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Abstract 

To assist the identification of nonlinear dynamic systems, a 
set of tools has been developed for the MATLAB” envi- 
ronment. The tools include a number of different model 
structures, highly effective training algorithms, functions 
for validating trained networks, and pruning algorithms for 
determination of optimal network architectures. The tool- 
box should be regarded as a nonlinear extension to the 
System Identification Toolbox provided by The Math- 
Works, Inc [9]. This paper gives a brief overview of the 
entire collection of toolbox functions. 

1. Introduction 

Inferring models of dynamic systems from a set of experi- 
mental data is a task which relates to a variety of areas. 
Technical as well as non-technical. If the system to be 
identified can be described by a linear model quite stan- 
dardized methods exist for approaching the problem. Fur- 
thermore, a number of highly advanced tools are available 
which offer assistance in solving the problem 191. When it 
is unreasonable to assume linearity and if the physical in- 
sight into the system dynamics is too limited to propose a 
suitable nonlinear model structure, the problem becomes 
relatively complex. In this case some kind of generic non- 
linear model structure is required. A large number of such 
model structures exist, each characterized by having differ- 
ent advantages and disadvantages. The multilayer percep- 
tron neural network [7] has proven to be one of the most 
powerful tools in practice and thus it has been selected as 
the key technology in our work. The attention has been 
restricted to networks with a single hidden layer of tunh (or 
linear) units since these offer a satisfying flexibility for 
most practical problems. MATLAB 4.2 has been chosen as 
the environment in which to operate due to its popularity, 
the simple user-interface, and its excellent data visualiza- 
tion features. The Mathworks, Inc already offers a neural 

network toolbox [ 2 ] .  Although a small overlap with this has 
been unavoidable the two toolboxes are, however, funda- 
mentally different. While the Neural Network toolbox has 
been designed for covering a variety of network architec- 
tures and for solving many different types of problems, the 
NNSYSID toolbox is specialized to solve system identifi- 
cation problems. Because the overlap is limited we have 
therefore chosen to develop NNSYSID completely inde- 
pendent of the Neural Network toolbox. 

All toolbox functions have been written as “m-functions,” 
but some CMEX dublicates have been coded for speeding 
up the most time consuming functions. The only official 
Mathworks toolbox required is the Signal Processing 
Toolbox. 

The NNSYSID toolbox has primarily been designed from a 
control engineering perspective, but can be used for many 
other applications. For example is time series analysis also 
supported (i.e. no exogenous variablekontrol signal). The 
toolbox is mainly created for handling Multi-Input-Single- 
Output systems (with possible time delays of different or- 
der). Identification of multi-output systems is only sup- 
ported for the most common model structures. 

A number of demonstation programs have been imple- 
mented with the GUI facilities of MATLAB 4.2. These are 
designed to give a quick introduction to the toolbox and 
demonstrates most of the functions. The toolbox is also 
accompanied by a “MATLAB style” manual, which fully 
documents the entire collection of functions [ 111. 

The outline of the paper is as follows: first a brief recapitu- 
lation of the basic identification procedure is given and 
subsequently the toolbox functions are presented by cate- 
gory in accordance with the overall identification proce- 
dure. 
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2. The Basic Procedure 
Fig. 1 shows the procedure usually followed when identify- 
ing a dynamic system. Prior to the execution of the proce- 
dure two issues should be considered: what a priori knowl- 
edge about the system is available and what is the purpose 
(i.e., the intended application of the model)?. Typically, 
these issues will have a strong impact on the entire proce- 
dure. 

F - - 1  
ODEL STRUCTU ----I 

ESTIMATE 

Figure 1. The system identijkation procedure. 

It is assumed that experimental data describing the underly- 
ing system in its entire operating range has been obtained 
in advance with a proper choice of sampling frequency: 

ZN = ( [u(t ) ,y( t ) ]  It = l , . . . ,N] 

U(?) specifies the input to the system while y ( t )  specifies the 
output. 

The toolbox is designed to cover the remaining three stages 
as well as the paths leading from validation and back to 
previous stages. The following chapters will briefly de- 
scribe the functions contained in the toolbox. 

3. Selecting a Model Structure 

Assuming that a data set has been acquired the next step is 
to select a set of candidate models. Unfortunately, this is 
much more difficult in the nonlinear case than in the linear. 
Not only is it necessary to choose a set of regressors, but a 
network architecture is required as well. The implemented 
model structures more or less follow the suggestions given 
in [15]. The idea is to select the regressors as for the con- 
ventional linear model structures and then, afterwards, de- 
termine the best possible neural network achitecture with 
the selected regressors as inputs. 

