allows a full-scale decision theoretic evaluation of the posteriors.
Next, we summarize an evaluation of structure posteriors using a utility-free
measure and reference structure. Finally, heuristic methods are summarized
to evaluate and compare a (structure) posterior against another (structure)
posterior.

<FULLVERSION

1.4 Prequential analysis by Bayesian networks

The Bayes factor in Eq. ?? is typically used in a non-sequential setup. In Sec-
tion ?? we summarized the prequential framework, which evaluates the model
from a forecasting point of view by scoring its sequential predictions based on
the actual observations [131, 33]. Because of its sequentiality, it also offers a
sample-by-sample evaluation of the compatibility of the data and the model
(see Section ??). For us, the case of a (discrete and finite) probabilistic fore-
casting system (PFS) is relevant predicting a distribution p(Xi|x1, . . . , xi−1)

for the observation at step i. FULLVERSION> We also reviewed the advan-
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tages of a logarithmic scoring function (see Th. ?? and comments afterwards).

<FULLVERSION For the application of the prequential evaluation for Bayesian
networks and parts of the model we have to interpret them as PFSs and compare
them using the logarithmic score (see Eq. ??).

The PFS shall be defined as a Bayesian forecasting system (see Section ??)
using a fixed Bayesian network structure with Dirichlet parameter priors under
the condition of parameter independence.

The global monitor tracks the overall performance of the Bayesian network
model M = (G, θ) over a data set DN :

S(M ; DN) =

N∑

l=1

− log p(x(l)|x(1), . . . , x(l−1), M) (1.52)

= − log p(x(1), . . . , x(N)|M). (1.53)

The equation shows the ordering-insensitivity and batch-sequential equiv-
alence of the log-score for PFSs. By noting that this is the model likelihood
derived in Eq. 1.47, 1.50, the score is given by

S(M ; DN) = − log
n∏

i=1

qi∏

j=1

Γ(αij+)

Γ(αij+ + nij+)

∏ri

k=1 Γ(αijk + nijk)
∏ri

k=1 Γ(αijk)
. (1.54)

In line with the decomposition w.r.t. the structure (see Eq. 1.51) various
monitors were suggested for the parts of the Bayesian network model.

The (unconditional) node monitor tracks the performance of the Bayesian
network model M w.r.t. a given variable Xi:

S(Xi; DN ) = − log

N∏

l=1

p(x
(l)
i |x(1), . . . , x(l−1), M). (1.55)

Two variants of the node monitor are the conditional node monitors, because
the target variable is predicted conditioned on all the other variables or only
on the parental set in the actual case. This monitor was called a “conditional
node monitor” [131]), but in the case of complete data assumption this is equiv-
alent with scoring the predictive performance of the Markov blanket subgraph
MBG(Xi, G). So we will adopt the term Markov blanket subgraph monitor.

S(MBG(Xi, G); DN ) = − log

N∏

l=1

p(x
(l)
i |x(l) \ {Xi}, x(1), . . . , x(l−1)). (1.56)

Conditioning only on the parental set in a causal approach, we get the mech-
anism monitor that tracks the performance of the parental set Pa(Xi, G) in
forecasting a variable:

S(Pa(Xi, G); DN ) = − log

N∏

l=1

p(x
(l)
i | pa(Xi) = pa

(l)
i , x(1), . . . , x(l−1)). (1.57)
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The specialization of the mechanism monitor is the configuration monitor
that tracks the performance of a parental set in case of a specific parental
configuration paij :

S(paij ; DN ) = − log

N∏

l=1

p(x
(l)
i |paij , x

(1), . . . , x(l−1))1(pa
(l)
i =paij). (1.58)

By these definitions we can rewrite the model score as the sum of the mech-
anism monitors or the total sum of all of the configuration monitors in M .

S(M ; DN ) =

n∑

i=1

S(Pa(Xi, G); DN ) =

n∑

i=1

qi∑

j=1

S(paij ; DN ). (1.59)

The application of the model monitor, mechanism monitor and parent-child
monitor in the ovarian cancer domain are reported in Section ??.

FULLVERSION>

1.4.1 Sequential evaluation of posteriors for structural fea-
tures

The prequential analysis of the Bayesian network structure is closely related to
(Bayesian) sequential analysis of various posteriors related to the structure. In-
deed, the batch score corresponding to a model monitor in Eq. 1.52 defined over
a Bayesian network model with parameter prior is the model log-likelihood (see
Eq. 1.47, 1.50). The posterior of the Bayesian network (structure) is the product
of the likelihood from the model monitor and a structure prior. Especially, in
case of uniform priors these are identical:

p(G|DN ) ∝ exp(S(G; DN ))p(G). (1.60)

However, the relation is not that direct in general between a node monitor
and the posterior of the structural features determining the node monitor. So,
the sequential analysis of the posterior of a model or the posterior of structural
features or ABN-propositions is a distinct evaluation methodology, which is
particularly important in the case of a rich semantic context such as an ABN-
KB. In general the computation of the sequence of posteriors of a structural
BN feature F (G) for l = 1, . . . , N requires computationally intensive methods
described in Chapter 2.7 and corresponds to the task of computing the sequential
posteriors for an arbitrary ABN-proposition:

p(α(G|K)|Dl) =
∑

α(G|K) is true

p(G|Dl) for l = 1, . . . , N. (1.61)

Recall, that an ABN-proposition can express structural features such as
parental sets πk and Markov blanket graphs mbg (P (π|Dl) or P (mbg |Dl)).
For example, the sequence of posteriors of the following ABN-proposition is
presented in Section ??: |Pa(Xk, G)− Pa(Xk, Gref0)| < 3.
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Now we continue with the investigation of special cases, when the posteriors
such as P (πk|Dl) has simple analytic forms directly related to the prequen-
tial score corresponding to the underlying structure. As a counter-example,
in the case of mechanism monitor, the corresponding score is a partial data
log-likelihood related to the parental substructure of the Bayesian network
πk = Pa(Xk, G0), but the posterior of the Bayesian network is not decom-
posable to a product of the posterior of this parental substructure and the rest
of the structure. So in general the mechanism monitor score is not directly
related to the posterior of the parental substructure:

p(πk|DN ) =
∑

G∼πk

p(G|DN ) ∝
∑

G∼πk

p(DN |G)p(G) (1.62)

=
∑

G∼πk

p(G)

n∏

i=1

N∏

l=1

p(x
(l)
i | pa(Xi, G) = pa

(l)
i , C1, . . . , Cl−1)(1.63)

=
∑

G∼πk

p(G)
n∏

i=1

exp(S(Pa(Xi, G); DN )). (1.64)

If p(G) is an unnormalized modular prior (see Def. 1.1.23) over the structures
compatible with a fixed ordering of the variables ≺0 (as in Eq. 1.34), then the
posterior of the Bayesian network can be factorized to a product of the posteriors
of parental substructures and

p(πk|DN ) ∝
∑

G∼πk

n∏

i=1

p(Pa(Xi, G)) exp(S(Pa(Xi, G); DN )) (1.65)

= p(πk) exp(S(πk, G); DN )c, where (1.66)

1/c =
∑

P (Pa(Xk,G))>0

p(Pa(Xk, G))p(D
|Xk

N |Pa(Xk, G), D
|Pa(Xk,G)
N ).

The D
|bsX
N denotes the partial data set including only the values for the

variables X . A special case is the set of Naive Bayesian networks with a fixed
root variable and leaves with a structure prior being a product of edge proba-
bilities (see Section ??). Another special case when the posterior of a parental
substructure πk = Pa(Xk, G0) is independently present in a decomposed form of
the posterior of the structure, if (1) p(G) is positive only for structures without
outgoing edges from Xk (i.e., over structures for which there exists an ances-
tral/topological ordering of the variables ≺ with Xk is the last) and (2) p(G)
is decomposed as p(G) = p(G \ Xk)p(Pa(Xk)) (i.e., in the Bayesian regres-
sion/classification context: the belief in the factors for the dependency variable
is independent of the belief for the interactions between the factors, see Sec-
tion ??). Then
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p(πk|DN ) ∝
∑

G∼πk

p(DN |G)p(G) (1.67)

= p(πk) exp(S(Pa(Xi, G); DN ))c, where (1.68)

c =
∑

G \Xkp(G \Xk)p(D
|V \Xk

N |G \Xk). (1.69)

Under this condition the prequential results of mechanism monitors are the
log-posteriors of the corresponding parental sets with uniform prior.

1.4.2 Evaluation using informative utilities

After discussing the sequential evaluation of the logarithmic losses and the pos-
teriors for a given model and for its structural features, now we investigate the
specification of general “informative” utilities for Bayesian network structures
G (see Def. ??), which is necessary for a decision theoretic evaluation of model
structures. As earlier (see Def. ??), we consider the model selection as an ac-
tion with this outcome in case of “true” G (e.g., the report of Ĝ). So the goal
is to specify an “informative” loss function L(G, Ĝ). The term “informative”
indicates the potential semantic background knowledge from the ABN-KB pos-
sibly involved in the definition, so if it is necessary to emphasize this aspect
we use the term ABN-utility or ABN-loss function. We assume that a same
ABN-knowledge base and the standard textual and numeric functions are used
in the composition (see Def. ??).

U(G, Ĝ|ABN −KB) : {G × G} → R (1.70)

In fact the ABN-utility function L(G, Ĝ|ABN − KB) can be seen as the
generalization of ABN sentences α(G) : G → true/false).

The simplest use of the loss function is if we have a gold standard G0 and a
goodness/penalty score can be computed for a particular model Ĝ as L(G0, Ĝ).
A related application in evaluating and comparing priors is to qualify the pos-
terior (so the priors) by their corresponding expected losses Ep(G|Dl)[L(G0, G)].

Without a gold standard model the loss function L(G, Ĝ) can be used in a
standard decision theoretic framework to evaluate a particular model Ĝ by its
expected loss Ep(G|Dl)[L(G, Ĝ)], possibly sequentially for l = 1, . . . , N . If only
the evolution of the consequence of the best action (i.e., the minimal expected
loss) is interesting, a learning curve can be constructed by performing optimal
model selection sequentially for the data set Dl and indicate

L∗
Dl

= minĜ Ep(G|Dl)[L(G, Ĝ)] ∝
∑

G

L(G, Ĝ)p(G)
︸ ︷︷ ︸

p(Dl|G). (1.71)

We indicated again the complementarity of the prior and the utility. Now
we discuss forms and ingredients of the loss function L(G, Ĝ|ABN − KB). A
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general form is similar to the combination of deviation-based and feature-based
structure priors (see Section 1.1.5.2).

L(G, Ĝ) =

K∑

i=1

wiαi(Ĝ|G, ABN −KB), (1.72)

where αi(Ĝ|G, ABN−KB) for i = 1, . . . , K denote arbitrary ABN-propositions
over the knowledge base {ABN − KB, G} including the structure G as a ref-
erence structure and wi are their weights. This form satisfies a property called
preferential independence between the propositions (features), that is indepen-
dent penalties for the propositions in the loss function. Because these features
are usually logically dependent, the effect of this possible inconsistency should
be considered in evaluating such loss functions.

In its most general form an ABN-proposition can express arbitrary well-
defined semantic property for Ĝ w.r.t. G and at the other extreme it can rep-
resents an elementary structural difference between G and Ĝ. For example the
ABN-KB in the ovarian cancer domain includes four-graded rating for the pair-
wise dependency relations and for the causal mechanisms (i.e., for the parental
sets), see Chapter ?? for details. The represented structural differences can be
local features such as the different status of an edge between Xi and Xj in G

and in Ĝ or global such as the different pairwise causal relation between Xi and
Xj induced by G and by Ĝ. The combination of these leads to features, such
as the following:

α(Ĝ|G0, ABN −KB) = CaE(Xi, Xj |G0)

∧(Rate(UndirectedEdge(Xi, Xj) >=′ medium′))

∧Independent(Xj , Xi|Ĝ)

The application of the loss function with a reference (gold standard) is fre-
quently complicated by the following two issues, which also present in the thesis.
First, there can be multiple references as in our case we have three embedded
reference structures (see Section ??). Second, if the propositions do not include
explicitly a reference structure and they express only desirable properties of
Ĝ, they can be inconsistent in the sense that there is no reference structure
satisfying all the desiderata.

1.4.3 Evaluation using reference structure and structural
features

As mentioned above, the loss function L(G, Ĝ) with a reference structure G0

can be used to evaluate and compare posterior (so the priors) based on their
expected losses Ep(Ĝ|Dl)

[L(G0, Ĝ)]. This corresponds to the situation of assum-
ing random model selection according to the posterior over G given a data set
Dl (in a similar vein as in the Gibbs algorithm in [71]). If the loss function is
specified in a decomposed form of Eq. 1.72 by the propositions αi(Ĝ|G0) and
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their weightwi, then a reported Ĝ determines jointly the truth-values of the
propositions denoted by αi(Ĝ|G0).

Another approach can be gained for the numeric qualification of the posterior
using a reference structure G0 if we consider p(Ĝ) as a probabilistic knowledge
base, which induces distributions for a given set of ABN-propositions αi(Ĝ|G0)
with 2 × 2 loss matrices Wi. These should not be independent or completely
determine a structure. In this decision theoretic situation for each proposition
αi(Ĝ|G0) an optimal, minimal loss decision (truth-value) αi(.|G0) can be de-
termined independently according to its induced probability p(Ĝ : αi(Ĝ|G0))
and the corresponding loss matrix Wi. Note the difference between the earlier
situation of complete model selection and this situation of using p(G) in the
Bayesian framework for predicting binary functions. For example as neither in-
dependence of the features nor the consistency of the values (i.e., DAG property)
is required it is possible that there is no Ĝ that the jointly generated α(Ĝ|G0) is
equal to the individually generated α(|G0).Now the total, minimal loss can be

used to numerically qualify the posterior belief p(Ĝ), which is determined by the
reported values αi(.|G0), the reference values αi(G0|G0) and the loss matrices
Wi.

Further generalization can be reached if p(Ĝ) is evaluated with a “loss-
free” method without the loss matrices Wi using only the induced probabilities
p(Ĝ : αi(Ĝ|G0)) and the reference values αi(G0|G0). The method is based on
the idea of interpreting p(Ĝ) as a binary classifier and evaluate its performance
on the fixed set of (binary) propositions. First, predicted binary values are
determined with a threshold τ from the probabilities for the propositions

αi(τ) = 1(τ < p(Ĝ : αi(Ĝ|G0))) (1.73)

Then the quality of p(Ĝ) can be characterized w.r.t. the given proposi-
tions and their reference values by the sensitivity and 1-specificity pairs for
well-selected values of τ (see Section ?? for the definition of sensitivity and
specificity). Another option is to use the so-called Recevier Operating Charac-
teristic curve (ROC curve) that plots these pairs for a changing τ in the [0, 1]
interval. Finally a single scalar the so-called Area Under the Curve (AUC) value
can be gained by integrating the ROC curve.

The Chapter 2 discusses the computation of the probabilities of ABN-propositions.
In Chapter ?? sensitivity and specificity pairs, ROC curves and AUC values are
reported in the ovarian cancer domain for various propositions such edge pres-
ence and Markov blanket membership in the model and related to a central
node.

1.4.4 Evaluation using reference posterior and ranks for
structural features

Finally, we discuss a method to evaluate a structure posterior against reference
ranks and scalar scores for structural features. That is we assume that for one or
more multivalued structural features Fi(G) with values fij there exist referential
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ranks and scalar scores Rank0(fi) and Score0(fi). Such features for a variable
Xi are the parental relation (CaE(Xi, Xj , G)), the parental set (Pa(Xi, G)),
the Markov blanket membership (MBM(Xi, Xj, G)) and the Markov blanket set
(MB(Xi, G)). Because the posterior probability p(G) induces a distribution for
the structural features P (Fi(G)) and a corresponding Rank(Fi), the reference
can defined by a posterior with a reference (possibly uniform) prior, so this
technique as the previous can be used to compare directly posteriors (so priors),
not only a data based posterior against expert’s reference.

If the reference scores are probabilities, then standard distance measures such
as L1 or the Kullback-Leibler semi-distance can be used to quantify the closeness
of the posterior probability p(G) to the reference in terms of the marginals
P (Fi(G)).

If only scalar scores and ranks are available, then scatter plots can be used
for the manual comparison (see Section ?? for such results). Because the as-
sumption of linear relation is usually inadequate (i.e., tests on the Pearson cor-
relation coefficient), we investigated the more robust hypothesis of the existence
of a monotonic relation using the Spearman rank correlation coefficient rS . It
can be defined equivalently with the following more succinct form

rS(Fi) = 1− 6

∑#(Fi)
j=1 (Rank0(fij)−Rank(fij))

2

K(K2 − 1)
. (1.74)

Additionally, we report a special rank-correlation measure penalizing only
the 25% differences of ranks defined as follows. Define a matrix Rk in which the
aij element is the number of times the feature values fk have reference rank i
and data rank j. Now define a matrix R′

k which is the 4 − by − 4 partitioning
of R with the following intuitive interpretation for the four partitions: highly
relevant, moderately relevant, less relevant, and not relevant. We report the
normalized trace of R′, that is the correspondence between the ranks using this
4-graded granularity.

<FULLVERSION

1.5 Learning Bayesian networks

By now we summarized a framework for general, normative, inductive infer-
ences using probabilistic domain models: the Bayesian decision-theoretic frame-

work with Bayesian networks. FULLVERSION> This includes the analysis of
(1) parameter and structure posteriors, (2) posteriors of structural features,
(3) posteriors of ABN-propositions or (4) the expected loss of related actions.

<FULLVERSION Frequently, it is restricted to optimization, particularly over
structures, which is termed the “standard” Bayesian network (structure) learn-
ing, not necessarily within the Bayesian decision theoretic framework. This
mode of operation is particularly relevant if a large amount of data is available
w.r.t. the complexity of the model. So, in this section we finish our overview
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with the summary of the score-based learning of Bayesian networks, including
Bayesian and non-Bayesian inductive scores and search algorithms.

Another large family of methods for finding complete models best fitting the
observations are the constraint-based algorithms. These construct a network
by performing independence tests with certain prespecified significance level,
which is an NP-hard task (see Th. 1.5.4). Assuming no hidden variables, a
stable distribution and correct hypothesis tests, the Inductive Causation (IC)
algorithm correctly identifies a Bayesian network that exactly represents the
independencies (see [116, 66, 134]). It means that the score-based and the
constraint-based learning algorithms behave identically for stable distributions
in the limit w.r.t. the sample size(see Th. 1.5.3). However, there is no generally
recommendable prespecified significance level and final significance level for the
identified model. Furthermore, because of the frequentist approach, there is no
principled way to incorporate uncertain prior information. On the other hand,
efficient constraint-based algorithms exist that work in the presence of hidden
variables, which is currently not tractable with Bayesian methods.

Our assumption of complete, observational and discrete data modeled with
a fixed set of discrete variables is a serious restriction, but it provides a suffi-
cient conceptual framework to develop the main topics in the thesis such as the
(automated) construction of priors, the computation of posteriors of complex
structural features and their role in classification. We direct the reader to the
following sources regarding the treatment of mixture of discrete and continuous
variables [98, 33, 74]; the mixture of observational and interventional data [66];
the issue of incomplete data[64, 50]; the issue of special local probabilistic de-
pendency models [52] and the issue of temporal data and variables [126].

1.5.1 Score functions and their properties

The score-based learning of Bayesian networks best fitting to the data DN

consists of the definition of a score function S(G, DN ) : {G×DN} → R and a
search method in the space of DAGs. In a Bayesian decision theoretic framework
the score function is specified as the expected loss EP (Ĝ|D)[L(G, Ĝ)] of selecting

(i.e., reporting) the structure Ĝ. Whereas the advantages of knowledge rich
utility functions are apparent, standard score functions lack domain knowledge.
For example, in case of 0-1 utility function the model with maximum expected
utility corresponds to the structure with maximum a posteriori probability or
in case of uniform prior to finding the maximum likelihood structure.:

GMAP = arg max
Ĝ

Ep(G|D)[L(G, Ĝ)] = argmax
Ĝ

p(Ĝ|D), if L(G, Ĝ) = 1(G = Ĝ).

