Moving Average

- All weights of the moving average (MA) are set to one:

- Simple "low pass" characteristic
- Low cost - no multiplies required.

This filter might preferably be implemented use a power of two number of weights - why?

Notes:

This filter is a very simple low pass characteristic.

Differentrator

- Two weight filter, with values of 1 and -1:

- Simple "high pass" magnitude response with no multiplies required.
- Output is: $y(k)=x(k)-x(k-1)$ and in the z-domain:

$$
Y(z)=X(z)-X(z) z^{-1} \quad \Rightarrow Y(z)=X(z)\left[1-z^{-1}\right]
$$

and hence the differentiator transfer function is:

$$
H(z)=\frac{Y(z)}{X(z)}=1-z^{-1}
$$

Notes:

Inputing a constant value, ie. DC or 0 Hz will result in no output appearing after an initial transient. Hence there is a spectral zero at 0 Hz , i.e. a spectral zero is where the gain is precisely 0 in a linear scale, and if we attempt to represent in a log scale: $20 \log 0=-\infty$.

Integrator

- Integrator is a single weight IIR filter:

- "Low pass" (infinite gain at DC) with no multiplies required.
- Output in the time domain is: $q(k)=p(k)+p(k-1)$ and in the z domain:

$$
Q(z)=P(z)+Q(z-1) \quad \Rightarrow Q(z)\left[1-z^{-1}\right]=P(z)
$$

and hence the integrator transfer function is:

$$
G(z)=\frac{Q(z)}{P(z)}=\frac{1}{1-z^{-1}}
$$

Notes:

If a feedback weight of b is introduced, where $|b|<1$ this is often refered to as a leaky integrator. Generally speaking for DSP for FPGAs/ASICs we will not be concerned with leaky integrators. If $|b|>1$ then the filter would have a pole outside of the unit circle and would be diverging or unstable. .

An integrator and a differentiator are clearly perfect inverses of each other. From a spectral point of view it is interesting to note that the differentiator has infinite attenuation at 0 Hz and the integrator has infinite gain at 0 Hz, \ldots. and any engineer knows infinity multiplied by zero, might just be 1 in many cases!

$$
G(z) H(z)=\left(\frac{1}{1-z^{-1}}\right)\left(1-z^{-1}\right)=1
$$

$$
y(k)=q(k)-q(k-1)=[p(k)+q(k-1)]-q(k-1)=p(k)
$$

Comb Filter

- Weights set to 1 and -1 at either end of the filter.

- Simple multichannel frequency response - no multiplies required.
- Using the z-notation to represent the 8 delays we can show as:

A comb filter with N sample delays (or $N+1$ weights) will have N evenly spaced spectral zeroes from 0 to $f_{s} / 2$. Therefore the 8 delay comb filter above will have 4 spectral zeroes from 0 to 5 MHz , at spacings of 1.25 MHz , when the sample rate is set to $f_{s}=10 \mathrm{MHz}$.

Developed by: wWW.

Eight Weight Moving Average

- Consider again the moving average (MA); all weights of "1"

$$
H(z)=1+z^{-1}+z^{-2}+z^{-3}+z^{-4}+z^{-5}+z^{-6}+z^{-7} \frac{1}{8}
$$

- True moving average if we scale the output by $\frac{1}{8}$ (left shift 3 places)equivalent to all weights being 1/8.
- In the spectrum the moving average filter has $N-1$ spectral zeroes from 0 to f_{s}. In our case $N=8$, we can see 4 spectral zeroes from 0 to $f_{s} / 2$.

Notes:

To allow a numerical representation, we choose $f_{s}=10,000,000$
We can see four spectral zeroes between 0 and $f_{s} / 2$, i.e. $8-1=7$ spectral zeroes between 0 and f_{s}.

Deveropea oy: www.

Nine Weight Moving Average (MA)

- All weights are "1"

$$
H(z)=\left(1+z^{-1}+z^{-2}+z^{-3}+z^{-4}+z^{-5}+z^{-6}+z^{-7}+z^{-8}\right) \frac{1}{9}
$$

- Multiplying by $1 / 9$ is not so convenient......

For ease of numerical representation, we choose $f_{s}=10,000,000$
We can see 4 spectral zeroes between 0 and $f_{s} / 2$, i.e. 9-1=8 spectral zeroes between 0 and f_{s}.

Developed by: www.

Cascade Integrator Comb (CIC)

- Generate a MA impulse response with CIC structure (see Slide 7.6)

$$
H(z)=\left(\frac{1}{1-z^{-1}}\right)\left(1-z^{-8}\right)=\frac{1-z^{-8}}{1-z^{-1}}
$$

- Note that: $\frac{1-z^{-8}}{1-z^{-1}}=1+z^{-1}+z^{-2}+z^{-3}+z^{-4}+z^{-5}+z^{-6}+z^{-7}$
- i.e an integrator and M comb weight CIC = M-1 weight MA

$$
\begin{aligned}
& \frac{1-z^{-8}}{1-z^{-1}}=1+z^{-1}+z^{-2}+z^{-3}+z^{-4}+z^{-5}+z^{-6}+z^{-7} \\
& 1-z^{-8}=\left(1+z^{-1}+z^{-2}+z^{-3}+z^{-4}+z^{-5}+z^{-6}+z^{-7}\right)\left(1-z^{-1}\right) \\
& 1-z^{-8}=1+z^{-1}+z^{-2}+z^{-3}+z^{-4}+z^{-5}+z^{-6}+z^{-7} \\
& \\
& -z^{-1}-z^{-2}-z^{-3}-z^{-4}-z^{-5}-z^{-6}-z^{-7}-z^{-8}
\end{aligned}
$$

It is interesting to note that the integrator has infinite gain at DC and the comb filter has zero gain an DC! CIC Advantages: CIC has Only two additions compare to 8 additions in MA.