The toolbox provides the six model structures listed below. 
dt) is the regression vector, 8 is the parameter vector con- 
taining the weights, g is the function realized by the neural 

network, and j(tl6) = Y(tlt - I,@ denotes the one-step 
ahead prediction of the output. 

NNARX structure. ti($) = g(cp(t),13) and 

q ( O = [ y ( t - 1 )  ... y ( t - n , )  
7 u( t -n , )  ... u ( t - n , - n , + l ) ]  

NNOE structure. i(tl8) = g(q(t)$) and 

q(t) = [ j ( t  - lie) . . . jyt - n,,le) 
7 u ( t - n , )  ... u ( t - n ,  -nk +1)] 

NNARMAXI structure. j( t(8) = g(q,(t),8) + C(q-')&(t) 

q(t)=[q:(t)  &(I-1) ... &(t-n')IT 

= [ y ( t - l )  ... y ( t - n u )  
~ ( t - n , )  ... u ( t - n ,  -n, +1) 

&(t-1) ... € ( t - n , f  

~ ( t )  is the prediction error: ~ ( t )  = y ( t )  - jl(tl8) and C is 
a polynomial in the delay operator: 
C(q-1) = 1 + clq -1 +. . .+cnr q-"' 

NNARMAX2 structure. i(tl6) = g(q( t ) ,8 )  and 

qw= [ Y W )  * * *  y ( t - n , )  
u ( t -n , )  ... u( t -n ,  -n, + 1 )  

&(t-1) ... &(t-n,)IT 

NNSSIF structure (state space innovations form). he-  
dictor: 

+ 1) = g ( q ( t ) , e )  
j(tl8) = C(8)i(t) 

with 

To obtain an an observable model structure, a set of 
pseudo-observability indices must be specified just as in 
[SI. For supplementary information see chapter 4, appendix 
A in [8]. 

0 NNZOL structure (Input-Output Linearization). 

i(tl@ = f ( Y @  - I), . . . , y( t  -nu >, u(t - 2), , . . , u(t - nh 1, e f l  
+g(y( t  - I),.. ., y ( t  - n,) ,u( t  - 21,. . ., u(t - n,),B,)u(t - 1) 

f and g are two separate networks. This structure differs 
from the previous ones in that it is not motivated by a linear 
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model structure. NNIOL models are particularly interesting 
for control by input-output linearization. 

For NNARX and NNIOL models there is an algebraic rela- 
tionship between prediction and past data. The remaining 
models are more complicated since they all contain a feed- 
back from network output (the prediction) to network in- 
put. In the neural network terminology these are called 
recurrent networks. The feedback may lead to instability in 
certain regimes of the system’s operating range which can 
be very problematic. This will typically happen if either the 
model structure or the data material is insufficiant. The 
NNARMAXI structure has been constructed to overcome 
this by using a linear moving average filter on the past 
prediction errors. 

When a particular class of model structure has been se- 
lected, the next choice to be made is the number of past 
signals used as regressors (i.e. “the model order” or the 
“lag space”). It is desireable that the user has sufficient 
physical insight to choose these properly. However, the 
toolbox provides a function which occasional may come in 
handy. It implements a method based on so-called 
“lipschitz coefficients” which has been proposed in [6]. It 
is restricted to the determinstic case (or when signal-to- 
noise ratio is high). The MATLAB call is: 

>> OrderlndexMat = lipschit(lJ, Y,nb,na) 

where 
U: input sequence. 
Y: outputs sequence 
nu: vector specifying input lags to be investigated. 
ny: vector specifying output lags to be investigated. 

4. Estimate a Model 

The model estimation stage includes choosing a criterion of 
fit and an iterative search algorithm for finding the mini- 
mum of the criterion (i.e., training the network). The only 
type of criterion implemented is a regularized mean square 
error type criterion: 

The matrix D is a diagonal matrix which is usually set to 
D = d .  For a discussion of regularization by simple weight 
decay, see for example [IO] and [ 161. The toolbox provides 
the following four possibilities: no regularization, one 
common weight decay coefficient, one weight decay for the 
input-to-hidden layer and one for the hidden-to-output 
layer, and individual weight decay for all weights. 

For multi-output systems it is possible to train NNARX and 
state-space models according to the criterion: 

1 
2N 

+-OTDO 

The function nnigls implements the iterated generalized 
least squares procedure for iterative estimation of network 
weights and noise covariance matrix. The inverse of the 
estimated covariance matrix is in this case used as weight 
matrix in the criterion. 