(1.75)
In Eq. 1.51 we derived a closed form for the posterior of a structure G,

p(G, DN ) = p(G)
n∏

i=1

qi∏

j=1

Γ(αij+)

Γ(αij+ + nij+)

ri∏

k=1

Γ(αijk+nijk
)

Γ(αijk)
, (1.76)



1.5. Learning Bayesian networks 41

termed Bayesian Dirichlet metric [74]. If the initial hyperparameters α satisfy
the conditions of Th. 1.1.6 (ensuring indistinguishability within an equivalence
class), then it is denoted as BDe. If the initial hyperparameters α are constant 1
then it is denoted by BDCH [29]. If the initial hyperparameters are the converse
of the number of parameters corresponding to the local, overall multinomial
models of the variables then it is denoted by BDeu [17, 74]. The corresponding
score functions are defined as BD(G; DN ) = log(p(G, DN )).

Another family of non-Bayesian score functions can be derived within the
likelihood framework. The maximum likelihood score is defined as follows

ML(G; DN ) = maxθp(DN |G, θ). (1.77)

Assuming a complete, discrete value, i.i.d. data set, it can be shown that
this is maximized by the selection of θ∗ijk = Nijk/Nij+, where Nijk are the
occurrences of value xk and parental configuration qj for variable Xi and its
parental set pa(Xi) (Nij+ is the appropriate sum) [57, 127]. By substituting
this maximum likelihood parameter selection, we get

ML(G; DN ) = p(DN |G, θ∗) =

N∏

l=1

n∏

i=1

p(x
(l)
i |pa

(l)
i ) (1.78)

=

n∏

i=1

qi∏

j=1

ri∏

k=1

(
Nijk

Nij+

)Nijk

, (1.79)

by taking logarithm, rearranging and expanding with N

log(ML(G; DN )) = N

n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk

N
log

(
Nijk

Nij+

)

. (1.80)

Using the definition of conditional entropy H(Y |X) =
∑

x p(x)
∑

y p(y|x) log(p(y|x)),
the chain rule H(X, Y ) = H(Y |X) + H(X) and the definition of mutual infor-
mation I(Y ; X) = H(Y )−H(Y |X) [32], it can be rewritten as [127]

log(ML(G; DN )) = −N

n∑

i=1

H(Xi|Pa(Xi, G)) (1.81)

= −NH(X1, . . . , Xn) (1.82)

= N

n∑

i=1

I(Xi; Pa(Xi, G))−N

n∑

i=1

H(Xi) (1.83)

This shows that the maximization of the maximum likelihood score is equiv-
alent to finding a Bayesian network parameterized with the observed frequencies
that has maximum mutual information between its children and their parents
(the terms not depending on the structure can be neglected in Eq. 1.83). Note
the close connection of this interpretation to the concept that causal ordering
is related to the determination of each variable by the earlier variables [44].
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Because of the monotonicity of mutual information — if Pa(Xi) ⊂ Pa(Xi)
′,

then I(Xi; Pa(Xi)) ≤ I(Xi; Pa′(Xi)) [32] — the complete network maximizes
the maximum likelihood score. However, score functions such as the MDL-score
derived from the minimum description length (MDL) principle or the Bayesian
information criterion (BIC)-score derived with a non-informative Bayesian ap-
proach contains various complexity penalty terms. We used only the following
MDL/BIC-score defined as follows

BIC(G; DN ) = log(ML(G; DN ))− 1

2
dim(G) log(N), (1.84)

where dim(G) denotes the number of free parameters. For overviews of other
score functions and for the derivation of the BIC-score, see [94, 15, 25, 57, 75].
We discuss now the properties scoring metrics w.r.t. observational equivalence
and sample size.

Definition 1.5.1. A score function S(G; DN ) is called score equivalent, if for
each pair of observationally equivalent Bayesian network structure G1, G2 the
scores are equal S(G1; DN ) = S(G2; DN) for all DN [74].

Theorem 1.5.1 ([74]). The BDe(G; DN ) scoring metric is likelihood equivalent,
that is if G1, G2 are observational equivalent, then p(DN |G1) = p(DN |G2).
Furthermore, if the structure prior is acausal (i.e., equal for such G1, G2), then
the BDe scoring metric is score equivalent [74].

Consequently, the score can be used directly in an acausal approach if the
hypotheses are the observational equivalence classes. In a causal approach to
Bayesian network structure learning with the BD metrics the structure prior can
incorporate information differentiating observationally equivalent structures,
which means an asymptotically vanishing term w.r.t. the likelihood term. The
differentiation within an equivalence class by a non-likelihood equivalent BD
score (i.e., by a non-likelihood equivalent parameter prior such as the BDCH) is
similarly vanishing.

The score equivalence of the BIC score is the direct consequence of the result
that the number of free parameters (i.e., the term dim(G)) are equal in observa-
tionally equivalent Bayesian networks (here again as throughout the thesis, we
assume discrete variables and multinomial local dependency models) [15, 25, 24].

Theorem 1.5.2 ([24]). The BIC(G; DN ) scoring metric is score equivalent.

The next theorem, due to Bouckaert [15], ensures the asymptotic consis-
tency of an idealized (algorithm-free) score based Bayesian network learning
that always returns arg maxG S(G, DN ).

Theorem 1.5.3 ([15]). Let V be a set of variables. Let the prior distribution
p(G) over Bayesian network structures be strictly positive. Let p(V ) be a positive
and stable distribution and G0 is a corresponding perfect map (i.e., a Bayesian
network representing exactly the independencies). Now, let DN be an i.i.d. data
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set generated from p(V ). Then, for any network structure G over V that is not
a perfect map of p(V ) we have that

lim
N→∞

BDe(G0; DN )− BDe(G; DN ) = −∞ and also (1.85)

lim
N→∞

BICe(G0; DN)− BICe(G; DN ) = −∞. (1.86)

For further results about the asymptotic optimality of the scores for not
stable distributions, see [15]. Results about asymptotic consistency and rate
of convergence results for maximum likelihood scores are derived in [15, 57].
Furthermore, a rate of convergence is also derived and a corresponding sample
complexity N(ǫ, δ) to select an appropriate sample size for a given accuracy
between the target distribution p0 and the distribution pBN represented by the
learned Bayesian network with a given confidence

p(DN : KL(p0|pBN) > ǫ) < δ. (1.87)

Unfortunately, the tightness of this bound depends strongly on the properties
of the target distribution and it scores the parametric closeness and not the
structural one. For the sample complexity of parameter learning, see [35].

Another bad news is that in general different structures maximize the BD
scores and BIC scores for a finite sample size, despite the asymptotic equivalence
of the scores (for a related result about their certain equivalence under specific
circumstances see [15]). For example it can be shown that the BIC metric is
never maximal for structures with larger parental set size than log( 2N

log N + 1),
on the contrary a data set DN can be constructed for which the BDCH metric
is maximal for a structure containing a parental set with size N/2 [15]. As
discussed by Bouckaert, this difference is partly the consequence of the fact that
the BD scores penalize only the instantiated parental configurations, whereas
the BIC score has a fixed complexity penalty term, preferring sparser networks.
A related anomaly of the BDe score is that it includes mostly constant parents
(usually occurring in case of small data sets).

1.5.2 Search algorithms for finding high-scoring BNs

As discussed in the beginning of this section, the recently used loss functions or
more generally the score functions S(G, DN) are usually efficiently computable
inO(nN). It is partly the consequence of the decomposability of the score, which
allows even further computational speed-ups as discussed later on. However, the
global DAG constraint does not allow the decomposition, so we have to perform
a combinatorial optimization in the space of DAGs over n nodes (variables).
The cardinality of the space of DAGs is given by a recursion [29].

f(n) =

n∑

i=1

(−1)i+12i(n−1)f(n− i) with f(0) = 1. (1.88)

By neglecting the DAG-constraint, this can be bounded by the number of the
combinations of the edges between different nodes (2n(n−1)). By limiting the



44 Chapter 1. Bayesian networks primer

maximum number of parents to k it is still super-exponential (consider that the
number of parental sets for a given ordering of the variables is in the order of
nkn, so 2O(kn log n) [54]).

The computational complexity of learning BNs in the constraint-based and in
the score-based framework is bounded by the following two theorems (assuming
P 6= NP ). The first states the NP-hardness of finding a Bayesian network for
the observations (as minimal representation of the observed independencies, see
Def. 1.1.12) [15].

Theorem 1.5.4 ([15]). Let V be a set of variables with joint distribution p(V ).
Assume that an oracle is available that reveals in O(1) time whether an inde-
pendence statement holds in p. Let 0 < k ≤ |V | and s = 1

2n(n− 1)− 1
2k(k− 1).

Then, the problem of deciding whether or not there is a (non-minimal) Bayesian
network that represents p with at most s edges by consulting the oracle is NP-
complete.

The second theorem states the NP-hardness of finding a best scoring Bayesian
network (i.e., the NP-hardness of optimization over DAGs) [25].

Theorem 1.5.5 ([25]). Let V be a set of variables, DN is a complete data set,
and S(G, DN ) is a score function. Then, it is NP-complete to decide whether or
not there exists such a Bayesian network structure G0 defined over the variables
V that each node in G0 has at most 1 < k parents and c ≤ S(G0, DN), where
c ∈ R.

In the special case of k = 1 (that is for trees and polytrees) standard max-
imum weight spanning tree (MWST) construction algorithms can be applied,
which has polynomial time complexity, see [114, 25]. The NP-hard nature of the
problem remains if the learning takes place over the smaller space of equivalence
classes [25, 85].

Consequently, a frequently used suboptimal approach is to use iterative im-
provement algorithms with local search. These start from a good or at least a
neutral candidate satisfying the prior knowledge and the DAG constraint. In
each step i a structure with an improved score is selected from the prespeci-
fied neighborhood Nb(Gi) of Gi, otherwise the algorithm is stopped. Usually
this neighborhood is defined as structures with 1 edge difference. However, the
result of the iterative improvement algorithms with local search is probably a
local optimum, so frequently the algorithms are restarted with a random initial
candidate. This problem can be avoided by replacing the greedy element of the
algorithm with a stochastic scheme allowing selections of structures with worse
score, as in the simulated annealing algorithm. A greedy algorithm called K2
can be applied if the score is decomposed and the ordering of the variables are
well-restricted, because for each ordering the parental sets can be optimized
independently with a greedy algorithm [29]. We shall use two minor extensions
of the K2 algorithm that arise if only a partial ordering is available. The K2cyc
denotes the systematic application of the K2 for each 1 ≤ nth allowed permu-
tation using an alphabetic ordering of the permutations. The K2rnd denotes
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the application of K2 for randomly drawn admissible orderings. Studies of
the performance of various iterative improvement algorithms using local search
and simulated annealing are reported in [25, 15], which indicate a robustly good
performance with relatively low computational complexity for the K2 algorithm
without tuning to the domain, data set, etc. Our experiments in the ovarian
cancer domain with various iterative improvement algorithms with local search
and simulated annealing algorithm similarly strengthened this result. In the
thesis the reported results are usually computed with a K2 variant algorithm
using the implementational tricks of the sample tree to compute the score for a
parental set in O(N) as proposed in [29] and storing the parental scores as also
proposed in [17].
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Chapter 2

Inference over BN features

RELEVANT>

First we categorize structural properties (i.e., features) of Bayesian networks,
and introduce a feature called Markov blanket graph. Second we summarize the
advantages of the Bayesian approach to BN features, and formalize the appli-
cability and the statistical advantages of the ordering-based MCMC estimation
method. Third we discuss the consequences of the exponential cardinality of fea-
ture values for decisions based on their MC estimates. Finally, the integration
of estimation and search of high-scoring MBG feature values is analyzed.

<RELEVANT

The increasing complexity of the models, the incorporated prior knowledge
and the queries leads to the issue of Bayesian inference over general properties
of Bayesian networks (i.e., to estimation of the expectation of binary random
variables). Although we discuss this problem from the point of inference over
structural features, note that the expectation of functions over the space of
DAGs w.r.t. a posterior appears in a wide range of problems, such as in the
posterior of a feature (i.e., structural model property) Fc, in the posterior of
an ABN sentence (see Def. ??), in the expected loss of the selection of a given
model and in the full-scale Bayesian inference over domain values (see Eq. 1.33):

p(Fc = fc|DN ) =
∑

G

1(Fc(G) = fc)p(G|DN ) (2.1)

p(α(G)|K, DN ) =
∑

M(G)∈M(K)

α(M(G))p(G|DN ) (2.2)

LĜ|DN
= Ep(G|DN )[L(G, Ĝ)] =

∑

G

L(G, Ĝ)p(G|DN ), (2.3)

p(y|x, DN ) = Ep(G|DN )[Ep(Θ|G,DN )[p(y|x, Θ, G)]]. (2.4)

First, we overview Bayesian network features in Section 2.1 and introduce
the Markov blanket subgraph feature in Section 2.2. In Section 2.3 and 2.4 we
discuss the advantages of feature posteriors as confidence measures w.r.t. the

47
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bootstrap probabilities. In Section 2.5 we will concentrate on the approximation
of Eq. 2.1, when the feature is a standard graph-theoretic property of DAG G
with values F (G) = fi, i = 1, . . . K. The growing importance of such model-
based, feature-oriented statistical inferences is the result of (1) frequent high
sample complexity for the identification of the complete model, (2) the lack
of prior for the complete model, (3) the high computational complexity for
the identification of the complete model, (4) the availability of computational
resources and stochastic methods for estimation, and (5) the availability of
complex semantic propositions with statistical semantics as the ABN sentences
in Eq. 2.2.

The most important factor is the relatively small amount of data. A general
expectation is that, in case of small amount of data, at least certain properties
with high significance of a complex model can be inferred and perhaps with
lower computational cost. So the goal is the automated learning of what is
learnable with high confidence in the considered model space given the data and
to support the interpretation of statistical inference by indicating confidence
measures for such properties. Furthermore, the model properties with high
significance can be used heuristically as “hard” constraints or “soft” bias to
support the inference of the complete model, either by influencing it through
priors in learning from heterogeneous sources or in the case of using the same
data set by influencing the optimization process itself (see Chapter ??). Note the
similarity of this approach to the frequentist constraint-based Bayesian network
learning methods, which perform hypothesis tests on local model properties (on
features) and integrate them into a consistent domain model. In a potential
Bayesian analog the hypothesis tests are replaced by the model-based feature
posteriors instead of the significance levels and p-values of hypothesis tests,
enhancing their integration in subsequent phases of learning a complete domain
model.

However, the Bayesian approach to feature learning has many additional as-
pects beside the estimation of the posterior. Such related issues are the effect of
the cardinality of feature values on the selection of optimal value(s) and the in-
tegration of estimation and search processes in case of high numbers of features,
which are discussed in Section 2.6 and 2.7. Additional issues related to classifi-
cation in our case are the support of full scale Bayesian inference over domain
values (i.e., the use of the estimated posterior distribution over the features as
a probabilistic knowledge base) and the transformation or inducement of priors
for a subsequent learning phase either using Bayesian networks or using other
more specialized representations, for example logistic regression or multilayer
perceptrons. These are discussed in Chapter ??.

Whereas these inferences are investigated mainly in fundamental research,
they may soon appear in standard statistical data analysis software and in de-
cision support systems as they can offer a more personalized and knowledge
intensive environment for inductive inferences. For example, the combination of
the electronic clinical and genomic patient data, the semantic web and evidence-
based medicine can be driving force for such complex probabilistic queries over
standardized knowledge bases and data-bases. A special case is the area of
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statistical analysis of biomedical literature, where we can treat the domain lit-
erature as a special data set and formulate queries against this voluminous
knowledge base (see Chapter ??). In general, it means that the knowledge in-
tensive Bayesian approach over large, distributed knowledge and data-bases will
get more and more emphasis within the area of knowledge and data analysis.

FULLVERSION>

The central topic of this chapter is the computation or approximation of the
posterior of such feature oriented ABN-proposition in Eq. 2.2 or the induced
posterior distribution of the feature p(F (G)) or its maximum a posteriori feature
value

fMAP = arg max
f

p(G : F (G) = f |DN ). (2.5)

Note that this corresponds to the 0-1 utility function over the feature values
and that in general the value fMAP is not equal to the value of the feature in
the maximum a posteriori model F (GMAP) (see Eq. 1.75).

<FULLVERSION

2.1 Bayesian network features

Before considering the induction of confidence measures over a Bayesian network
feature F , first we overview standard Bayesian network features, together with
proposed identification methods and the corresponding Bayesian tasks.

There is a large variety of features (i.e., model properties) to provide an
overall or specialized characterization of the underlying model, such as the undi-
rected edges or compelled edges (as direct relations or direct causal relations
under CMA), pairwise or partial ancestral ordering (related to causal ordering),
the parental sets, the pairwise relevance relations, the subset relevance rela-
tions (Markov blankets) or the partially parametric features such as the pair-
wise qualitative features. Despite this variety and the presence of the parental
set features, which are the ultimate building blocks of Bayesian networks, the
usefulness of these features are still seriously restricted by their unexplored
dependency in all application areas, such as in data analysis, in probabilistic
knowledge bases, in prior acquisition and in posterior-to-prior inducement for
later phases of Bayesian learning. This seems to be unavoidable because even
small sets of simple local features quickly become dependent, because of the
DAG constraint, what biases this model-based approach with hardly estimat-
able effects.

A possible solution is the definition of complex features (subtheories) that
are sufficient features for a given aspect of the domain theory and still more
efficiently learnable than the complete domain model. So, it is an open issue to
define complex features that on the one hand exactly model a semantically inter-
esting fragment (subtheory) of the domain and on the other hand they are still
considerable simpler than the complete domain model. Such a feature would
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exactly represent the interesting dependencies between the relevant simpler fea-
tures and the statistical and computational complexity of the estimation of its
distribution over the feature space would be lower and better interpretable.

In fact, we can define two approaches to Bayesian network features. The first
approach relies on the assumption that the feature set is fixed, the features are
significantly simpler than the complete domain model, though they provide an
overall characterization as a fragmentary representation, and the number of fea-
tures and feature values are tractable (not exponential, but linear or quadratic
in the number of variables). Such features are the pairwise edge or relevance
features (i.e., the compelled edges and Markov blanket relations). These simple
features are easily interpretable or can be used to support a subsequent learn-
ing phase of a complete Bayesian network model. The main challenge in this
approach is the computation of the corresponding expectations.

At the other extreme of feature learning we find the identification of arbitrary
subgraphs with statistical significance, which is an idealistically autonomous ap-
proach to feature learning consisting of a mixture of search and the computation
of the achieved significance. This is close to our approach to Bayesian network
features investigated in the thesis, but we restrict the subgraphs to Markov blan-
ket subgraphs to have a focused representation from a single, but complex point
of view (i.e., from conditional modeling) and we use the Bayesian framework
instead of the frequentist framework.

2.1.1 Edges: direct pairwise dependencies

The first family of frequentist algorithms for learning a Bayesian network feature
targets the identification of “direct” (unconditional) causal pairwise relations
(“direct” in the sense discussed in Section 1.1.3.2). If the hypotheses are the
DAGs as causal models, then this feature corresponds to the edges. If the
hypotheses are the observational equivalence classes as independence models,
then such relations are exactly identified by the compelled edges assuming no
hidden variables, the causal Markov condition and stability. The corresponding
posteriors in the Bayesian context are the following

p(Xi →G Xj |DN) =
∑

G

1(Xi →G Xj)p(G|DN ) (2.6)

p(CompE(Xi, Xj |G)|DN ) =
∑

G

CompE(Xi, Xj |G)p(G|DN ). (2.7)

In the presence of possible hidden variables there are more advanced constraint-
based algorithms for identifying relations with various causal interpretations,

though not in the Bayesian framework (see [116, 66], [26, 129]). FULLVERSION>
Interestingly, the starting point for these algorithms shown in Example 1.1.3 can
be used autonomously for the identification of “direct” causal pairwise relations
requiring only limited background knowledge (exogenous variables) and four lo-
cal independency tests [26]. Despite its incompleteness, its low computational
complexity (O(n2??)) and asymptotic correctness makes this method attractive,
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particularly for large data sets such in case of text-mining, [133, 105, 106]. The
data-mining application of a related local algorithm for identifying potential

v-structures is reported [129]. <FULLVERSION For the application of bootstrap
and Bayesian method over edge features, see Section 2.3 and 2.5.2.3.