CIC Disadvantages: CIC requires 9 storage registers, and MA requires only 7 storage register.

Integrator Overflow

- The integrator of the CIC has infinite gain at DC $(0 \mathrm{~Hz})$.
- Therefore consider the input of a step signal to the CIC:

- The integrator output "grows" unbounded for the step input.

Notes:

Eventually the integrator output will overflow.....
To address this we can use modulo arithmetic.

Cascade of CICs

- We can cascade CIC filters to produce "better" low pass characteristics:
- Cascade of 5 CICs of 8th order MA filters:

- Note however the baseband droop is "worse".

Plots of CIC and cascade of 5 CICs for 8th order moving average.

Recovery of an IF modulated Signal

- Consider the following scenario:
- Signal of interest centered at $f_{c}=2.5 \mathrm{MHz}$
- Signal bandwidth $=100 \mathrm{kHz}$
- Sampling rate, $f_{s}=10 \mathrm{MHz}$

- Requirement is to recover the IF signal at baseband frequencies using as low computation as possible.

Notes:

This bandpass signal has been created by simple amplitude modulation:
Amplitude of a "high" frequency carrier sinusoid is varied in proportion to the amplitude of signal with lower frequency components.

Recovery of an IF modulated Signal

- When the signal is received, the spectrum outside of the 50 kHz band of interest is likely to be occupied with other signals and noise:

- To recover we require to demodulate to baseband and then low pass filter to recover the signal.

Notes:

Demodulation of Signal

- Sampling with a high frequency ADC we can first digitally demodulate the signal:

$\xrightarrow[\text { Anti } \rightarrow \text { ADC }]{\substack{\text { Alias }}}$

Notes:

Demodulation of Signal

-then low pass filter:

Anti Alias

Low Pass Digital Filter

2701 weights
2.5MHz cosine

Notes:

Cost of Digital Filter
MACs/sec $=10,000,000 \times 2701=27,010,000,000=\mathbf{2 7}$ billion MACs/sec $!$

But remember the Downsampling...!

-then low pass filter:

frequency

Notes:

In this example the final required sample rate is 250 kHz and hence as we have bandlimited we can now downsample by a factor of 40.

Cost of Digital Filter
MACs/sec $=10,000,000 / 40 \times 2701=270,100,000=675$ mil/ion MACs/sec!

CIC stage for Decimation

- Consider now designing the low pass filter to extract 0 to 50 kHz using a cascade of low cost simpler filters. Is there a cost saving?

- If we low pass filter the signal of interest with the 5th order CIC then downsample by 2 to 5 MHz , then the aliasing of higher frequency signals comes from frequency regions where the energy is very low.

Notes:

The output spectrum almost leaves the 0 to 50 kHz signal untouched in and attentuates the signal energy above 50 kHz as below.

Final Stage Decimation

- Noting the other empty spectral regions we could downsample by 4:

....in fact we could probably downsample by 8 :

Notes:

Downsampling Values

- We can then perform a final stage of decimation using a standard low pass filter:

- Therefore we are now anticipating that the above staged decimation is similar to the one step decimation presented earlier (and shown below):

Notes:

Cost Comparison

- One stage Low Pass Filter decimation:
- 2701 weights, 10 MHz sampling, Downsample 40

$$
\frac{2701 \times 10,000,000}{40}=675.25 \text { million MACs/sec }
$$

- 5th Order CIC and low pass (at $f_{s}=1.25 \mathrm{MHz}$)
- 171 weights, 1.25 MHz sampling, Downsample 5

$$
\frac{171 \times 1,250,000}{5}=42.75 \text { million MACs/sec }
$$

- 5 CICs with 2 adds each at $10 \mathrm{MHz}=100$ million adds/sec
- Computation reduced by a factor of almost 16!

Notes:

CIC Droop

- One difference we have ignored so far is the "droop" at low frequencies of the CIC low pass filter:

Notes:

Careful viewing of the spectrum shows that the droop is around 0.5 dB :

Correcting the Droop

- So how do we correct the droop?
- Incorporate a "lift" in passband of the final stage low pass filter:

-therefore the decision of this final stage filter must be done very carefully to correct for the droop.

Notes:

CIC Implementation

- Consider the 3rd order CIC cascade shown below with a final stage downsampler:

- We can rearrange the order of the filtering:

Integrator

Integrator

Integrator

Comb

Comb

Comb

We can represent the comb filter more compactly using the z^{-1} notation for a delay:

CIC Implementation

- Based on the noble identity we can move the downsampler to before the comb filters:

- Hence the comb filters now run at the downsampled rate, and require fewer registers for implementation.

Notes:

The noble identity allows the two systems below to be demonstrated to be equivalent.:

III

Comb

CIC Filter study

- In the next few slides the Cascaded Integrator-Comb filter is examined in more detail. This will cover the following areas:
- Introduction to the CIC filter and some examples of where it may be used
- An examination of word length growth in CIC filters and how 'bit-pruning' may be used to reduce resource consumption
- The Sharpened CIC (SCIC) filter structure: how it differs from the CIC filter and where its use is appropriate
- The Interpolated Second Order Polynomial (ISOP) filter: an alternative to the SCIC filter for compensating for CIC filter passband droop
- A discussion of the costs and benefits of CIC and SCIC filters compared with non-recursive, 'moving average'-based filter structures