2.1.2 Ordering of the variables

FULLVERSION> In a non-interventionist approach the causal ordering was de-
fined as an ordering that allows incremental determination of the variables (i.e.,
the incremental solvability of system equations), see [44]. In its stochastic coun-
terpart a suggestion for “statistical time”, that is temporal ordering, was a
partial ordering compatible with the essential graph (but see also the principles
of causality on p. 5).

<FULLVERSION

Whereas the identification of the ordering of the variables rarely appears as
a direct target, indirectly it is usually present in BN learning. In the acausal
approach the identification of an acausal Bayesian network heavily influenced
by the identification of a good ordering of the variables, because the learning
of an acausal Bayesian network structure for a given ordering is computation-
ally efficiently doable (both in the frequentist or Bayesian framework). In the
causal approach when the hypotheses are the DAGs, the causal structures di-
rectly define causal orderings as ancestral orderings. Consequently a score for a
Bayesian network G can be interpreted as an approximate scores for the under-
lying partial orderings. Recall that the ML structure score can be interpreted
as the summed mutual information between the parents-child pairs and that
the BD and the BIC scores are asymptotically equivalent (see Section 1.5.1).
So, in a broad sense, any structure learning can be interpreted as an indirect
learning of orderings, but certain algorithms explicitly use orderings as a central
representation. For example, the use of genetic algorithms has been reported to
find the best ordering for the learning of Bayesian network structures [95]. The
corresponding posterior over the complete orderings ≺ in the Bayesian context
is the following

p(≺ |DN) =
∑

G

1(G ∈ G≺)p(G|DN ). (2.8)

2.1.3 Relevant variables

The concept of relevance is a fundamental concept in the definitions of the
Bayesian network representation (see Def. 1.1 and 1.4 for the observational and
causal relevance), but it is also central to AI, to decision theory (e.g., the value
of further information) and to statistics (for an overview, see [136]). An im-
portant special case is the relevance of explanatory variables to predict a target
variable given a data set, hopefully with a domain-specific interpretation. The
selection of the relevant variables in this context is called the feature subset
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selection (FSS) problem, which is part of the broader problem of input prepro-
cessing, construction of variables (e.g., interaction terms) and dimensionality
reduction. We will discuss only the relation of the FSS problem to BN feature
learning. Note that even in the conditional approach in general the features are
not independent, so the concept of relevance corresponds to the subsets and not
to the individual features.

To explain the generality of the Bayesian approach to relevance using Bayesian
network features, we summarize the most widespread conditional approaches to
FSS in sequence (see Section ?? for the conditional Bayesian modeling). We
start with the concept of relevance and with a non-Bayesian approach specific
to the applied optimization algorithm, the data set, the model class, and the
loss function. Then we generalize these specifics step by step, which leads to
a standard conditional probabilistic concept of relevance in the end. Finally,
we relate the Bayesian conditional approach to the general Bayesian approach,
particularly to the Bayesian inference over Bayesian network features. In short,
we show that the Bayesian inference over Bayesian network features offers an
algorithm-free, model-free∗, loss-free and non-conditional (i.e., domain model
based) solution for the feature subset selection problem.

RELEVANT>

The conditional approach to FSS relies on the separate modeling of the de-
pendence of a target variable Y on X ′ (i.e., without modeling the overall do-
main). It has been investigated using various conditional model classes M ,
such as linear regression, decision trees, logistic regression, multilayer percep-
trons or support vector machines [78, 14, 70, 42]. It defines a score function
SS(X ′, DN , M, L) for the subsets X ′ ⊆ X and performs a search in the space
of subsets of the features.

The wrapper approach to feature selection uses an optimization algorithm
f̂C(X ′) = C(X ′, DN , M, L) [82, 86]. It defines the score function as

SS(X ′, DN , M, L) = SF (f̂C(X ′), DN , M, L).

The conditional model score SF (f̂C(X ′), DN , M, L) may incorporate factors
for the interpretability or complexity of the conditional models f(X ′) ∈ MX′

and their estimated expected predictive loss (risk).

In an algorithm-free and asymptotic case the subset score SS(X ′, M, L) can
be defined as the best expected predictive loss in a conditional model class MX′

with features X ′

SS(X ′, M, L) = arg min
f(X′)∈MX′

∫

L(y, f(x′))p(y|x′) dyp(x′) dx′. (2.9)

However, this asymptotic and algorithm-free optimality of a subset for a
given model class is not appropriate to define the relevance of a feature, as it
was demonstrated in [82, 86].

∗In the assumed case of discrete variables with multinomial conditionals.
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The model-free subset score SS(X ′, L) can be defined as the best achievable
risk with subset X ′ for a given loss L, called Bayes risk

R∗
L =

∫

L(y, g∗(x′))p(y|x′) dyp(x′) dx′, (2.10)

where g∗ is the Bayes decision, which minimizes the expected loss of prediction
for each x (see Section ??).

Because of the specific choice of the loss function L(Y, Ŷ ), it is still possible
that the minimal subset would miss certain features relevant for another loss.
The following theorem for the case of binary output Y shows that the final loss-
free generalization of the concept of relevance necessarily leads to the standard
conditional probabilistic definition of relevance [42].

Theorem 2.1.1 ([42]). A transformation T (X ′) is a mapping from the feature
space Rn to Rn′

and its Bayes risk with loss L is denoted with R∗
L,T . It is called

admissible if for any loss function L, R∗
L,T = R∗

L, where R∗
L is the original

Bayes risk. A transformation is admissible, if T (X ′) is a sufficient statistics
(i.e., p(Y |T (X ′), X ′) = p(Y |T (X ′))).

<RELEVANT

The relevance of a feature can be defined in an algorithm-free, asymptotic,
model-free and loss-free way as follows.

Definition 2.1.1. A feature Xi is strongly relevant, if there exists some xi, y
and si = x1, . . . , xi−1, xi+1, . . . , xn for which p(xi, si) > 0 such that p(y|xi, si) 6=
p(y|si). A feature Xi is weakly relevant, if it is not strongly relevant, and there
exists a subset of features S′

i of Si for which there exists some xi, y and s′i for
which p(xi, s

′
i) > 0 such that p(y|xi, s

′
i) 6= p(y|s′i). A feature is relevant, if it is

either weakly or strongly relevant; otherwise it is irrelevant [82, 86].

The model-free, algorithm-free and loss-free conditional approach is called
filter approach (for references, see [82, 86]). In the filter approach to feature
selection we have to select a minimal subset X ′ that fully determines the con-
ditional distribution of the target (p(Y |X ′) = p(Y |X ′)) without modeling the
complete domain p(Y, X ′) or the explanatory variables p(X ′).

The Bayesian networks as representation of the independencies in the domain
motivated a series of methods for identifying such a subset for the variable Y ,
particularly using the boundary of Y in DAG G in a distribution compatible
with G (see Def. 1.1.9). However this set is not necessarily unique and not even
minimal. The following theorem gives a sufficient condition for both [138].

Theorem 2.1.2 ([138]). If distribution P is stable w.r.t. the DAG G, then
the variables corresponding to the nodes in the boundary of Y , bd(Y, G) (the
parents and children of Y and other parents of its children) forms a unique and
minimal Markov blanket of Y , MBP (Y ) (the Markov boundary). Furthermore,
Xi ∈MBP (Y ), if Xi is strongly relevant.
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The Markov Blanket Approximating Algorithm assumes that the number
of relevant variables is usually much larger for the target variable then for the
explanatory variables, so it iteratively omits features for which there is a subset
of features forming a Markov blanket without the target variable, consequently
not influencing the conditional distribution of the target variable [90]. It uses
pairwise correlation for finding a Markov blanket for the features and the KL
distance to test the change of the conditional distribution. Recent extension of
the algorithm and its applicaton to microarray data are reported in [151]. The
Incremential Association Markov Blanket algorithm and its variants similarly
use correlation measures and independence tests in forward-backward phases
for identifying Markov Blankets, with asymptotic correctness and low compu-
tational complexity [138, 139]. In a recent extension a further wrapper phase
were incorporated to filter the features that are irrelevant w.r.t. a specific clas-
sification method [5]. Other filter methods directly use Bayesian networks for
a preliminary feature selection, which provides usually a restricted set of vari-
ables for a computationally more intensive classifier learning in the next phase.
The K2MB method first identifies a parental set for the target variables from
all the explanatory variables using the K2 greedy method (see Section 1.5.2),
then it applies the K2 algorithm for random orderings of this subset [28]. The
learning of a GBN classifier similarly first applies a Bayesian network learn-
ing method [21], then it selects the boundary of the target node MB(Y, g) as
a Markov blanket from the resulting Bayesian network G and applies a gen-
eral Bayesian network learning algorithm or the learning of Bayesian multinets
representing also contextual independencies [22, 23, 61].

The wrapper approach to feature selection similarly can apply the Bayesian
networks as classifiers, in this case jointly in the feature selection phase and
the phase of classifier learning [120, 80]. These filter methods indicate that
the feature subset selection problem can be approached in a conditional and a
model-based way. In the first case, to avoid the statistical (sample) and com-
putational complexity corresponding to complete domain models, the Markov
blanket is inferred independently of any other aspect of the domain model (i.e.,
without evaluating the implications of the identified features for the domain
model). Thus these Bayesian network methods have still conditional and fre-
quentist foundation, beside being model free and loss free. So on the one hand,
unavoidably the scores for the subsets in these model-free methods has a vague
relation to the performance of a given loss function and algorithm over specific
model class restricted to the subsets [82, 86]. But on the other hand, (1) the
scores do not utilize the potential of Bayesian networks as domain models (i.e.,
conditional scores), (2) they have hidden biases, and (3) they have no confidence
measures with clear interpretation, partly because of the sequential application
of statistical tests on a finite, frequently rather small amount of data. These
can be answered in a domain model-based, Bayesian approach to the feature
subset selection problem using Bayesian networks.

In the Bayesian conditional approach to feature selection θ encodes the pres-
ence of the explanatory variables, so p(θ|D) induce a (conditional) posterior
distribution over the subsets (for an overview of using MCMC methods in a
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conditional model space over structures with varying input features, see [113],
for applications [41, 124]). A hierarchical conditional approach is the Automatic
Relevance Determination (ARD) method [110], in which certain parameters rep-
resent the weights Wi(relevance) of the inputs (features) Xi, so the parameter
posterior for the inputs p(W1, . . . , Wn|DN ) can be used for the evaluation of a
feature subset.

In the Bayesian domain-based (non-conditional) approach a conditional model
of the target variable cannot be separated from the overall domain model or
at least the conditional model and the model over the potential explanatory
variables are dependent. For example, it is generally so for Bayesian network
structure priors, so, as we shall see, we have to average over the model space to
derive posterior for the part of the model relevant conditionally (see Eq. ??).

As we saw in Th. 2.1.2, the boundary of the variable Y in the Bayesian net-
work G identifies a minimal and unique Markov blanket MB(Y, G) for variable
Y in any stable distribution w.r.t. the DAG G. Using Bayesian network with
multinomial local dependency models as unconstrained domain models for dis-
crete values and with Dirichlet parameter priors, the posterior probability of the
Markov blanket expresses exactly the belief in the (observational) probabilistic
relevance of the subset X ′:

p(MB(Y ) = X ′|DN ) =
∑

G

1(MB(Y, G) = X ′)p(G|DN ). (2.11)

Recall that the structure posterior p(G|DN ) represents the posterior belief
in stable distributions w.r.t. G (the non-stables have measure zero see Sec-
tion 1.1.2.3) and that DAGs in a equivalence class G ∈ G∼ represent the same
set of independencies, so imply the same Markov blanket.

Though the concept of relevance corresponds to subsets, a corresponding
pairwise measure can be introduced that defines individual “feature relevance”

p(MBM(Y, Xi)|DN ) =
∑

G

1(Xi ∈MB(Y, G))p(G|DN ). (2.12)

Because of model averaging it is still model-based (!), consequently biased
towards “domain consistency”, contrary to standard pairwise correlation and as-
sociation measures. Note that only the Bayes risk based subset score is mono-
tone, similarly to a mutual information based subset score, which makes the
search in the space of subsets harder. For the application of bootstrap and
Bayesian method over MBM features, see Section 2.3 and 2.5.2.3.

2.1.4 MBG subnetworks

The feature subset selection problem does not include explicitly the issue of
dependencies between the features, though the interaction between the selected
features is important for their interpretation. A generalization of the FSS prob-
lem includes the construction of a model containing the variables X ′ relevant to
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a target variable Y and their observational dependency and causal dependency
relations w.r.t. Y .

As shown in Eq. 2.15, the classification performance of a Bayesian network
in case of complete data is fully determined by the Markov blanket spanning
subgraph MBG(Y, G) and its parameters (the local models for Y and its chil-
dren). Another interpretation of the MBG feature is that it encompasses all
the causal mechanisms directly related to a given variable Y . Because of the
generality of the MBG feature discussed in Section 2.2, we call such model a
Markov Blanket Graph or Mechanism Boundary Graph (a.k.a. classification
subgraph, feature subgraph).

In the conditional approach, the importance of the MBG feature was already
identified, because early methods used the score of a complete Bayesian network
G to score the classification performance of the model and to score the Markov
blanket of the target variable. As noted in [51] and discussed in Section ??,
this is incorrect from the point of prediction of the target Y , particularly in the
case of complete data, because this score includes (direct or indirect) complexity
penalization w.r.t. the complete domain model that is not relevant for the MBG
submodel relevant for classification. It is more appropriate to use special scores
for the classification relevance of the MBG subnetwork and possibly even for
scoring the feature subset. Such a classification oriented score is the conditional
node monitor (or MBG monitor), its use was reported in [91, 92, 93, 3].

In conditional approaches using other models, the dependency models may
contain such additional information about the conditional dependence structure.
In Chapter ?? we discuss the logistic regression model, the tree augmented
Bayesian network classifiers [51] and the augmented Bayesian classifier [84],
which explicitly contain interactions and the MLP model, in which such infor-
mation is rather implicit.

In the Bayesian framework using Bayesian networks, the corresponding score
for the MBG feature is the posterior

p(MBG(Y, G) = mbg |DN ) =
∑

G

1(MBG(Y, G) = mbg)p(G|DN ). (2.13)

FULLVERSION> Note that as for other features in general

arg max
G⊆

p(MBG(Y ) = G⊆|DN) 6= MBG(Y, GMAP) (2.14)

<FULLVERSION

2.1.5 Learning of subnetworks

The most general structural feature is a general subgraph of a Bayesian network.
The identification of subgraphs with statistical significance was reported in [117].
In the first phase, this method generates confidence measure for the pairwise

Markov blanket memberships MBM(Xi, Xj) using the bootstrap OPTIONAL> (for

a discussion of the interpretations of bootstrap probabilities, see Section 2.3) <OPTIONAL .
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Because it used interventionist data, the modified form of the closed expression
of the posterior score of a Bayesian network was applied (see [30]). Next, using
a heuristic threshold on the bootstrap probabilities for the pairs, it identifies
components as starting seeds for a bottom-up expansion to generate multivari-
able features from the pairwise features. Finally in a greedy hill-climbing search
it collects subnetworks in a pool using a statistical test with the null hypothesis
that the (rank of) bootstrap probabilities of the pairwise features are inde-
pendent in a subnetwork. The attractive assumption behind this approach is
that pairwise features corresponding to the same or dependent causal mecha-
nisms are dependent, so they can be identified jointly with higher significance.
The evaluation indicated the advantage of this model-based (called “context
specific” in their terminology) approach for detecting “correlation” compared
to the investigation of direct associations of features with Pearson correlation.
The continuation of this work similarly indicated the advantage of learning parts
and modules using a special decomposed representation for the Bayesian net-
work [128, 118]. This study also investigated the learning of global pairwise
features, such as the existence of a directed path, causal effect between two
variables and the learning of parametric features, such as the qualitative type
of the local dependency models.

2.1.6 The properties and taxonomy of features

We introduce a terminology to analyze Bayesian network features, particularly
the properties of a new BN feature we propose later. The concept of feature over
DAGs (Bayesian networks) has a broad usage, it is used for random variables
(i.e., a mapping from DAGs G to the real line), for their values, and even for
mappings from DAGs G to a set of complete and mutually exclusive composite

events. OPTIONAL> In its full generality, the event space of Bayesian networks
over discrete variables V assuming multinomial local dependency models and
parameter independence contains the DAGs with their parameters p(G, θ) (we
do not consider further hyperparameters). Additionally, we allowed correspond-
ing textual annotations in the form of an ABN-KB. The introduced probabilistic
ABN-KB allows the definition of wide range of random variables and composite
events representing parametric, qualitative monotonicity, structural and textual

model properties. <OPTIONAL From another point of view, there are simple
quantitative random graph properties such as mean in-degrees, out-degrees,
clique sizes or lengths of directed paths, and there are complex indicators such
as the ABN sentences or complex mappings to subgraphs such as the essential
graphs. We use the term feature in a broad sense to denote any function over
DAGs G or BNs (G, θ) (e.g., F (G) : G → F). If the context allows, e.g. in case
of binary features, we use the term feature to refer to the feature function, fea-
ture value, and also to the denoted graph property. Frequently a set of feature
functions can be indexed by the variables Xi ∈ V (i.e., {FXi(G)}) or pairs of the
variables, etc., as it would be another argument of the feature function, so we
can talk about univariate features F (Xi, G) or pairwise features F (Xi, Xj, G),
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instead of referring to the corresponding sets of features. OPTIONAL> This
includes random variables, the definitions of composite events by partitioning
of the event space and the transformation of the event space into a space with
less cardinality or dimensionality. For example, the number of parental edges
to variable Y (#pa(Y, G) : G→ N ), the parental sets of variable Y (pa(Y, G) :
G → S, whereS ⊆ {V \ Y }) and the conditional distribution of variable Y
given its parents in G (pa(Y, G, θ) : (G, θ)→ (S, θY |S), whereS ⊆ {V \ Y }). In
the subsequent part we concentrate mainly on the structural aspects (i.e., we
assume that the parameters are averaged out giving p(G) and we neglect the

annotations as well). <OPTIONAL

FULLVERSION>

A feature F is called a subset feature, if it maps DAGs G to the subsets of
V ′ ⊆ V . A feature F is called a subgraph feature, if it maps DAGs G to partially
directed (sub)graphs (PDAG) over V ′ ⊆ V (so it is a subset feature as well).
As this is not restrictive per se, we use the term structural feature for “simple”,
graphically interpretable mapping functions, such as compelled edge selection or
Markov blanket subgraph selection (we expect that the descriptive complexity
of the function does not allow the encoding and using the PDAG (sub)graphs as
mere indices, see [144]). Note that the partial ordering feature can be conceived
of mapping each the DAG G to a representant DAG with minimal number of
edges in the partition of the DAG space that partition exactly represents the
topological orderings of G.

<FULLVERSION

A feature F is a local feature F (V ′, G), if its value depends only on the
subgraph of G spanned by the argument variables V ′ ⊆ V denoted with G|V ′

(i.e., (G
|V ′

1 = G
|V ′

2 ) ⇒ (F (G1) = F (G2)), where G|V ′

contains nodes V ′ ⊆ V
and edges of G from V ′ to V ′). A non-local called global feature indicates a
potential relation to other features and increased computational complexity.

FULLVERSION> The parental power set feature Pan(G) is the mapping of
DAGs over n nodes to power sets Pa : G→ {Pa(X1, G), . . . Pa(Xn, G)}, which
allows the investigation of regularities of the parental sets such as common

regulators. <FULLVERSION A feature F is a modular, if it depends only on
the parental sets in DAG G (i.e., (Pa(G1) = Pa(G2))⇒ (F (G1) = F (G2))). A
feature is ordering-modular, if for all except at most one feature value f and for
each complete ordering ≺ there is a conjunctive normal form C1 ∧ · · · ∧Cn such
that each clause Ci(f,≺), G for i = 1, . . . n depends only on Pa(Xi, G) for all
G≺ (i.e., Ci(f,≺, pa(Xi, G)) ). Note that the compelled edge relation and the
pairwise MBM relevance relation between Xi, Xj are not local, but the MBM
relation (through its false value) is modular [55].

Another general type is the observationally equivalent feature F , if the mapped
subgraph F (G) over the variables V ′ ⊆ V depends on only the essential graph
of G, G∼ (i.e., (G∼

1 = G∼
2 )⇒ (F (G1) = F (G2))).

A feature F is called a complex feature, if the number of values of the feature

is exponential in the number of domain variables. FULLVERSION> Note that
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the number of values of a complex structural feature (i.e., number of partitions)
can be in the order of the cardinality of PDAGs over maximum n variables,
#PDAG(≤ n) =

∑n
1 #PDAG(i), which is super-exponential in n 2O(n2 log n).

<FULLVERSION FULLVERSION>

Now we discuss the properties of sets of features. The number of structural

features (mappings DAG(n) → PDAG(≤ n)) is O(#PDAG(≤ n)
#DAG(n)

).

<FULLVERSION

A set of features {F1, . . . , FL} called DAG-independent feature set, if the
values of the features can be selected arbitrarily without violating the DAG-
constraint (i.e., for each L-tuples of feature values, there is one or more DAG G
with these feature values: ∀{f1, . . . , fL}∃G : (F1(G) = f1)∧· · ·∧(FL(G) = fL)).
Because the L-tuples of feature values partition the DAG space, it also means
that for each distribution over the feature set p(F1, . . . , FL) there exists a distri-
bution over DAGs p(G) such that p(F1, . . . , FL) = p(F1(G), . . . , FL(G)). Con-
sequently, we can treat the features as totally independent and specify a distri-
bution p(G) by using the form

∏L
i=1 p(Fi) and for example spreading uniformly

the masses within each partition defined by the feature values. However the
converse is not true, that is a set of DAG-independent features is not inde-
pendent in the induced distribution of a general p(G) (i.e., DAG-independence
does not imply independence in general). Note that local features can still be
DAG-dependent, such as the directed edge features, so locality does not imply
DAG-independence.

Finally, let S denote an elementary event (e.g., either G or (G, θ)). A set of
features {F1, . . . , FL} is called a complete feature set, if for each S the set of val-
ues {F1(S), . . . , FL(S)} identifies S (i.e., (S1 6= S2)⇒ ({F1(S1), . . . , FL(S1)} 6=
{F1(S2), . . . , FL(S2)})). A set of features {F1, . . . , FL} is called complete w.r.t.
a feature F ∗(S), if for each S the set of values {F1(S), . . . , FL(S)} identifies
F ∗(S). In turn, a feature F ∗(S) is a sufficient feature for a set of features
{F1, . . . , FL}, if ∀ S, i : Fi(S) = Fi(F

∗(S)), consequently p(F1(S), . . . , FL(S))
can be induced from the distribution of the complex feature p(F ∗(S)). If ad-
ditionally, the set of features are complete then the complex feature is called
exact feature for the feature set (as it is a one-to-one/bijective relation).

FULLVERSION>

Now we consider quantitatively the issue of incompleteness, dependency and
redundancy w.r.t. features vs. model and simple-features vs. complex-feature,
using that I(X ; Y ) = H(X) + H(Y )−H(X, Y ) = KL(p(X, Y )‖p(X)p(Y )) ≤ 0
and H(f(X)) ≤ H(X) see [32]. First note that H(F1(G), . . . , FL(G)) ≤ H(G)
and for a sufficient feature H(F1(F

∗(G)), . . . , FL(F ∗(G))) ≤ H(F ∗(G)), equal-
ity with completeness only. If the features are dependent, then H(F1(G), . . . , FL(G)) ≤
∑

i H(Fi(G)), equality with total independence only. The mutual informa-
tion between the feature set and the model or complex feature quantifies the
expected log loss of using the features (KL(p(G)‖p(F1(G), . . . , FL(G))) and
KL(p(F ∗(G))‖p(F1(G), . . . , FL(G)))). So, for the case of an exact complex fea-
ture, the mutual information I(F1(G), . . . , F1(G); F ∗(G)) = KL(p(F ∗(G))‖∏

i p(Fi(G)))
measures the dependency/redundancy between the (sub)features or in other
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words the expected loss of the approximation of treating the features as if they
were independent.

For example a complex feature, the Markov blanket of a target variable
MB(Y ) is an exact feature for the set of the Markov blanket membership pair-
wise features MBM(Y, Xi) for all Xi ∈ V \Y . Then KL(p(MB(Y ))‖∏

i p(MBM(Y, Xi, (G)))) =
∑

i H(MBM(Y, Xi, G)) − H(MB(Y, G)) measures the expected loss of approx-
imating the relevance (probability) of a subset of features with pairwise rele-
vances as if they were independent (i.e., with product of probabilities of pairwise
relevance) and the dependency/redundancy between the pairwise features.

As another example consider, that the set of all directed edge features 1(Eij ∈
Edge(G)) or Eij(G) for short for i 6= j, (i, j) = (1, 2, ), . . . , (n, n− 1) are a com-
plete feature set for Bayesian networks G(n). Then KL(p(G)‖∏

i p(Eij(G))) =
∑

i H(Eij(G))−H(G) measures the expected loss of approximating the distribu-
tion over the DAGs with a pairwise based product approximation and measures
the dependency/redundancy between the edge features.

Finally, note that both in the investigation of completeness and redundancy
of a feature set these quantities can be applied relatively by canceling the term
H(G) or H(F ∗(G)). That is we can compare the completeness (i.e., loss of
information) of feature sets F and F ′ by evaluating H(F1(G), . . . , FL(G)) and
H(F ′

1(G), . . . , F ′
K(G)). For the redundancy of exact feature sets F and F ′ by

evaluating
∑

i H(Fi(G)) and
∑

i H(F ′
i (G)).

<FULLVERSION

2.2 The Markov Blanket (sub)Graph feature

In this section we propose a complex feature, Markov Blanket (sub)Graph fea-
ture (MBG(Y ), θMBG), that includes all the direct causal and probabilistic re-
lations corresponding to a given variable. This feature is at an intermediate
level as its complexity is less than of the complete domain model. We show
it is a necessary and sufficient feature w.r.t. classification of Y under the
usual assumptions in the thesis, such as complete data, discrete values, multi-
nomial local dependency models. The MBG feature can be equally derived
from a causal point of view using the mechanism-interventionist interpreta-
tion as the minimal set of mechanisms directly relevant for Y , so we equally
use the term Mechanism Boundary (sub)Graph feature. It means that the
MBG feature represents such a fragment of the domain theory that its distri-
bution is necessary and sufficient to induce the exact posteriors for any classi-
fication related feature, to support full scale Bayesian inference and to induce
various priors for classifiers, such as logistic regression or multilayer percep-
trons. In other words, the complex feature does not violate the dependency
of (sub)features for these tasks by modeling them as independent (obviously
the MBGs for different variables (MBG(Xi), MBG(Xj), Xi 6= Xj) are depen-
dent at the model level in general, so interpreting them as independent using
p(MBG(Xi), MBG(Xj)) = p(MBG(Xi))p(MBG(Xj)) would be incorrect).
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Definition 2.2.1 ([10, 9]). The parametric Markov Blanket (sub)Graph feature
or Mechanism Boundary Graph feature for a variable Y pMBG(Y, G, θG) maps
Bayesian network models (G, θG) to Markov Blanket Graphs of variable Y and
to its parameters (MBG(Y ), θMBG(Y )). The (non-parametric) Markov Blanket
Graph feature for a given variable Y denotes the mapping of Bayesian network
structures (G) to the Markov Blanket Graphs of variable Y (see Def. 1.1.11,
Fig. ??, and Fig. 1.1).

Because of our general assumptions of global parameter independence and
parameter modularity, we always assume that the parameter transformation is
a simple selection, so the parameter distribution is unchanged (i.e., θMBG(Y,G) =
{θY , θch(Y,G)1

, . . . , θch(Y,G)K
} is equal to the corresponding parameters in (G, θ),

where K = | ch(Y, G)|). Note that these parameters by simple selection differ
from the parameters from a marginalization over all the compatible BNs or over
all the compatible BNs and a given ordering.

The characteristic property of the pMBG feature is that it completely defines
the conditional distribution of Y given the other variables V \ Y in a Bayesian
network model (G, θ) by the local dependency models of Y and its children.

Proposition 2.2.1. If p(V |G, θ) is defined by a Bayesian network (G, θ), then
the conditional distribution of the target variable Y ∈ V p(Y |V \ Y, G, θ) is
defined by its Markov Blanket (sub)Graph feature pMBG(Y, G, θG).

Proof.

p(Y |V \ Y, G, θ) (2.15)

= p(Y |MB(Y, G), G, θ) = p(Y | pa(Y, G), ch(Y, G), pa(ch(Y, G), G), θ)

∝ p(ch(Y, G), Y | pa(Y, G), pa(ch(Y ), G), θ)

= p(Y | pa(Y, G), θ)

| ch(Y,G)|
∏

j=1

p(ch(Y, G)j | pa(ch(Y, G)j), θ),

where ch(Xi, G)j denotes the children of Xi in a compatible ordering with G.

For notational simplicity we assume a binary target varible Y . Let us define
a vector-valued feature called conditional distributional feature CD(Y, G, θ) de-
noting the conditional distribution p(Y |V \ Y, G, θ). Let CD(Y, G) denote the
corresponding averaged conditional distribution p(Y |V \ Y, G) (see Eq. 1.29 for
the existence of an equivalent point parametrization).

Furthermore, we can state a Bayesian extension of Proposition 2.2.1.

Proposition 2.2.2. In case of parameter independence, parameter modularity
and Dirichlet parameter priors, the Markov Blanket structural and parametric
marginals p(MBG(Y, G) = mbg) and p(Y |MBG(Y, G) = mbg) define the condi-
tional distribution of Y given other variables V \ Y in the Bayesian framework,
where

p(MBG(Y, G) = mbg) =
∑

G

1(MBG(Y, G) = mbg)p(G) (2.16)
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and p(Y |MBG(Y, G) = mbg) denotes the mean distribution EΘ′ [p(Y |mbg, Θ′)].

Proof.

p(Y |V \ Y ) (2.17)

=
∑

G

p(G)

∫

p(Y |G, θ)p(θ|G) dθ

=
∑

G

p(G)

∫

p(Y |MBG(Y, G), θMBG(Y,G))p(θMBG(Y,G)|G) dθMBG(Y,G)

=
∑

G

p(G)p(Y |MBG(Y, G))

=
∑

MBG(Y,G)=mbg

p(mbg)p(Y |mbg),

Note that Proposition 2.2.2 also indicates that Bayesian model averaging
for prediction can be performed in the MBG space, because the parametric
marginal p(Y |MBG(Y, G) = mbg) is efficiently computable in case of Dirichlet
parameter priors (see Eq. 1.29). However, in general there is no closed formula
for the posterior p(MBG(Y, G) = mbg), but we can state the following theorem.

Theorem 2.2.1 ([10]). If the parental set size is bounded by k and the scores
p(pa(Xi)|DN ) in Eq. 1.51 are available in O(1), then the ordering-conditional
posterior p(MBG(Y, G) = mbg | ≺) can be computed in polynomial time.

Proof. If the parental set size is bounded by k, then

p(MBG(Y, G) = mbg |DN ,≺) (2.18)

= p(pa(Y, mbg)|DN )
∏

Y ≺Xi

Y ∈pa(Xi,mbg)

p(pa(Xi, mbg)|DN )
∏

Y ≺Xi

Y /∈pa(Xi,mbg)

p(Y /∈ pa(Xi, mbg)|DN ),

where
p(Y /∈ pa(Xi, mbg)|DN ) =

∑

Y /∈pa(Xi)

p(pa(Xi)|DN ). (2.19)

Clearly, for a given Markov Blanket structure and ordering Eq. 2.18 directly
defines a conjunctive normal form, which gives the next property.

Corollary 2.2.1 ([10, 9]). The Markov Blanket (sub)Graph feature MBG(Y, G)
is an ordering-modular feature.

The number of MBGs for a given variable |MBG(Y )| in case of n variables is
still super-exponential (even if the number of parents is bounded above with k).
Consider an ordering of the variables such that Y is the first and all the other
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variables are children of it, then the parental sets can be selected independently,

so the number of alternatives is in the order of (n− 1)n2

(or (n− 1)(k−1)(n−1)).
However, at the other extreme, if Y is last in the ordering, then the number of

alternatives (i.e., parental sets) is in the order of 2n−1 or (n− 1)
(k)

). In case of
MBG(Y, G), the types of the variable Xi can be (1) non-occurring in the MBG,
(2) parent of Y (Xi ∈ pa(Y, G)), (3) children of Y (Xi ∈ ch(Y, G)) and (4) (pure)
other parent in the MBG ((Xi /∈ pa(Y, G)∧(Xi ∈ pa(ch(Y, G)j)))). These types
correspond to the categories irrelevant (1) and strongly relevant (2,3,4), as can
be seen directly from the definitions of relevance (see, Def. 2.1.1). The number
of DAG models G(n) compatible with a given MBG and ordering ≺ can be
computed as follows: the contribution of the variables Xi ≺ Y without any
constraint and the contribution of the variables Y ≺ Xi that are not children of
Y. Let us denote the number of such variables with NB and NA respectively, then
assuming that the maximal number of parents is k, the number of compatible
DAGs is 2Θ((k−1)(NB+NA) log(n)).

Proposition 2.2.1 and Proposition 2.2.2 offer two interpretations for the MBG
feature. From a (conditional) probabilistic point of view the MBG(G) feature
defines an equivalence relation over the DAGs w.r.t. the conditional distribu-
tion of Y given all the other variables under parameter modularity and global
parameter independence. This is the consequence of Th. 1.1.3 and Th. 2.1.2,
which allow the reduction of the space of DAGs to the space of MBGs from
the point of view inferring a given variable. If the hypotheses are the ob-
servational classes (i.e. the parameter and structural priors are identical for
observationally equivalent DAGs), then this conditionally induced equivalence
relation is combined with the observational equivalence relation, which allows
further reduction of the space of MBGs (for a partially oriented representa-
tion of the MBGs, see [2, 3]). We show certain properties of this combined
equivalence, although in our exploratory context we assume causal priors, so
we cannot simplify further the MBG space. In the non-Bayesian context let us
define a pairwise relation over Bayesian networks as G1 and G2 are inferentially
equivalent for variable Y , if they can encode the same set of conditional distri-
butional features for Y (i.e., for each CD(Y, G1, θ1), there exists a θ2 such that
CD(Y, G1, θ1) = CD(Y, G2, θ2)). Clearly, observational equivalence and MBG
equivalence of DAGs G1, G2 implies conditional distributional equivalence (IE),
but MBG equivalence and conditional distributional equivalence does not im-
ply observational equivalence. Interestingly, MBG equivalence is not implied by
observational equivalence or by conditional distributional equivalence (i.e., the
MBG feature is not a unique representant of an inferentially equivalent class of
Bayesian networks and it can be different in observationally equivalent DAGs).

From a causal point of view, this feature uniquely represents the minimal set
of mechanism including Y despite the non-uniqueness of the MBG feature w.r.t.
the acausal conditional distributional equivalence. This offers the second inter-
pretation of the MBG feature: the pMBG(Y, G, θ) feature includes exactly the
mechanisms containing the variable Y , hence the name Mechanism Boundary
(sub)Graph feature pMBG(Y, G, θ). The probability of an MBG is the sum of
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probabilities of the causal domain models that are compatible with this causal
subtheory for the variable Y (Eq. 2.16), which shows that for example infer-
entially equivalent MBGs may have different probabilities in a causal context
(e.g., in case of causal prior or interventionist data).

From Proposition 2.2.1 we can conclude that the MBG(Y, G) feature is neces-
sary and sufficient to represent the mechanisms directly relevant for the variable
Y and from the point of view of prediction of Y , it is a sufficient feature for the
conditional distributional features of Y . In other words, under the conditions
such as parameter modularity, global parameter independence and complete
data assumption, this structural and parametric feature of the causal BN do-
main model is necessary and sufficient to support the manual exploration and
automated construction of a causal, probabilistic, interpretable conditional de-
pendency model. This “ultimate” property of the MBG feature suggests the
concept of conditional feature and the generalization of the feature subset se-
lection problem.

Definition 2.2.2. A feature (function) F is called conditional feature for a
given variable Y , if it depends only on (MBG(Y ), θMBG(Y ))

pMBG(Y, G1, θ1) = pMBG(Y, G2, θ2))⇒ (F (G1, θ1) = F (G2, θ2). (2.20)

Definition 2.2.3. In case of a stable distribution p(Y, X), the feature (sub)graph
selection problem (FGS) denotes the identification of a Markov Blanket subgraph
MBG(Y, G), where DAG G denotes a perfect map of distribution p (i.e., it in-
cludes the identification of a Markov Blanket set X ′ ⊆ X w.r.t. p and Y , and a
Bayesian network substructure over X ′ representing the dependencies between
these variables, excluding incoming edges into the parents of Y ).

FULLVERSION> Later we will define more conditional features, an already
defined such feature is the conditional distributional feature CD(Y, G, θ). Be-
cause these features are determined by the pMBG feature, clearly the following
statements hold for any set of conditional features F (G, θ): (1) The pMBG fea-
ture is sufficient for F (G, θ). (2) The generally dependent conditional features
in F (G, θ) are conditionally independent given the feature pMBG. (3) Given
a data set of domain cases DN = {C1, . . . , CN} (i.e., each variable Xi ∈ V is
observed), the posterior distribution p(MBG, θMBG|DN , ξ) is sufficient for in-
ducing the joint posterior for any set of conditional feature p(F (G, θ|DN , ξ)
(so it sufficiently summarizes the data set). (4) Given an i.i.d. data set
of Bayesian network structures DN = {G1, . . . , GN} from p(G) the statistics
D′

N = {MBG(Y, G1), . . . , MBG(Y, GN )} is a sufficient statistics for estimating?

F (G, θ). <FULLVERSION

FULLVERSION>

2.2.1 Challenges of the Bayesian application of the MBGs

Now we summarize the advantages and challenges of the application of the MBG
feature in the Bayesian context.
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Normativity The MBG feature has standard probabilistic and causal inter-
pretation. The p(MBG(Y, G)|DN , ξ) posterior is a normative confidence mea-
sure. The computation of the posterior probability of a given feature value mbg
is a standard Bayesian task of computing the expectation

p(MBG(Y, G) = mbg |DN , ξ) =
∑

G

p(G|DN , ξ)1(MBG(Y, G) = mbg). (2.21)

The lack of a closed formula for the posterior p(MBG(Y ) = mbg) excludes
the direct use of the MBG space in optimization or in Monte Carlo methods.
However, general MC methods can be applied successfully to approximate such
expectations, but the task of finding the maximum a posteriori feature value
mbgMAP and particularly the task of constructing a set of feature values with
high posteriors (i.e., a good approximation of p(MBG(Y ))) requires new meth-
ods, because of the high number of feature values.

Feature dependency and complexity The MBG feature is a statistically mo-
tivated feature to balance between the size of the data and the modeled part
of the domain model with intermediate complexity, while modeling jointly a
compact part of the domain from the point of view of dependency analysis.

Offline probabilistic knowledge base Whereas the MBG space cannot be used
directly in optimization or Monte Carlo methods, its comprehensiveness from
the point of view of dependency analysis makes it an ideal candidate for em-
bedding in probabilistic knowledge bases, such as in an ABN-KBs. Because
of its sufficiency, it is in itself through its distribution p(MBG(Y )) provides
the basis of a probabilistic knowledge base. In the thesis we also developed
a method to build an offline probabilistic knowledge base containing an ap-
proximation of the posterior distribution of the investigated dependent vari-
able p(MBG(Y )|DN , ξ). This knowledge base contains a set of MBG(Y )s with
high posteriors (HPDMBG) and the inference about the conditional features
Fi(MBG(Y, G), Fj(MBG(Y, G) can be performed in the smaller space of MBGs,
more exactly in its approximation,

p(Fi(MBG(Y, G)) = fi, Fj(MBG(Y, G)) = fj|DN , ξ) (2.22)

=
∑

mbg

p(mbg |DN , ξ)1(Fi(mbg) = fi, Fj(mbg) = fj) (2.23)

≈
∑

mbg∈HPDMBG

p̂(mbg |DN , ξ)1(Fi(mbg) = fi, Fj(mbg) = fj). (2.24)

The importance of this offline MBG knowledge base is that the queries,
such as Fi(MBG(Y, G) = fi, Fj(MBG(Y, G) = fj , do not have to be specified
in advance of the costly MCMC simulation to approximate the corresponding
posterior, but the MCMC simulation runs only once, constructs the knowledge
base by averaging the parameters and partly the structures (actually estimating
a sufficient posterior for any conditional feature), then the knowledge base can be
queried multiple times in an explorative manner. For example the distribution
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of the misclassification rate on an external test data set MR(MBG(Y, G)) and
the number of free parameters |Param(MBG(Y, G, )| can be generated offline
(see Fig. ??).

This MBG knowledge base is also integrated with the ABN-KB functionality
of the system, so the queries on conditional features can be enriched possibly
with textual annotations.

In fact, as the conditional distributional features CD(Y, G, θ, v) are classi-
fication features, the full scale Bayesian inference to compute the conditional
distribution p(Y |V \ Y ) similarly can be approximated using the offline MBG
knowledge base

p(Y |V \ Y )=
∑

mbg

p(mbg |DN , ξ)p(Y |mbg, V \ Y ) (2.25)

≈
∑

mbg∈HPDMBG

p̂(mbg |DN , ξ)p(Y |mbg, V \ Y ), (2.26)

where p(Y |mbg, V \Y ) =
∫

p(Y |mbg, θV \Y ) dθ. So, the advantage of the MBG
representation exceeds the general advantages of being a Bayesian BN-feature,
because of its sufficiency for the conditional distributional features allows its
application in full Bayesian inference for variable Y . Whereas its direct use
is not possible in the on-line inference, the ordering-MBG space can be used
for this purpose and the MBG representation itself provides a representation
that minimize the model space, so support the construction of offline knowledge
bases for real-time full scale Bayesian inference. This is further discussed in
Section 2.8.2.

Induced priors, two-phased and dual learning The direct use of MBG poste-
riors as priors or hard constraint in a second phase of Bayesian network learning
is not investigated in the thesis, only derived, conditional features.

<FULLVERSION

FULLVERSION>

2.2.2 On the practical importance of conditional features

This focusing of the analysis to a given variable is not only statistically moti-
vated to find a semantically meaningful feature with intermediate complexity,
but from an application oriented point of view as well. The reasons can be (1)
the goal of the data analysis itself (2) the prior background knowledge and (3)
the data set. We illustrate these reasons using the IOTA project in the ovarian
cancer domain, which is the application area of the thesis. First, the primary
goal is the probabilistic (and possibly causal) understanding of the relevance of
domain variables for the type of the mass. This is important from clinical point
of view to improve diagnostic protocols, to design later data collections and ex-
periments and from statistical point of view to learn better predictive diagnostic
models (either using Bayesian networks or other model class as classifier). Sec-
ond, the available prior knowledge is focused. Because of the central importance
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of target variable (the type of the mass), the mechanisms directly related to this
variable are better explored theoretically. This bias is further strengthened in
practice by the usual diagnostic usage of the domain knowledge, which involves
the refinement of the causal rules and the development of diagnostic short-cuts
such as the diagnostic relevance of variables, risk ratios of variables, antago-
nist/protagonist interactions of variables, available performance with certain
variables, value of further information in a certain situation (see [7]). Finally,
the data set itself entail certain focusing in learning complete domain models)
On the one hand, the recorded variables were selected to support the analysis
of the target variable for example by including potential confounders, which
helps the interpretation of the edges around the target variable (i.e., the Causal
Markov condition validity is restricted to the relations of the target variable) On
the other hand, only the explanatory variables has missing values, furthermore
missing data is more frequent for the diagnostically less relevant variables.

<FULLVERSION FULLVERSION>

2.2.3 Derived conditional features

First we overview the relation of earlier introduced general Bayesian network
features to the MBG feature, then we introduce new conditional features. Fi-
nally we indicate their use in manual dependency analysis and inducing priors
for dependency models.

The Markov blanket set feature (MB(Y, G)), the Markov blanket member-
ship feature (MBM(Y, Xi, G), the parental subgraph feature (PaG(Y, G)), the
parental set feature (pa(Y, G)) are all determined by the MBG(Y, G) feature,
so these are conditional features. Furthermore, the conditional relevance of Xi

for Y (CR(Y, Xi)) is also represented by the MBG(Y, G) feature as pure other
parent of a children of Y (CR(Y, Xi) ⇔ ((Xi /∈ {pa(Y, G), ch(Y, G)}) ∧ (Xi ∈
MB(Y, G)))).

The pairwise causal feature (Y ≺G Xi or Xi ≺G Xj) only partially repre-
sented by the MBG(Y, G) feature. The compelled edge status (RCEdge(, , G))
is similarly only partially represented, even if one of the argument is Y . This can
be seen by considering that an edge is reversible, if there is a series of reversion
of covered edges, where covered edge means that its endpoints have the same
set of parents except corresponding to the edge [74]; and the MBG(Y ) feature
represents the parents only for Y and its children and not for the parents of Y
and for the pure other parents Y ’s children. Finally, the MBG(Y ) feature sim-
ilarly only partially represents the pairwise confounding relation (Conf(, , G)),
because as in the earlier case distant common ancestors for the parents of Y
and for the pure other parents Y ’s children are not represented. However, the
partial ability of the MBG feature — as a comprehensive conditional feature —
for representing Bayesian network features related to causality and confounding
is understandable as these are borderline issues in dependency analysis as well
(corresponding to complete domain modeling) [78].

The first family of conditional features corresponds to the conditional prob-
ability feature and its performance on a given data set. The Markov blanket
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conditional probability feature CD(Y, G, θ, v) and its expectation CD(Y, G, v).
The misclassification rate MR(Y, G, θ, DN ) on a given external data set DN

using the CD(Y, G, θ, v) predicted conditional probabilities. The parameter-free
analog misclassification rate MR(Y, G, DN) is based on the mean of predicted
conditional probabilities the CD(Y, G, v) (note, that this is based on the opti-
mally reported values under L2 and not equal to the loss-free expectation of the
earlier measure E[MR(Y, G, θ, DN )]). A more sophisticated measure of predic-
tive performance in binary classification is the Area Under the (ROC) Curve
AUC(Y, G, θ, DN) and its parameter-free analog AUC(Y, G, DN ) based on the
predicted conditional probabilities CD(Y, G, θ, v) or on its mean CD(Y, G, v),
which are discussed in Section ??).

The second family of new conditional features corresponds to the graphical
structure and to the parameter structure of the MBG(Y ) feature. Features
related to the complexity of the dependency model are the size of the Markov
blanket set (|MB(Y, G)|) and the number of free parameters |θMBG(Y,G)|. The
set of the non-interacting inputs and its size are denoted with NII(Y, G, Xi) and
|NII(Y, G, Xi)|, which set contains the children without other parent(s) than
Y and the single parent of Y (if any). The concept of interaction is discussed in
Section ??. The set of potential interacting variables for variable Xi is given by
the feature IT (Y, G, Xi), which set contains the other parents of the children
of Xi. Finally, |BANEdges(Y, G)| denotes the number of edges between the
children of Y in the BAN converted MBG defined in Section ?? (not including
the parental edges of Y ).

The use of these features will be demonstrated in the exploratory data anal-
ysis for dependency models in Section ??. Furthermore, these features can be
incorporated in composite queries to study their joint distribution, for exam-
ple the joint distribution of model complexity and classification performance
(p(|θMBG(Y,G)|, AUC(Y, G, θ, DN)), either using a dedicated Monte Carlo simu-
lation to estimate this distribution or using an offline MBG probabilistic knowl-
edge base.

These features can be also used to induce informative prior distributions for
classifiers for example the MBM(Y, Xi) feature as a prior probability for the
relevance of the variable Xi or the number of free parameters |θMBG(Y,G)| to
select optimal model complexity (see Section ??).

<FULLVERSION

RELEVANT>

2.3 The bootstrap confidence measure

The bootstrap approach to induce confidence measures for Bayesian network
features was investigated as an alternative to the Bayesian approach to support
statistical inference from small sample [54, 53]. An important motivation was to
avoid the Monte Carlo simulations usually necessary in the Bayesian approach
by using a simple resampling scheme and optimization.
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The bootstrap is a general purpose, computationally intensive statistical in-
ference method using resampling to assess the accuracy of a statistical estimate
given a finite sample [48, 70]. We discuss it here as we refer to it only in this
context, but it is a general statistical methodology and applicable with arbi-
trary model classes (or without as a nonparametric bootstrap). Assume a fixed

i.i.d. sample DN = {X1, . . . , XN} and let us denote θ̂(DN ) the statistical es-
timate of interest and θ0, the unknown true parameter. For a given sample
size N its distribution, particularly its deviation θ̂(DN ) − θ0 is also of interest
for constructing confidence intervals and hypothesis testing. The standard fre-
quentist approach analytically derives its distribution, confidence intervals for
restricted sets of sampling models and estimates (e.g., Gaussian data genera-
tion and mean estimate). Note that if we had access to the generative model
p(X |θ0)), we could sample it for any complex estimate. The standard Bayesian
approach would define a probabilistic model for the observations p(X |θ) with

prior p(θ) providing a distribution for the estimate
∫

p(θ̂(DN )|θ)p(θ) dθ, which
can be analyzed or sampled to explore. The central idea of nonparametric boot-
strap is the characterization of the distribution of the unobservable deviation
θ̂− θ0 with the following distribution θ̂∗(D∗

N )− θ̂(DN ), where the data set D∗
N

of N samples (the boostrap replicate) is drawn uniformly from the observed
DN with replacement. That is, given a fixed sample DN we define a bootstrap
sample distribution over the finite (!) number of possible data sets D∗

N , which

allows the assessment of the accuracy of the estimate θ̂(DN ) by the distribution

of θ̂∗(D∗
N ). In general, the bootstrap for θ̂(DN ) is called consistent if

p(θ̂∗(D∗
N )− θ̂(DN ))→ p(θ̂(DN )− θ0) as N →∞ in distribution. (2.27)

For example, the ideal (nonparametric) bootstrap estimate of the variance

varp(DN )(θ̂(DN )) is defined as varp(D∗
N )(θ̂

∗(D∗
N )) (see [48]), which can be shown

to provide a consistent estimate [48]. Because of the large number of bootstrap
data sets with size N , the ideal bootstrap estimate is approximated by its Monte
Carlo estimate using B number of randomly drawn bootstrap data sets D∗

b,N

for b = 1, . . . , B and the corresponding quantities θ̂∗b (D∗
b,N) as follows

v̂arB(θ̂∗) =

B∑

b=1

(θ̂∗b − θ̂∗(.))
2/(B − 1) where θ̂∗(.) =

B∑

i=1

θ̂∗b/B. (2.28)

The Monte Carlo estimate of the ideal bootstrap estimate itself has a vari-
ance, which is asymptotically c1/N2+c2/NB, so relatively low number of boot-
strap replicates suffices in practice [48]. This also indicate that the distribution

of θ̂∗b (D∗
b,N ) is more spread than of the target θ̂(DN ), so it cannot be used

directly (e.g., for constructing quantiles for θ̂(DN )).
Now we can turn to the application of the bootstrap to induce confidence

measures for model structures and its properties. This is not without prob-
lems as its first application in the model space of phylogenetic trees has shown
(phylogenetic trees represent evolutionary relationships between entities corre-
sponding to its nodes [46]). We will follow the terminology and explanations
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from that field [77, 49, 13, 47, 4]. Assume that the i.i.d. data set DN is gen-
erated from an unknown Bayesian network model M0 = (G0, θ0) and a fixed
algorithm C induces the model structure ĜC(DN ), more exactly our hypothesis
space are the observation equivalence classes of DAGs G∼. Because the estimate
is a model structure without a semantic metric, we cannot define confidence in-
tervals for models with an accuracy parameter, so the probably approximately
correct (PAC) terminology is only partly applicable [140]. This frequentist def-
inition of a confidence value is the probability of exact model induction with
data sets of size N

p(DN : Ĝ∼
C (DN ) = G∼

0 |M0, N). (2.29)

The essence of the argument for the assessment of Eq. 2.29 with bootstrap is
as follows (adapted for discrete valued Bayesian network learning from [49, 47,
48]). By assuming the naive table representation with d =

∏

i |Xi| entries we can
interpret a complete (!) data set as corresponding empirical relative frequencies

for the complete configurations denoted with θ̂, which geometrically is located on
the d-dimensional simplex. Note that for a fixed size N , this determines both
Bayesian network learning scores, so we can write Ĝ∼(θ̂). Disregarding that
this statistical estimate changes non-continuously across boundaries, it looks
like a standard bootstrap problem to assess its accuracy, that is to estimate
the probability that θ̂ is in the same region as θ0 (i.e., Ĝ∼(θ̂) = G∼

0 (θ0)). For

a given fixed data set DN and corresponding θ̂, this is estimated using the

bootstrap frequencies θ̂
∗
, similarly to the standard case when the distribution

of θ̂(DN ) − θ0 is assessed with the distribution of θ̂∗(D∗
N ) − θ̂(DN ). So the

probability of exact model induction for an induced model Ĝ∼
C (DN ) given a

data set DN theoretically can be characterized with the bootstrap probability
and approximated with its Monte Carlo estimate

p(D∗
N : Ĝ∼

C (D∗
N ) = Ĝ∼

C (DN )|DN ) ≈ 1

B

B∑

b=1

1(Ĝ∼
C (D∗

b,N ) = Ĝ∼
C (DN )). (2.30)

For phylogenetic trees with model structure T it is shown that the posterior
for T = T̂ using uninformative prior is nearly equal to the bootstrap probability
for T̂ ∗ = T̂ (called the “poor man’s” Bayes posterior [70]).

We can proceed analogously for the structural features for Bayesian net-
works. The ideal confidence value is the probability of the induction of the
structural feature of the underlying essential graph F (G0) = f0 with data set
of size N [54, 53]

p(DN : F (Ĝ∼
C (DN )) = f0|M0, N). (2.31)

This quantity is called “accuracy” in phylogenetics [77, 49]. As noted in [13,
49], this concept is still applicable for a non consistent induction algorithm
widely used in a domain as indicating non-repeatability by the lack of support
from a well-accepted method. With consistent structure learning algorithms
as in the case of Bayesian networks (see Th. 1.5.3), this value will converge to
1 with increasing N . Though the theoretical background for the application
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of bootstrap is still unsolved, because of the discrete valued estimate and the
consistency properties of the induction algorithm C, in empirical experiments
the bootstrap probabilities of features were adopted as assessing the confidence
values for features in the induced model F (Ĝ∼

C (DN )) = fDN given a data set
DN [54, 53].

p(D∗
N : F (Ĝ∼

C (D∗
N )) = fDN |DN ). (2.32)

This is also backed by the arguments for phylogenetic trees. The bootstrap
probabilities are approximated with their Monte Carlo estimates,

1

B

B∑

b=1

1(Ĝ∼
C (D∗

b,N ) = fDN ), (2.33)

with Monte Carlo variance rapidly decreasing with B, as mentioned above.
However, the variation of the bootstrap probabilities depending on DN in case
of phylogenetic trees led to the concept of “repeatability” and its classical in-
vestigations empirically [77] and analytically [49]. An important clarification of
a potential misuse of bootstrap was that the quantity

p(D∗
N : F (Ĝ∼

C (D∗
N )) = f0|DN ) (2.34)

is not approximating the accuracy (i.e., the probability of induction of “true”
features in Eq. 2.31). As suggested [49], a bootstrap probability p for an induced
feature can be interpreted as a 1-p-value for the hypothesis that the feature is not
present. For phylogenetic trees, a (computationally intensive) correction of the
bootstrap probability for its use in the standard hypothesis testing framework
is suggested in [47].

For Bayesian networks the bootstrap approach was applied for the following
structural features: compelled edges CompE(Xi, Xj |G) (as direct causal re-
lation), Markov blanket membership MBM(Xi, Xj |G) (as pairwise relevance),
pairwise precedence Xi ≺G Xj (as causal relation) [54, 53] (see results for partly
parametric features [117]). The bootstrap probabilities in Eq. 2.32 for the fea-
tures were interpreted as “support from a given algorithm” [54] and later in
testing various induction algorithms as the assessment of the confidence of the
induced feature as defined in Eq. 2.31. The experiments were conducted on a
gold standard model as reference, which allowed the generation of multiple data
sets for proper evaluation of the bootstrap, and on data sets from a genomic
and text domain as well.

In summary, earlier works provided an empirical support for the applicability
of the bootstrap for Bayesian network features with the following conclusions [54,
53]. It yields a cautious, conservative estimate (no false-positive error) for the
features, but its applicability seems sensitive to the domain (e.g., the selection
of a confidence threshold for reporting the features), and to the optimization
algorithm. Certain pairwise features can be more reliably estimated, especially
the pairwise Markov blanket relation (MBM), which can be explained by the
topological robustness of this feature (i.e., a given relation can occur in large
number of DAGs). The induced confidence measures were reported visually



72 Chapter 2. Inference over BN features

(as colors and thickness of the Bayesian network edges) to support efficient
interpretation of the result of statistical inference from small amounts of data
with large number of variables. Another use of the induced confidence measure
also gave promising results, to support the second-phase learning of full Bayesian
network models and subnetworks using the feature confidences as soft and hard
constraints.

However, the relation of the bootstrap approach to the Bayesian approach
is subtle w.r.t. the induced confidence measures for Bayesian network features,
despite that under specific conditions the bootstrap probabilities approximate
the corresponding posteriors [46, 47]. The Bayesian approach is capable to
provide updated beliefs — the posterior — for an arbitrary fixed structural
feature F (G) = f0 given the observations DN , either by Monte Carlo sampling
or sometimes analytically. This posterior practically can be approximated by
the set of models GHPD

C with high posteriors identified using an optimization
algorithm C with some heuristic randomization (to correct its bias for local
minima):

p(F (G) = f0|DN) =
∑

G

1(F (G) = f0)p(G|DN ) (2.35)

≈ 1
∑

G∈GHPD
C p(G|DN )

∑

G∈GHPD
C

1(F (G) = f0).

Conversely, the bootstrap distribution can be used to assess the accuracy
through the defined confidence expressing the effect of the sampling distribu-
tion on its identification. That is, the bootstrap approach can provide confi-
dence values for features in the frequentist, hypothesis testing framework by the
bootstrap probabilities (i.e., by its Monte Carlo estimates):

p(F (Ĝ∼
C (DN )) = f0|M0, N) ≈ p(F (Ĝ∼

C (D∗
N )) = fDN |DN )

≈ 1

B

B∑

b=1

1(Ĝ∼
C (D∗

b,N ) = fDN ). (2.36)

Indeed, as the similarity of the final sums suggests in Eq. 2.35 and Eq. 2.36,
the bootstrap can be conceived as a heuristic method using perturbed data
sets to generate a good subset of models GHPD

C with high posteriors around the
maximum a posteriori or maximum likelihood Bayesian network structure. But
it cannot be used in general as an approximation to the sampling distribution
p(DN |M0, N), consequently to sample p(ĜC(DN ))|M0, N) or to approximate
the posterior p(G|DN ), particularly not in the small sample case, which is the
primary goal of learning Bayesian network features.

Furthermore, as the learning of Bayesian network is NP-hard, the compu-
tational complexity of the heuristic algorithms used in practice is comparable
to the computational complexity of the application of Monte Carlo methods for
Bayesian networks with computationally efficient sampling. In fact, after the
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investigation of the bootstrap approach [54, 53], the authors also reported an
efficient Bayesian approach for inducing Bayesian confidence measures for cer-
tain Bayesian network features, which is applied in this thesis and described in
the next section.

<RELEVANT

2.4 On the advantage of feature posteriors

After the overview of BN features, certain frequentist identification methods,
and the bootstrap methodology to induce confidence measures, we now turn to
the Bayesian approach.

The main disadvantage of the frequentist identification methods is that
the significance level, if there is any or which in principle what could be de-
rived with general aggregation methods of significances, is not model-based.
Furthermore, the methods are fragmented by the type of the features (i.e.,
there are dedicated algorithms for the identification of local causal features
(RCEdge(X, Y )), relevant variables and their subsets (MB(X), MBM(X, Y ))
or subtheories (G′ ⊆ G)).

The bootstrap methodology provides a model-based confidence value, its
asymptotic behavior for increasing sample size is guaranteed with a consistent
induction algorithm, although there are no theoretical results for its application
on structural features for small sample size and it can be applied uniformly for
arbitrary features. Furthermore, as it includes a model identification for each
bootstrap replicates, its computational complexity can be considerable (e.g.,
compared to Bayesian Monte Carlo methods).

The introduction of Dirichlet parameter priors with parameter independence
for Bayesian networks by Spiegelhalter et al. [131] (conjugate for the multino-
mial sampling, see Sections 1.2.1.2) provided an efficiently computable closed
form for the posterior for the parental sets and for the structure conditional on
a given ordering. Based on this, in the beginning of the 1990’s the full Bayesian
approach was proposed and advocated in a seminal paper [17]. In this paper
Buntine proposed the posterior knowledge base view and analysis of the prop-
erties of the Bayesian network model conditioned on a given ordering. He also
developed a construction method of an approximate posterior offline knowledge
base to support theory (i.e., prior) refinement and full scale Bayesian inference.
In [29], Cooper et al. discussed the general use of the posterior over Bayesian
network structures as an inductive probabilistic knowledge base (i.e., to com-
pute the posterior of arbitrary model properties). However this work had not
proposed method to carry out the Bayesian inference. In [100], Madigan et
al. proposed an MCMC scheme to approximate such Bayesian inference using
the space of DAGs and PDAGS (utilizing also the orderings of the variables).
They also developed the Ockham window algorithm for the construction of a
small, selective set of models to support exploration of the posterior and infer-
ence with it. In [76], Heckerman considered the application of this full Bayesian
approach to causal Bayesian networks (under the Causal Markov Condition).
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The DAG-based MCMC method was improved by Castelo et al. [65]. In [36],
Dash et al. reported a method to perform exact full Bayesian inference in a re-
stricted case of naive Bayesian classifiers. In [55, 56], Friedman et al. reported
another MCMC scheme utilizing the ordering of the variables (hence its name,
ordering-based MCMC method), which used a closed form for the ordering-
conditional posterior of Markov blanket membership, beside the earlier closed
form for parental membership. In [87], Koivisto et al. reported a method to
perform exact full Bayesian inference over modular features in O(n2n) time.
Note that the treatment of the submodels as independent hypotheses differs
from our approach, which treats them as aggregates of compatible complete
models. It would include the assumption of the existential uncertainty of the
domain objects represented by the random variables (for the discussion of treat-
ing orderings as sets of compatible DAGs or as separate objects, see 2.5.2.2).

Before discussing these methods and their application for complex features,
first we summarize the properties of the Bayesian approach and open issues.

1. Normativity. The Bayesian approach is a normative, model-based combi-
nation of prior and data, so the inputs and the outputs are probabilities
conditional on the observed data, which are applicable in the Bayesian
decision-theoretic framework. Consequently, its application and interpre-
tation in the small sample region is unconstrained and general results
about the behavior of Bayesian inference for large sample size can be ap-
plied as well.

2. Probabilistic knowledge base. The feature posteriors can be embedded into
a probabilistic knowledge base, possibly with textual enrichment as in the
case of ABN-KBs. More generally, the feature posteriors can provide the
elementary building blocks for a probabilistic semantic web. An important
question particularly for complex features is the efficient or approximate
representation of the distribution over the feature space.

3. Probabilistically linked model spaces and induced priors. The feature pos-
teriors can be used to induce priors for linked model spaces. For classifiers,
see Chapter ?? and for the comparison of learning dual-Bayesian networks
and the two-phased learning of Bayesian networks from literature data and
clinical data, see Section ??).

4. Optimally selected feature complexity. The induced posteriors for the fea-
tures are dependent in general. A solution followed in the thesis is the
definition of a semantically important complex feature, (i.e., subtheory),
which includes many dependent simpler features and estimate its posterior
distributions.

5. Integrated estimate and search method. An already investigated and solved
question is the estimation of a moderate number of posterior values (ex-
pectations) (e.g., pairwise features such as edge relation or Markov blanket
membership with O(n2) cardinality). However, the number of values of a
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complex feature can be exponentially large (e.g., the number of Markov
blanket subsets is O(2n)), so search methods have to be integrated into
the Monte Carlo inference methods to find feature values with relevant
posterior. We will see in Section 2.6 and ?? that this issue is related to
the estimation of the whole distribution over the feature values and the
creation of an offline approximation for it.

FULLVERSION>

6. Computational uniformity. The Monte Carlo methods can be applied
uniformly for arbitrary features with the same convergence diagnostics
and confidence computations, though feature specific optimizations are
possible.

7. Computational complexity. The used Monte Carlo methods on the order-
ings with restriction K on the maximal parental set size has O(nK+1)
space complexity and the same time complexity for each sampling (typi-

cally for N ≈ 104). <FULLVERSION

2.5 MC methods for a feature posterior

As we discussed in Section 2.1, there are two approaches to the use of BN fea-
tures. The first approach (reported in [17, 102, 74, 54, 53, 55, 56]) is based on a
set of simple features to construct a fragmentary representation for the distribu-
tion over the complete domain model from multiple, though simple aspects us-
ing various interdependent marginals, such as edge probabilities. The other ap-
proach is based on a complex feature (or subtheory), which is a focused represen-
tation from a restricted, but still comprehensive point of view. In our case, this

is the MBG feature to support classifier construction. FULLVERSION> The
general assumption and the final goal are the same in both approaches, such
as the assumption of reduced statistical and computational complexity of the
estimation of a feature w.r.t. and the support of human interpretation and later

phases of learning. <FULLVERSION

In both cases we have to use Monte Carlo methods to perform the Bayesian
inference, because of the lack of analytical formulas for the posterior of the
features. So first, we summarize MC methods: the most direct DAG/PDAG-
MCMC method and a latter developed method, the so-called ordering-based
MCMC method to estimate the posterior of a limited number of features.

2.5.1 The DAG-based MCMC methods

The basic task is the estimation of the expectation of a given random variable
F (G) over the space of DAGs with a specified confidence level.

F̂ ≈ F̄ = Ep(G|DN )[F (G)]. (2.37)
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In Eq. 1.76), we derived an efficiently computable closed formula for the (un-
normalized) posterior of DAGs or for PDAGs in case of likelihood equivalent
priors and our standard assumptions, such as complete data, discrete domain
variables, multinomial local conditional distributions and Dirichlet priors at the
parametric level. As the posterior over DAGs cannot be sampled directly in gen-
eral and the construction of an approximating distribution to use in importance
sampling is frequently not feasible, the standard approach is to use MCMC
methods, such as the Metropolis-Hastings algorithm over the DAG or PDAG

space (see Section ??) FULLVERSION> with standard convergence diagnostic

and confidence estimation (see Section ?? and ?? <FULLVERSION .

The first application of DAG-based MCMC methods for BN feature esti-
mated the posterior of compelled edges [100]. It investigated two proposal dis-
tributions. The first constructs a candidate by perturbing directly the edges
with insertions, deletions and reversals. The second constructs a candidate by
perturbing the partial ordering of the variables and then perturbing the edges
to be compatible with this candidate ordering.

2.5.2 The ordering-based MCMC methods

The DAG-based MCMC method for estimating a given expectation is generally
applicable, but its statistical properties frequently can be improved by specializ-
ing it to a certain type of features. In this section we consider the ordering-based
MCMC method, which is a hierarchic, semi-analytic MCMC method [55]. We
shall see in Section 2.7 that this method can be utilized also to integrate the
estimation and the search process in the case of large numbers of features.

2.5.2.1 The ordering-conditional feature posteriors

Assuming modular structure priors, parameter independence, and modularity
and complete data, the structure posterior has the following product form:

p(G, DN ) =

n∏

i

p(DN | pa(Xi, G))p(pa(Xi, G)).

The ordering-based MCMC method relies on the following two uses of this
product form [17, 36, 55]. First, we note that the set of DAGs compatible with
an ordering ≺ can be constructed as the Descartes product of sets of parental
sets compatible with the ordering, so combining this with the product form of
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the probability of DAG G we have

p(DN | ≺) =
∑

G∈Gk(n),≺

p(DN , G| ≺) (2.38)

=
∑

G∈Gk(n),≺

n∏

i

p(DN | pa(Xi, G))p(pa(Xi, G)| ≺)

=

n∏

i

∑

pa(Xi,G)∼≺

p(DN | pa(Xi, G))p(pa(Xi, G)| ≺),

where pa(Xi, G) ∼≺ denotes the compatibility of a parental set pa(Xi, G) with
ordering ≺. Second, for an ordering-modular feature F (G) = f defined as
∧n

1 Ci(f,≺, pa(Xi, G)), where Ci is true for some parental sets possibly con-
ditionally on a given ordering ≺, we have

p(f, DN | ≺) =
∑

G∈Gk(n),≺

F (G)=f

p(DN , G| ≺) (2.39)

=
∑

pa(Xi,G)∼≺
F (G)=f

n∏

i

p(DN | pa(Xi, G))p(pa(Xi, G)| ≺)

=

n∏

i

∑

pa(Xi,G)∼≺
Ci(f,≺,pa(Xi,G))

p(DN | pa(Xi, G))p(pa(Xi, G)| ≺).

This gives the following proposition (the generalization of Th. 2.2.1).

Proposition 2.5.1. For an ordering-modular feature F (G) = f defined as
∧n

1 Ci(f,≺, pa(Xi, G)), the ordering conditional posterior is decomposed as

p(f |DN ,≺) =
p(f, DN | ≺)

p(DN | ≺)
(2.40)

=

n∏

i

∑

pa(Xi,G)∼≺
Ci(f,≺,pa(Xi,G))

p(DN | pa(Xi, G))p(pa(Xi, G), f | ≺)

∑

pa(Xi,G)∼≺ p(DN | pa(Xi, G))p(pa(Xi, G)| ≺)

=

n∏

i

p(Ci(f,≺, pa(Xi, G))|DN ,≺).

The possible special (“complementer”) value without such form can be man-
aged by appropriate summations for the other feature values. Note that if the
maximum number of parents is bounded by k, then the ordering conditional
feature posterior in Eq. 2.40 can be computed in polynomial time O(nk+1) in
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contrast to the exponential number of DAGs compatible with an ordering in-
volved in the summations in Eq. 2.38, 2.39 [55].

FULLVERSION> Table ?? reports the number of orderings, DAGs, ordering-
compatible DAGs, ordering-compatible DAGs with parental constraints and the
total number of parental sets of an ordering-compatible DAG for the number of

variables i = 2, . . . , 35. <FULLVERSION

FULLVERSION>
Note that the ordering-modular property can be also defined for the loss

functions as well L(G), which allows the same sum-product replacement and so
the efficient computation of the expected loss in Eq. 2.3.

<FULLVERSION

2.5.2.2 Advantages of ordering-based MCMC

The existence of the unnormalized posterior for the orderings and the normalized
ordering-conditional posterior for a feature allows semi-analytic ordering-based
MC methods with advantageous properties w.r.t. DAG-based MC methods.

First, consider the statistical effect of using orderings instead of DAGs and
ignore the effect of the MC method used. By assuming a binary feature F (G)
and using the identity E[X ] = EY [EX [X |Y ]] the target quantity can be rewritten
as

E[F (G)|DN ] = Ep(≺,DN )[E[F (G)| ≺, DN ]], (2.41)

where the random variable p(F (G)| ≺, DN ) = E[F (G)| ≺, DN ] has variance
varp(≺|DN )(E[F (G)| ≺, DN ]). We can decompose it as follows, which directly
follows from the identity var(X) = EY [var(X |Y )] + varY (E[X |Y ]) [64].

Proposition 2.5.2. The variance of a binary feature F (G) varp(G|DN )(F (G))
using the augmented space of G × {≺} with the distribution p(G| ≺)p(≺) is the
sum of its mean variance and the variance of its mean:

varp(G|DN )(F (G)) (2.42)

= Ep(≺|DN )[var(F (G)| ≺, DN)] + varp(≺|DN )(E[F (G)| ≺, DN ]).

Consequently, the availability of the ordering conditional posterior for a
feature allows the cancellation of the term Ep(≺|DN )[var(F (G)| ≺, DN)] in the
ordering-based MC approach compared to a DAG-based method with identical
DAG posteriors. It can be a significant reduction because of the asymptotic
behavior of the two terms. The expected variance of the ordering conditional
probability of a feature is the expectation of the variance of a Bernoulli ran-
dom variable with parameter p(F (G)| ≺, DN ). In contrast, the other term can
be close to zero, if the ordering-conditional posterior of a feature has a simi-
lar value for the orderings compatible with the essential graph generating the
observations.

The decrease of the variance is not simply the consequence of “collapsing” the
G(n) space into the space of orderings with smaller cardinality of n!, but of the
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augmentated state space with the orderings G×{≺} and the analytic marginal-
ization of the ordering conditional DAGs in the case of ordering modular features
(for the general effects of hierarchical approaches and collapsing the state space
by analytical marginalization, a.k.a. Rao-Blackwellisation, on MC sampling,

see [63]). FULLVERSION> Note that the decrease of the variance is not the
consequence of “collapsing” the G(n) space into the space of orderings with car-
dinality n! by partitioning such that the feature value is constant in each parti-

tion and the posterior of the partition is available. ˆp(F ) = Ep(G|DN )[1(G, F )] =
sumGp(G|DN )1(G, F ) = sumRip(Ri|DN )p(F (G)|Ri) Though a reduced space

can be useful in estimating a HPD region of feature values (see Section 2.8.2). <FULLVERSION

However, note that Proposition 2.5.2 treats the DAG space as part of an
extended space and the explicit, autonomous use of the orderings in the joint
distribution p(G| ≺)p(≺) can introduce a bias (cf. the implicit use of the or-
derings as sets of compatible DAGs with an induced distribution from p(G)).
If the uniform distribution p(≺) is used as non-informative, then it has a bias
towards DAGs compatible with many orderings. For example the empty graph
is n! times more probable than any complete graph. However, this bias is not
related to standard measures of model complexity (i.e., to Ockham principle)
as the number of compatible orderings is different for observationally equivalent
DAGs (e.g., a Markov chain with different, but observationally equivalent orien-
tations, see Example 1.1.2). An interesting direct consequence is the following
proposition.

Proposition 2.5.3. The induced prior p(G) ∝ ∑

≺∼G p(≺) from a uniform
p(≺) violates the structural prior equivalence (see Section 1.1.5.2.4).

A computationally expensive solution to maintain uniformity over the DAGs
is to weight the DAGs through p(G| ≺) properly.

Second, let us compare the ordering-based MC method against the DAG-MC
method computationally. Assume that the posteriors of the ordering-conditional
parental set are available in O(1) time (they can be precomputed in O(Nnk)
time and stored in O(n(k+1)) space, which is either directly acceptable or can
be significantly decreased by caching only the high-scoring parental sets). Let
P (n) denote the time complexity of the drawing a sample or proposal, which is
typically O(n2), and F (n) the time complexity of the target feature F (G(n)),
which is O(1) for edges, O(n) for the MBM, MBG and MB features. The
unnormalized posterior p(G, DN ) can be computed in O(n) (assuming the pre-
computation and storage of the local scores). Thus the overall time complexity
of one step of DAG-based MC method is O(n2). For the ordering-based MC
method this is O(nk+1) , but it evaluates nkn or 2O(kn log(n)) DAGs in one step.

Furthermore, to perform exact full Bayesian inference over modular features
a dynamic programming method can be used over subsets instead of the naive
enumeration of the orderings [87]. This method reduces the super-exponential
O(n!) to O(n2n) time, but it requires O(n2n) space.

FULLVERSION>
Further factors mainly related to the space of orderings are as follows. (1)
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In itself, it can support the design of better sampling methods even without
a computable ordering-conditional feature posterior, meaning improved mixing
coefficient, autocorrelation, and acceptance rate in MCMC methods. For exam-
ple the work of Madigan is similarly used the augmented space of G(n)

k× ≺ (n)
to define better proposal distributions in an MCMC method or it can be utilized
in stratified sampling schemes without the use of a distribution p(≺) and order-
ing conditional feature posterior. (2) It can incorporate background information
both directly as a prior and in proposal distributions in MCMC methods. (3)
The posterior of the ordering p(≺ |DN) can be expected to be more insensitive
to the data set, which expectation can be illustrated by the assumption of in-
dependent error terms ǫ(G, DN , N) for p(G|DN ) w.r.t. E[p(G|DN )] showing a

reduced error for p(≺ |DN) w.r.t. E[p(≺ |DN )] with a factor
√

|Gk(n),≺|

p(≺ |DN ) =
∑

G∈Gk(n),≺

p(G|DN ) =
∑

G∈Gk(n),≺

E[p(G|DN )] + ǫ(G, DN , N). (2.43)

(4) Finally, the computability of p(f | ≺, DN) allows the domain-specific in-
terpretation (e.g., the sensitivity of the feature posterior over certain important
causal orderings) and better algorithms for estimating a HPD region of feature
values. Note that the real sample size effects the peakness of the distribution
p(f | ≺, DN ), the MC sample size influences the confidence of the estimate for
p(f | ≺, DN).

<FULLVERSION

2.5.2.3 Estimating edge and pairwise relevance

In the proposal of the ordering-based MCMC method and in subsequent ap-
plications the setting was the following [55, 56]. The ordering prior p(≺) was
uniform. The ordering-conditional structure prior p(G| ≺) was a modular prior
with uniform weights for the size of the parental sets up to a limit k and with
uniform weights for the parental sets with a given size. The parameter inde-
pendence and modularity were assumed, and the BDeu parameter prior was
used. The MCMC method in the ordering space used two kinds of operations
in the proposal distribution: the replacement of pairs and the circular (modulo)
shifting of the ordering. The number of variables was 35 in a medical domain,
100-1000 in the genetic and text-mining domains. The target features were the
edges (Xi → Xj), the pairwise relevance relations (MBM(Xi, Xj)), the pairwise
precedence relations (Xi ≺ Xj) and the pairwise causal relations (Xi 99K Xj).
There is a closed form for the ordering-conditional posterior, except for the ex-
istence of a directed path between two nodes. By noting that the edge feature
fXi→Xj is an ordering-modular feature and for a given ordering only one clause
is relevant in Eq. 2.40, its ordering-conditional posterior is as follows:
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p(fXi→Xj |DN ,≺) (2.44)

=

∑

Xi∈pa(Xj ,G)
pa(Xj ,G)∼≺

p(DN | pa(Xj , G))p(pa(Xj , G)| ≺)

∑

pa(Xj ,G)∼≺ p(DN | pa(Xj , G))p(pa(Xj , G)| ≺)
.

The ordering-conditional posterior of the Markov Blanket Membership fea-
ture fMBM(Xi,Xj) given ≺ can be derived by noting that for a given ≺ the
clauses in the conjunctive normal form for the false value are as follows (assum-
ing Xi ≺ Xj): earlier parental sets are irrelevant (empty for Xi ≺ Xj), Xi is
not parent of Xj (the clause for Xj includes the parental sets without Xi), and
there is no common child of Xi and Xj (the clauses for variables after Xj ≺ Xl

include the parental sets without Xi and Xl)

p(f¬fMBM(Xi,Xj)
|DN ,≺) (2.45)

= p(Xi /∈ pa(Xj , G)|DN ,≺)
n∏

l=j+1

p(Xi, Xj /∈ pa(Xl, G)|DN ,≺),

where

p(Xi /∈pa(Xj , G)|DN ,≺)=

∑

Xi /∈pa(Xj ,G)
pa(Xj ,G)∼≺

p(DN | pa(Xj , G))p(pa(Xj , G)| ≺)

∑

pa(Xj ,G)∼≺ p(DN | pa(Xj , G))p(pa(Xj , G)| ≺)

p(Xi, Xj /∈pa(Xl, G)|DN ,≺)=

∑

Xi,Xj /∈pa(Xl,G)
pa(Xj ,G)∼≺

p(DN | pa(Xl, G))p(pa(Xl, G)| ≺)

∑

pa(Xl,G)∼≺ p(DN | pa(X,G))p(pa(Xl, G)| ≺)
.

The summations involve a polynomial number of terms if the parental set is
bounded by k. For approximations using a restricted set of parental sets with
high probability, see [55].

For the features which are not ordering-modular, such as the existence of a
directed path between a given variable pair, a direct sampling method over the
ordering-compatible DAGs is possible using that

p(f |DN ,≺) = Ep(G≺|DN ,≺)[f(G≺)] (2.46)

and because the ordering-conditional posterior of a given structure G (as an
ordering-modular feature) is the product of the ordering-conditional posteriors

p(G|DN ,≺) =

n∏

1

p(pa(Xi, G)|DN ,≺). (2.47)

FULLVERSION> This hierarchical, two-layered sampling method will not
benefit from the decrease of the variance of exact averaging using a closed form,
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though the advantages of the ordering space discussed above and the efficiency

of direct sampling are still considerable. <FULLVERSION

A related case is if a not ordering-modular feature F ′ (such as the Markov
Blanket feature MB(Y, G)) is completely defined by an ordering-modular feature
F (such as the Markov Blanket subgraph feature MBG(Y, G)), because the
ordering-conditional posterior p(F ′) can be approximated by averaging over a
set of features with high ordering-conditional posteriors:

p(f ′|DN ,≺) =
∑

f

1(F (f) = f ′)p(f |DN ,≺) (2.48)

≈
∑

f

1(F (f) = f ′)p(f |DN ,≺). (2.49)

FULLVERSION> Note that whereas the smaller space of the ordering-compatible
features F ′≺ can have a beneficial effect on identification of such a HPD region
w.r.t. the space of ordering-compatible DAGs G≺, the direct averaging over
F ′≺ instead of G≺ (i.e., averaging using the ordering-conditional feature poste-
rior p(F | ≺, DN) instead of the ordering-conditional posterior for parental sets
p(pa(Xi)| ≺, DN)) has no effect on the efficiency of the MC estimation

p(G : F ′(G) = f ′|DN ,≺) = p(F : F ′(F ) = f ′|DN ,≺) (2.50)

≈ 1

M

M∑

i=1
Gi∼p(G|DN ,≺)

1(F ′(Gi) = f ′) (2.51)

≈ 1

M

M∑

i=1
fi∼p(f |DN ,≺)

1(F ′(fi) = f ′). (2.52)

<FULLVERSION

2.6 Decision over features using MC estimates

In the previous overview of estimation methods of the posteriors of pairwise fea-
tures, we ignored that the estimated feature posteriors are usually used jointly
and we simplified the problem to the estimation of a single posterior. However,
the number of target features can be as high as 104 − 106 features even for a
given type of pairwise features and moderate domain complexity with 100−1000
variables. For complex features the number of feature values is exponential in
the number of variables. Such a high number of feature values makes for exam-
ple the manual analysis of the estimated edge posteriors intractable. It is thus
a typical expectation that the MCMC method should estimate the posteriors
uniformly well for all the n2 features or over a predefined set of features rated a
priori as highly relevant. Another typical expectation in bioinformatics is that
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the estimates allow the correct ranking of the features or at least the selection
of the most probable K feature values. These expectations indicate that the
problem of the joint usage of the estimated posteriors in case of large number
of features requires an additional level of analysis of the overall MCMC process.
This analysis should investigate the effects of the large number of estimates on
the MCMC convergence, the estimation and the confidence estimation for the
estimates as well, particularly w.r.t. the typical joint usages of the estimates in
bionformatics, such as exploration, ranking and selection. In a formal approach
we will define an additional frequentist decision-theoretic level over the Bayesian
layer of posteriors and their MC estimates. We formalize appropriate losses for
joint usages of the estimates typical in bioinformatics, and analyze the effect of
feature cardinality on the error of selecting the most probable features. Note
that this integrated estimation and decision problem (and the subsequently dis-
cussed estimation and search problem) is present also at the level of domain
values (i.e., if the goal is the selection of the set of the most probable config-
urations of values of target variables with a given condition, and Monte Carlo
methods are applied for the estimates of their joint conditional probability).

2.6.1 The Most Probable Features problem

We consider the case of a single complex feature with set of values F , when the
unknown feature posteriors form a single multinomial distribution P = p(F |DN ).

OPTIONAL> The general case means that the unknown parameters describe

the joint distribution of a set of features p(F1, . . . , FL|DN ). <OPTIONAL The
decision problem of feature selection includes the feature posteriors P as the un-
known parameters, the event space consists of M (possibly dependent) samples
D′

M given by a MC method A as a sampling distribution, and the set of actions
consists of the report of the estimates and selections of the parameters. The
decision rule δ(D′

M ) = (I, P̂M ) in general can give a binary vector I indicating

the selection and a scalar vector P̂M containing the estimates p̂M (f |DN ).
If the overall estimation is important, then general distance measures such

as L2(P , P̂M ) can be adopted as loss function. However, frequently the overall
estimates or rankings of the feature values are irrelevant and only the selection
of feature values with high posteriors is important.

Definition 2.6.1. The Most Probable Features problem (MPFs) consists of the
selection of a predefined K number of feature values f ∈ F with high posteriors
p(f |DN), which minimize the following loss based only on I ∈ IK (IK denotes
the set of |F| dimensional binary vectors with exactly K ones)

L(I) = L(P , I) =
∑

i

IiL(si), where L(si) = 1− Pi. (2.53)

Note that the estimates of the selected feature values are secondary and
not involved in the loss function, and with this decomposable loss function this
problem is not a set selection problem. The Most Probable Features problem
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with the Markov Blanket subset feature generalizes the feature subset selection
problem and reformulates it in the Bayesian framework. With the Markov
Blanket subgraph feature it generalizes and reformulates the feature subgraph
selection problem Def. 2.2.3.

FULLVERSION>
By combining the distance approach and the selective approach, we get the

loss

LK
2 (P , I,Q) =

{ ∑

i Ii((Pi −Qi)
2 − P2

i ) + P2
i if

∑

i Ii = K
∞ else

(2.54)

Another interesting loss is based on threshold t and binary cost matrix C

Lt≤,C(P , I) =
∑

i

C1(t≤Pi),Ii
, denoted with Lt≶(P , I) if C =

(
0 1
1 0

)
(2.55)

Finally we define a loss in the general case over a set of features p(F1, . . . , FL|DN ).
Assuming L binary features, binary actions of reporting Ii and some predefined
losses Li(p(G|DN , Ii) for each, the overall loss of reporting them is

LK
L (p(F1, . . . , FL|DN ), I) =

∑

i

Li(p(G|DN , Ii). (2.56)

<FULLVERSION

2.6.2 Effect of feature cardinality in MPFs

First, assume that the MC estimates of the posteriors are available for all the
feature values and let us investigate the statistical consequences of using these
estimates of the feature posteriors in the most probable feature selection problem
with loss Eq. 2.53. That is we neglect momentarily the computational aspects
of the search of the most probable features, and the integrated estimate and
search problem. Specifically, we investigate the effect of the cardinality of the
feature values |F| on the mean error of the selected set of features.

Theorem 2.6.1 ([108]). Let us assume that we solve the K Most Probable Fea-
tures problem in Def. 2.6.1 using an i.i.d. data set D′

M containing M samples
from the feature posterior P = p(F |DN ) and applying the following decision rule
δ(D′

M ) = I∗M defined as I∗M = arg minI∈IK L(P̂M , I) (i.e., we select the most

probable feature values). The loss function is defined in Eq. 2.53. Let L̂(I), L̂(si)
denote the corresponding estimated losses based on P̂M , I∗=argminI∈IK L(P , I)
denotes an optimal set, and I∗M =arg minI∈IK L(P̂M , I) denotes an empirically†

optimal set. The error is defined as 1/K(L(I∗M )−L(I∗)). Then the sample com-
plexity and the expected error of the selection of the K most probable features

†We use the empirical term w.r.t. the stochastic simulations as well.
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are proportional to the logarithm of the number of feature values |F|:

p(
1

K
|L(I∗M )− L(I∗)| ≥ ǫ) ≤ δ, if M ≥ 2/ǫ2(log(2|F|) + log(1/δ)), (2.57)

Ep(D′
M )[

1

K
(L(I∗M )− L(I∗))] ≤

√

log(2|F|) + 1

M/2
. (2.58)

Proof. We proceed analogously as in the case of selecting the best (binary)
classifier, in fact we treat each feature value as a classifier and this theorem is
the generalization of the earlier results for selecting the single best classifier [42].

1
K (L(I∗M )− L(I∗))

= 1
K (L(I∗M )− L̂(I∗M ) + L̂(I∗M )− L̂(I∗)

︸ ︷︷ ︸

≤0

+L̂(I∗)− L(I∗))

≤ 1
K (L(I∗M )− L̂(I∗M ) + L̂(I∗)− L(I∗))

≤ 1
K |L(I∗M )− L̂(I∗M )|+ |L̂(I∗)− L(I∗)|

≤ 2 max
f∈F
|p(f |DN )− p̂M (f |DN)|. (2.59)

It means that if we can estimate uniformly well the probabilities of the
features, then we can bound the error of the selected set of features. Using the
Hoeffding inequality [42], we get for ǫ accuracy and δ confidence

p(
1

K
|L(I∗M )− L(I∗)| ≥ ǫ)

≤ p(max
f∈F
|p(f |DN)− p̂M (f |DN )| ≥ ǫ/2) ≤ 2|F|e−Mǫ2/2 ≤ δ,

which shows that the sample complexity is

M ≥ 2/ǫ2(log(2|F|) + log(1/δ)). (2.60)

Furthermore, the expected average error of the selected set of features can

be bounded as follows using the inequality E[Z] ≤
√

log(ce)
2M (which holds if

p(Z ≥ ǫ) ≤ ce−2Mǫ2 for all 0 ≤ ǫ and some 0 ≤ c) [42]:

Ep(D′
M )[1/K|L(I∗M )− L(I∗)|] ≤

√

log(2|F|) + 1

M/2
. (2.61)

Note that here the cardinality of the set for selection |F| is independent of
the sample size M . Note that the best K-term approximation of P in L1 is the
K MAP feature posterior represented by I∗.

This result was derived assuming an i.i.d. sample from the feature poste-
rior. Analogic results for estimates based on dependent MCMC samples can be
derived using MCMC variants of the Hoeffding inequality (e.g., see [67]).
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2.7 Integrating estimation and search of MBGs

Until now we have assumed that the estimates of the posteriors OPTIONAL> or

the single-feature scores corresponding to a decision rule <OPTIONAL are avail-
able for all the feature values. As discussed below this assumption is implic-
itly fulfilled by DAG-MC methods, but it is computationally prohibitive for
ordering-based MC methods. The DAG-MC methods perform an implicit fea-
ture selection by generating a sample D′

M = G1, . . . , GM , which can be used to
construct a feature-tree containing the maximum M number of distinct feature
values usually in O(Mn2) time to compute the non-zero single-feature scores in
O(M), and to select the K optimal feature values in O(M log(K)) time. This to-
tal O(M(n2+log(K))) time andO(Mn2) space complexity is usually acceptable
in practice, although the additional costs of confidence estimation methods, the
extra cost of achieving convergence for features that are not part of the solution
and the space requirement suggest some selection or search method to process
only the promising features (ideally only the finally reported K features).

On the contrary, the issue of an integrated feature selection method within
the ordering-based MC method is relevant, because an ordering-based MC
method does not generate implicitly a feature set, as usually an exponential
number of features are compatible with an ordering. The alternative approaches
are as follows: (1) we treat estimation embedded in a search method, (2) we per-
form an implicit estimation by sampling, precomputing, and storing to support
the subsequent search, or (3) we perform an integrated estimation and search
method. We investigate these options in turn focusing on the MBG feature.

First, we consider the separation of estimation and search (cases (1) and
(2)). The time complexity of the computation of the posterior of an ordering
p(≺ |DN) and an ordering-conditional posterior p(f | ≺, DN) of a modular or
ordering-modular feature is O(nk+1), where the effect of the real sample size
in computing the likelihood terms for a parental set is O(Nk). We will as-
sume that this polynomial number of scores for the parental sets (or at least
for the high-scoring sets) is cached in O(nk+1) space. We also consider the
advantages of precomputing ordering-conditional factors for subsequent feature

search. OPTIONAL> For an ordering-modular feature value F (G) = f , the set
of ordering compatible DAGs having this value for a given ordering ≺ is defined
as

{G : (F (G) = f) ∧ (G ∈ G≺)} = ×n
i=1Si(f,≺), (2.62)

where Si(f,≺) is the set of valid parental sets of Xi in feature f given ordering
≺. Let |SPa

F (≺, Xi)| denote the number of ordering-specific sets of parental sets
for variable Xi over all feature values f for a fixed ordering ≺ and the total

with |SPa
F (≺)|. <OPTIONAL For example, the sets of parental sets for a fixed

ordering and for a given MBG feature value Si(f,≺) can be either completely
independent of the feature value (i.e., containing all the parental sets compatible
with the ordering), completely determined by the MBG value (i.e., containing
the parental set specified by it) or they can be dependent on both the ordering
and the MBG value. However, this last option means less than n distinct sets of
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parental sets for each ordering (despite the exponential number of feature value,
see Eq. 2.18). This shows that in the case of MBG feature we can precompute
also n ordering-conditional factors with O(1) computational overhead and store
in O(Mn) space together with the O(nk+1) ordering-free parental scores and
M orderings in case (2). If the search process evaluates L number of feature
value in cases (1) and (2), the overall time complexities are O(LMnk+1) and
O(M(nk+1+Ln)) (O(nk+1+n) corresponds to a separate ordering-based MCMC
step).

Second, now we consider the embedding of search into the estimation to
overlap them computationally and to decrease the number of estimated feature
values L close to the number of selected feature values K (i.e., case (3)). This
is particularly relevant if K is large (i.e., it is in the range of nk), which is the
case if our goal is the construction of an offline knowledge base for exploring the
MBG space. Another reason is that features that are not part of the solution
cause not only extra computational costs because of the computation of their
estimates, but can delay the convergence of the MCMC simulation.

FULLVERSION>

First let us consider a non-iterative heuristic method for the selection and
estimation of K optimal feature values for the LK , LK

2 losses (i.e., for avoid-
ing the estimation of all the features). It relies on the existence of efficient
greedy algorithms for finding DAGs/PDAGs with high posteriors, which can
be used to identify MAP feature values, though fMAP = argmaxf∈Fp(F (G) =

f |DN)neqF (GMAP) particularly in the small sample range. These suggest the
following two-phased Select-Estimate features strategy. First high-scoring struc-
tures Ĝ are identified using heuristic structure optimization methods with some
randomization in their initialization, parameterization or in the data set itself
(e.g., in a bootstrap scheme), then the corresponding feature values F (Ĝ) are
estimated. However, this two-phased Select-Estimate method has serious lim-
itations, because the selection of the candidate feature set is heuristic without
semantic interpretation and it cannot be adapted for general losses.

Second let us consider the iterative selection (i.e., search method) and esti-
mation of K optimal feature values for the LK , LK

2 losses (i.e., for avoiding the
estimation of all the features) using DAG-MC sampling. Note that in this case
the computation of the averaged functions for the features f, f ′ for the sample Gi

usually are simple and do not overlap significantly 1(F (Gi) = f), 1(F (Gi) = f ′)
nor with the sampling itself. Consequently by storing the relevant part of
the sample for the feature F (D′

M = F (G1), . . . , F (GM )) in O(Mn2) space,
any search method can be applied offline after the DAG-MC sampling with-
out extra time costs. Because treating the estimations separately embedded
in a search/optimization method is not reasonable, these suggest the following
methods: 1, if we process (estimate and evaluate) all the features implicitly
selected by the sampling process (see Alg. 1) and 2, if we generate and store an
MC-sample to support a subsequent search/optimization (see Alg. 2).

The search is over the indicators IK
i+1, which can be based on the currently

estimated feature values IK
i , their estimates and scores and domain-specific



88 Chapter 2. Inference over BN features

Algorithm 1 A BN-feature selection/learning using unconstrained estimation

Require: p(F | ≺, DN ), p(≺ |DN ), K, IMAP
L2

, M, L

Ensure: optimal IK

Precomputation of p(Xi(DN )| pa(Xi)(DN ))∀ i, | pa(Xi)| < k
Initialize DAG-MC sampling
for i = 0 to M do {the sampling cycle}

Draw Gi with DAG-MC
Update statistics for all (already occurred) feature value

Select K optimal feature (IK) from the collected statistics.
Estimate confidence for IK .

Algorithm 2 An offline estimate/precompute-then-select BN-feature selec-
tion/learning

Require: p(F | ≺, DN ), p(≺ |DN ), K, IMAP
L2

, M, L

Ensure: optimal IK

Precomputation of p(Xi(DN )| pa(Xi)(DN ))∀ i, | pa(Xi)| < k
Generate ordering-MC sample D′

M with precomputed ordering-free and
ordering-specific conditionals
S0 ← {} {Initialize processed feature set}
for i = 0 to ∞ do {the search cycle}

Estimate Si with using D′
M (extending D′

M if necessary)
Si=Search(Si−1,p(F | ≺i, DN ),p̂,v̂ar)
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heuristics. Standard choices are deterministic greedy methods and randomized
schemes such as the simulated annealing. For example, in this later global opti-
mization method, a proposal distribution selects the next feature set p(IK

i |IK
i−1)

and the difference of the scores e−
L̂M(IK

i )−L̂M (IK
i−1)

T determines the acceptance
probability through a “temperature” parameter, which is gradually decreased.
An additional phase may be necessary if the convergence diagnostic for a newly
selected feature or its confidence estimation requires larger MC-sample size, but
this can be solved by extending the sample.

Third, let us consider the estimation and selection of K optimal feature
values for the LK losses (i.e., for avoiding the estimation of all the features)
using ordering-based MC sampling. Assuming that the ordering-free factors are
precomputed and stored in O(nk+1), we identified three options with different
space-time complexities: (1) we treat estimation embedded in a search method,
(2) we perform an implicit estimation by sampling, precomputing, and storing
to support a subsequent search, or (3) we perform an integrated estimation and
search method. These correspond to Alg. 3, Alg. 4 and Alg. 5.

Algorithm 3 A BN-feature selection/learning with embedded estimation

Require: p(F | ≺, DN), p(≺ |DN ), K, IMAP
L2

, M, L

Ensure: optimal IK

Precomputation of p(Xi(DN )| pa(Xi)(DN ))∀ i, | pa(Xi)| < k
Initialize ordering-MC sampling
S0 ← {} {Initialize processed feature set}
for i = 0 to M do {the search cycle}

Estimate Si with ordering-MC
Si=Search(Si−1,p(F | ≺i, DN),p̂,v̂ar)

Algorithm 4 An offline estimate/precompute-then-select BN-feature selec-
tion/learning

Require: p(F | ≺, DN), p(≺ |DN ), K, IMAP
L2

, M, L

Ensure: optimal IK

Precomputation of p(Xi(DN )| pa(Xi)(DN ))∀ i, | pa(Xi)| < k
Generate ordering-MC sample D′

M with precomputed ordering-free and
ordering-specific conditionals
S0 ← {} {Initialize processed feature set}
for i = 0 to M do {the ordering-MCMC cycle}

Estimate Si with using D′
M (extending D′

M if necessary)
Si=Search(Si−1,p(F | ≺i, DN),p̂,v̂ar)

<FULLVERSION

In such an integrated scheme the search method at step i can be based on
the sequentially refined estimates of earlier selected features and on the cur-
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rently available ordering-conditional posteriors p(F | ≺i, DN ). By noting that
the extra cost of an additional feature statistics collection is negligible (i.e., L
can be increased to nk without having significant effect), a robust strategy ap-
plies a search method on p(F | ≺i, DN ) for collecting high-scoring features using
constraints from the earlier selected features (e.g., threshold for the score). The
selected features are estimated, convergence and confidence quantities are com-
puted (note that automated methods are necessary for convergence diagnostics,
such as described in Section ??). If the number of features grows over a given
limit L, then they are pruned to maintain efficiency and space limits. In fact this
approach can be conceived as a two phased sample-then-search method with a
special search method exploiting the estimation steps and using increasing pre-

fixes of an offline sample to decrease time complexity. FULLVERSION> The

main steps of the method is reported in Alg. 5. <FULLVERSION

FULLVERSION>

Algorithm 5 An integrated decision theoretic BN-feature selection and esti-
mation using ordering-based MCMC

Require: p(F | ≺, DN ), p(≺ |DN ), K, IMAP
L2

, M, L

Ensure: optimal IK

Precomputation of p(Xi(DN )| pa(Xi)(DN ))∀ i, | pa(Xi)| < k
S0 ← {} {Initialize processed feature set}
for i = 0 to M do {the ordering-MCMC cycle}

Draw ≺i

Precomputation for p(F | ≺, DN)
S′=Search(Si−1,p(F | ≺i, DN ),p̂,v̂ar)
Si+ = S′ {store new features}
Update average, variance for f ∈ Si (p̂(f |DN), v̂ar(p)(f | ≺, DN))
[Compute convergence diagnostic parameters for f ∈ Si ]
if IMAP

L2
then

Si=PruneMAP(Si,p̂,i,M)
else if L ≤ |Si| then

Si=PruneL2(Si,p̂,v̂ar)

Select K optimal feature (IK) from SM using p̂,v̂ar,IMAP
L2

.

Estimate confidence for IK .

<FULLVERSION

The search method for finding high-probability features can be any general
search such as the deterministic greedy beam search or just the sampling of
the ordering-conditional posterior p(F | ≺i, DN) in each step i or an overpeaked
p(f | ≺i, DN)

α
with 1 < α. Note that the goals of exploring the space of feature

values and estimating their posteriors are distinct for ordering-modular features.
This is even so if our goal is to generate a set of feature values with cardinality K
approximating p(F |DN) in L1, because this corresponds to the K-MAP feature
finding-estimation problem with the LK loss.
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To develop better estimate and search methods the following observations
and constructs can be exploited. First, the product form of the ordering-
conditional posterior of an ordering-modular feature allows a decomposed iden-
tification of the feature with maximal posterior for a given ordering ≺i.

Lemma 2.7.1. For an ordering-modular feature function F the most probable
feature value f∗ compatible with a given ordering ≺ can be found by independent
optimizations per variable using the posterior p(F | ≺, DN ) .

Proof. It is the direct consequence of the existence of decomposed ordering
conditional posterior

f∗ = argmax
f∼≺

p(f | ≺, DN) = arg max
f∼≺

n∏

i=1

p(Si(f,≺)| ≺, DN ) (2.63)

=

n∏

i=1

arg max
Si(f,≺)

p(Si(f,≺)| ≺, DN). (2.64)

The possible special (“complementer”) value without such form can be managed
by appropriate summations per variable.

Furthermore, this decomposed form allows the sorting of the set of potential
parental sets Si(F,≺) = {Si(f,≺) : ∀f ∈ F}, which allows specialized search
techniques in the space of S1(F,≺) × . . .× Sn(F,≺).

Based on this observation we introduce the following concepts.

Definition 2.7.1. The ordering conditional (truncated) MBG space for variable
Y is the most probable subspace of S1(MBG(Y ),≺)× . . .× Sn(MBG(Y ),≺) (the
truncation in each dimension and the optional sorting is discussed below).

An MBG state is represented by an n′ ≤ n dimensional vector s, where n′ is
the number of variables not preceding the target variable Y in the ordering ≺:

n′ =

n∑

i=1

1(Y � Xi). (2.65)

In each dimension, the range of the values are integers si = 0, . . . , ri repre-
senting either separate parental sets or a special set of parental sets not including
the target variable. This special value is present only for variables after the tar-
get variable and not for the target variable. So |Si(MBG(Y, G),≺)| is O(nk),
which implies that f∗ in Lemma 2.7.1 from the potentially exponential number
of features (O(nnk))) can be found in polynomial time O(nk+1) , which drops to
O(1) extra time factor if it is done in parallel with the ordering-based MCMC
simulation. The product of the ordering conditional posteriors of the represented
sets of parental sets gives the ordering conditional posterior of the represented
MBG state. We assume that the conditional posteriors of the represented sets
of parental sets are monotone decreasing w.r.t. their indices:

∀si < s′i : p(si|DN ,≺) ≥ p(s′i|DN ,≺). (2.66)
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which can be constructed in O(nk+1 log(maxi ri)) time under the standard as-
sumption of maximum parental set size smaller than k.

Note that if the not ordering-modular feature F ′ is an aggregate of an
ordering-modular feature F , then the search can be performed in the smaller
space of ordering-compatible features instead of the space of ordering-compatible

DAGs FULLVERSION> (see Eq. 2.50). <FULLVERSION

Second, in the most probable features problem the loss of the selected fea-
tures in Eq. 2.53 is a sum of non-negative terms, which allows an exact (!)
prefiltering (i.e., thresholds ti to select only the potentially optimal features).
Clearly, it is enough to process features with ordering-conditional posteriors
above τ = maxKth

f∈F p̂M (f |DN) (where maxKth denotes the Kth value in a
set in decreasing ordering), because for a feature value f part of the set of K
features with maximal MC-estimate

τ ≤ p̂M (f |DN ) =
1

M

M∑

i=1

p(f | ≺i, DN) ≤ max
i=1,...,M

p(f | ≺i, DN). (2.67)

Because such a threshold τ usually is not available a priori, a sample specific
threshold τi can be used at sample i as the following lemma shows.

Lemma 2.7.2. If for all MCMC sample ≺i i = 1, . . . , M a feature value f is
always below a threshold τi = maxKth

f∈F≺
i

p(f | ≺i, DN )/M , then f cannot be
part of the set of K features with maximal MC-estimate, because there are at
least K feature with larger estimate.

(∀M
i=1 ≺i: p(f | ≺i, DN) < τi)⇒ (p̂M (f | ≺, DN ) ≤ maxKth

f ′∈F≺j p(f ′|DN))

Proof.

p̂M (f |DN ) =
1

M

M∑

i=1

p(f | ≺i, DN ) ≤ max
i=1,...,M

p(f | ≺i, DN ) (2.68)

< maxKth
f ′∈F≺j p(f ′| ≺j, DN )/M

≤ 1

M

M∑

i=1

p(f∗| ≺i, DN) = p̂M (f∗|DN ),

where j = argmaxi=1,...,M p(f | ≺i, DN ) and f∗ can be any feature in the set

{f ′′ ∈ F≺j : maxKth
f ′∈F≺j p(f ′| ≺j , DN) ≤ p(f ′′| ≺j , DN)}.

Eq. 2.68 also shows that with small variance varp(≺i|DN )(p(f | ≺i, DN )) the

threshold factor 1
M can be selected in practice to be smaller (i.e., when the

maximum value is closer to the mean). Note that this filtering based on thresh-
olds τ or τi can be extended to importance sampling in which the estimate is a
weighted sum.
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This truncation per orderings can be specialized for ordering-modular fea-
tures to truncation per orderings and variables, because of their decomposed
score in Eq. 2.63. In the case of MBG(Y, G) feature, this specialized filtering
can guide the truncation of the MBG space as follows. We can apply the thresh-
olds per variable j at step i with a given ordering for limiting the O(nk) number
of set of parental sets to ri,j . Furthermore, these can be sorted, which means
an O(ri,j log(ri,j)) extra time factor if it is done in parallel with the ordering-
based MCMC simulation). This allows a uniform-cost search or a cost-limited
depth-first search. A corresponding estimation and search algorithm based on
the orderings and on the ordering-conditional MBG spaces is reported in Sec-
tion ??. Note that the overall accuracy-confidence analysis of an integrated
estimation and selection method is the same as discussed in Section 2.6.1 as-
suming that the optimal feature values are identified and not pruned.

FULLVERSION> The pruning method is fitted to the loss function, for
heuristic pruning of offline probabilistic KBs, see [17]; for pruning ordering-
conditional DAGs and for pruning to “Ockham windows” for model averaging,

see [103]. <FULLVERSION

FULLVERSION>

2.8 Applications of the ordering-conditional es-
timation[/decision] method

In the thesis the primary goal related to the applications of the estimation[/decision]
method is the Bayesian, domain model-based, sequential analysis of conditional
features with particular emphasis on the incorporation of prior knowledge. This
includes on the one hand the estimation of posteriors of fixed set of struc-
tural features such as edges, Markov Blanket Membership, and ABN ordering-
modular features. On the other hand it includes the estimation/identification of
the most relevant classification oriented, complex feature values and particularly
the construction of an offline MBG collection/knowledge base approximating the
feature posteriors with fixed cardinality, which can be used for an offline induc-
tion of posteriors for conditional features such as MB features, |TANEdge| and
ABN features. The idea of offline probabilistic KB has appeared in [17] con-
taining ordering-compatible DAGs, a related concept was the model-averaging
using Ockham-window [103].

First we describe the reasons/advantages and applications of the ordering-
based MC methods for these fixed sets of features. Second we describe the
reasons/advantages and applications of the ordering-based MC based estima-
tion/decision methods for the MBG feature, which can be used to explore the
high-scoring MBGs and to construct an offline MBG-based knowledge base/data
structure for an offline induction of posteriors for conditional features.

The general conditions of the domain relevant for both directions are the
following. The number of variables in the main, clinical domain is 35 and the
analysis of the size of the parental sets shows that k < 5 is acceptable (see
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Table ??). The k = 4 selection gives nk+1 ∼ 107 parental sets and a single term
can computed in O(Nk) time, which complexities are acceptable in a standard
computational environment, so we always assume complete precomputation and
storing of these terms, which technically is implemented as online caching (for
using only a smaller set of high-scoring parental sets, see [55]). The prior knowl-
edge from a domain expert contains various partial orderings, such as the four
embedded denoted with ≺t,≺w,≺r, prech allowing 1, 105, . . . orderings or the
identification of “causes” and “effects” for the central disease variable providing
11! and 13! independent orderings (decreasing ∼ 1040 orderings to ∼ 1017) and
the orderings of groups of variables. Additionally, both parental and deviation
structure priors are available. Finally, the size of the clinical data sets is 782 and
4000, 10000, 40000, 400000 for the literature data sets, but the intended sequen-
tial application of the methods for increasing prefix data sets or using moving
windows requires further scalability.

2.8.1 Estimation of simple conditional features

In the case of target features with low cardinality such as edges, Markov Blan-
ket Membership, and ABN ordering-modular features the appropriate ordering-
conditional posteriors are computable in O(nk+1) time. Furthermore, because
of the common factors with the p(≺ |DN ) computation, assuming that these
are stored and available in O(1), the ordering-conditional posterior for an edge
can be computed in O(nk) time, for an MBM relation or an ABN ordering-
modular feature inO(nk)−O(nk+1). The availability of the ordering-conditional
posteriors, the acceptability of the limit for the parental set size and the gen-
eral advantages of the ordering-based MC methods described (with the im-
plied space/time complexities) proposed the usage of the ordering-based MC
(ordering-conditional MC) method. Additional factor against a DAG-based or
DAG-ordering based method was the existence of prior knowledge on the order-
ings, particularly the existence of small sets of orderings, because these allows
exact computations (i.e., exhaustive summation without MC part). Conse-
quently, we used the ordering-conditional approach with the following ordering
generation methods to compute/approximate expectations: exhaustive/sparse-
enumeration with hard/logical prior, importance sampling with uniform soft
prior and hard/logical prior and MCMC sampling with uniform and informa-
tive prior. In each of these methods the caching of the parental set scores
through the complete computation and the caching of the common factors for
a given ordering are always present.

The ordering-conditional enumeration method recursively enumerates all the
orderings compatible with a partial ordering defined by a given DAG G(n)
and a DAG Gc over the classes of nodes, and exactly compute the expecta-
tion p(F |DN ,≺ (G)) = Ep(≺|DN ,≺(G))[p(F |DN ,≺)]. The sparse-enumeration
method heuristically evaluates only each Mth ordering.

The ordering-conditional importance sampling samples the orderings com-
patible with a partial ordering defined by a given DAG G(n) and a DAG Gc

over the classes of nodes using a uniform distribution (the combination with the
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earlier deterministic method leads to a stratified sampling scheme).
The advantage of these algorithms that they can exploit the logical con-

straints on the ordering (and implicitly on the DAGs), whereas the ordering-
conditional MCMC needs irreducibility and aperiodicity, which is hard to guar-
antee if the space of orderings contains distantly separated small regions of
allowed orderings. However the ordering-conditional MCMC method can incor-
porate “soft” prior information either semantically as prior or computationally
as its proposal distribution (e.g., independence sampler with the prior), which
is harder/not possible for the earlier methods.

Note that these algorithms can be applied for a fixed set of MBG values as
well, but not for MB values (see Eq. 2.70 for the ordering-conditional posterior
for an mbg value).

2.8.2 Estimations/decisions over complex conditional fea-
tures

In the case of simple features related to conditional modeling such as the edge or
MBM pairwise feature and complex features such as Markov Blanket member-
ship, interaction substructures, or Markov Blanket subgraphs, we discussed that
the MBG feature is complete. This shows the importance of the exploration of
high-scoring MBGs and furthermore completeness means the sufficiency to in-
duce a joint distribution for an arbitary set of so-called “classification” features
from p(MBG|DN ) or from its K cardinality L1 approximation p̂K

L1
(MBG|DN )

as

p̂(F1 = f1, . . . , FL = fL|DN ) ≈
∑

mbg

p̂K
L1

(mbg |DN )1(F1(mbg) = f1), . . . , 1(FL(mbg) = fL).

(2.69)
Such an approximation from an offline p̂K

L1
(MBG|DN ) can be particularly

useful in case of multiple, sequential queries, such as the series of ABN-queries
in exploring a domain. The estimation/decision method for complex features
applied for the MBG feature can serve both purposes, because its ordering-
conditional posteriors is computable in O(nk) − O(nk+1) assuming that the
parental set scores and the common factors with the p(≺ |DN ) computation
are stored in O(nk+1),O(n) space and available in O(1). As earlier for simple
features, the acceptability of the limit for the parental set size and the gen-
eral advantages of the ordering-based MC methods proposed the usage of the
ordering-conditional method, particularly the existence of prior knowledge on
the orderings, as small sets of highly relevant orderings.

Because of the exponential number of feature values a search method has
to be applied either subsequently-iteratively or in an integrated fashion. The
first approach requires the offline storage of the orderings in D′

M , the storage
of p(| pa(Xi)| ≤ k| ≺l) for Xi ≺l Y and the storage of p(|Y /∈ pa(Xi)| ≤ k| ≺l)
for Y ≺l Xi, in 2nM space in total, which allows the O(nM) time computa-
tion of the approximation of a given p(mbg |DN ). Because of the product form
of the ordering-conditional posterior and the sum form of its approximation,
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special search methods are possible, which are better suited to the integrated
method. Furthermore, the convergence diagnostics can be better incorporated
in the integrated method and its space complexity is smaller without conver-
gence diagnostics and confidence estimation. The two main ingredients are the
ordering generation method and a search method.

The goal of the search method is the generation of MBGs with high ordering-
conditional posterior, potentially using the already generated MBGs and the
posteriors p(MBG| ≺l, DN) at step l. We experimented with the following three
search algorithms using only the posteriors p(MBG| ≺l, DN ): direct sampling,
top-sampling and a uniform-cost search. In each of these methods we can define
a state space for an ordering≺ with the coordinates SPa

( Y, mbg), . . . , SPa
( X≺[n], mbg),

where Xi with Y ≺l Xi has a special value the set of parental sets Y /∈ pa(Xi),
the rest of the values are singular sets. The corresponding scores for the values
are the ordering-conditional posteriors of the sets of parental sets and the scores
for the states (i.e., for the MBGs) are the ordering-conditional MBG posteriors.
The direct sampling uses the cached p(SPa

( X≺[n])| ≺, DN) O(nk−1) posteriors,

but it could equally use the O(nk) cached parental sets p(pa(Xi)| ≺, DN). The
top-sampling method is biased towards sampling MBGs with high ordering-
conditional posterior, by sampling only from the K (typically 2-3) most proba-
ble sets of parental sets for each Y - Xi (i.e., from maxKth

sP a
(

Xi) p(sPa
( Xi)| ≺

, DN)). The uniform-cost search first finds the conditionally MAP MBG (in
O(nk+1) time), the K (typically 2-3) most probable sets of parental sets for
each Y - Xi, and then performs a uniform-cost search to a maximum number
of MBGs or to threshold p(MBGMAP,≺| ≺, DN)/M ′, where M ′ combines the
estimated number of orderings and the target number of selected MBGs accord-
ing to Section ?? (in case of deterministic summation or in importance sampling
the weight of the sample contributes as well appropriately).

The estimated MBGs are stored in an n-depth tree with branching on level
i by the parental set of Xi, where the indices are sorted lists. The MBGs
generated at step l can be found in roughly O(n log( n

√
K)) assuming a balanced

tree with K MBG leaves or inserted in O(n n
√

K log( n
√

K)) time if not present.

The estimates of the Ll number of MBGs in the updated MBG-tree are all
updated with the appropriate ordering-conditional posteriors in O(Lln) time.
Note that not only the currently generated MBGs are updated, because it
would cause an underestimation bias. The exact conditionals allow the com-
putation of the ordering-conditional probabilities of being generated p(mbg :
Search− generatedatstepl| ≺l, DN) and being in the tree p(mbg ∈ MBG −
treel| ≺l, DN) (i.e., estimated) at step l, which can be used to parameterize the
method even run-time.

The orderings are generated with exhaustive/sparse-enumeration with hard/logical
prior, importance sampling with uniform soft prior and hard/logical prior and
MCMC sampling with uniform and informative prior. In both case the the or-
derings and the common factors are stored for the analysis. Subsequently, we
assume LK loss (i.e., the goal is the selection of K MAP MBGs).

The integrated, ordering-conditional MBG selection and estimation method
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using a deterministic ordering-generation recursively enumerates all or Mth or-
derings compatible with a partial ordering defined by a given DAG G(n) and a
DAG Gc over the classes of nodes.

The stochastic version of the earlier uses importance sampling to sample the
orderings compatible with a partial ordering defined by a given DAG G(n) and
a DAG

Gc over the classes of nodes using a uniform distribution.
As in the case of simple features, the advantage of these algorithms that they

can exploit the logical constraints on the ordering (and implicitly on the DAGs),
whereas the ordering-conditional MCMC needs irreducibility and aperiodicity,
which is hard to guarantee if the space of orderings contains distantly separated
small regions of allowed orderings. However the ordering-conditional MCMC
method can incorporate “soft” prior information either semantically as prior or
computationally as its proposal distribution (e.g., independence sampler with
the prior), which is harder/not possible for the earlier methods.

In the thesis derived classification related features are approximated using
such offline MGB collections. However, these methods can be easily special-
ized for a given conditional features, such as the traditionally important com-
plex, non-ordering-modular MB feature. The ordering generation method is
unchanged and the MBG generation heuristic search methods can be applied
as heuristic search methods for MB values. However, the method has to be ex-
panded for estimating the ordering-conditional posterior for promising feature
values. For example, this high-scoring MBG set Sl selected at step l can be used
to induce an approximation as

p(mb | ≺l, DN ) ≈
∑

mbg∈Sl

p(mb | ≺l, DN )1(MB(mbg) = mb) (2.70)

or its normalized ordering-conditional to avoid underestimation, because of
the incompleteness of Sl (i.e., using p’ that 1 =

∑

mbg∈Sl
p′(mb | ≺l, DN)).

Another approach is to introduce an extra inner cycle for direct sampling the
ordering-compatible DAGs or MBGs for estimating the ordering-conditional MB
posteriors as

p(mb | ≺l, DN ) ≈ 1

M ′

M ′

∑

i=1

1(MB(mbgi) = mb) (2.71)

or using a single cycle for the search and the estimation with the disadvantage
that these are joined and cannot be specialied separately for example by using
the ordering-conditional MBG posterior and its product form in the search and
in the estimation.

<FULLVERSION
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