The main engine for solving the optimization problem is a 
version of the Levenberg-Marquardt method [ 3 ] .  This is a 
batch method providing a very robust and rapid conver- 
gence. Moreover, it does not require a number of exotic 
design parameters which makes it very easy to use. In ad- 
dition it is for some of the model structures also possible to 
train the network with a recursive prediction error algo- 
rithm [8]. This may have some advantages over batch al- 
gorithms when networks are trained on very large data sets. 
Either due to redundancy in the data set or because lack of 
computer storage is a problem. The recursive algorithm has 
been implemented with three different types of forgetting: 
Exponential forgetting, constant trace, and the EFRA al- 
gorithm [ 141. 

The toolbox contains the following functions for generating 
models from a specified model structure: 

1: “ h e a r  System I ~ e ~ t i ~ c a t i ~ ~  

nnarmaxl Identify a neural network ARMAX (or ARMA) 
model (linear noise filter). 
Identify a neural network ARMAX (or ARMA) 
model. 

nnarx Identify a neural network ARX (or AR) model. 
nnigls IGLS procedure for multi-output systems. 
nnarxm Identify a multi-output NNARX model. 
nniol Identify a neural network model suited for 1-0 
nnoe linearization type control. 

Identify a neural network Output Error model. 
nnssif Identify a neural network state space model. 
nnrarmxl Recursive counterpart to NNARMAX I. 
nnrarmx2 Recursive counterpart to NNARMAXZ 
nnrarx Recursive counterpart to NNARX. 

nnarmax2 

To exemplify how these functions are called from MAT- 
LAB consider the nnarx function: 
>> [Wl,  W2,crit,iter]= 

nnarx(NetDejNN, w l ,  w2, trparms, U )  

NetDef: A “string matrix” defining the network architec- 
ture. 

NetDef=[‘HHHHHH’ 
‘L----- ] . 
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NN: 

wl, w2: 

U: 

y: 
trparms: 

WI, w2: 
crit: 

iter: 

specifies that the network has 6 tanh hidden 
units and 1 linear output. 
“=[nu nb nk] defines the regression vector. nu 
specifies past outputs, nh past inputs, and nk the 
time delay. For multi-input systems, nb and nk 
are row vectors. 
Matrices containing initial weights. If passed as 
[ ] they are initialized automatically 

Vector (Matrix) containing the input(s). This is 
left out for time series. 
Vector containing the desired outputs. 
Vector containing different parameters associ- 
ated with the training (max. # of iterations, error 
bound, weight decay). Can be passed as [ I . 
Weights after training. 
Vector containing the criterion evaluated after 
each iteration. 
Iterations executed before termination. 

The functions €or identifying models based on recurrent 
networks furthermore requires the parameter skip. This is 
used for preventing transient effects from corrupting the 
training (the ‘skip’ first samples are not used for updating 
the weights): 

> >[ WI, W2, crit, iter]=. . . 
nnoe(NetDejNN,wl,w2,trparms,skip, Y ,  U) 

5. Validation and Model Comparison 

When a network has been trained, the next step is, accord- 
ing the procedure, to validate it. Table 2 shows the func- 
tions associated with this stage of the identification proce- 
dure. 

2: Evaluation of Trained Networks 

ifvalid 
ioleval 
kpredict 
nnfpe 
nloo 
nnsimul 
nnvalid 
xcorrel Display diffent cross-correlation functions. 

Validation of models generated by NNSSIF. 
Validation of models generated by NNIOL. 
Compute and plot k-step ahead predictions. 
WE-estimate for 1-0 models of dynamic systems. 
Leave-one-out estimate for NNARX models. 
Simulate model of dynamic system. 
Validation of 1-0 models of dynamic systems. 

The most common method of validation is to investigate 
predictions and prediction errors (residuals) by cross- 
validation on a fresh set of data, a test set. The functions 
nnvalid, ioleval, ifvalid assist such an investigation. This 
includes a comparison of the actual outputs and the pre- 
dicted outputs, a histogram showing the distribution of the 
residuals, and the auto-correlation function of the residuals. 
A linear model is extracted from the network at each 
sampling instant to provide an impression of the “degree of 
nonlinearity” (see [17]). xcorrel computes a series of cross- 
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correlation functions to check that the residuals are inde- 
pendent of (past) inputs and outputs [ 11. 

As an example, the function nnvalid, which handles the 
validation for most of the model types, is called as follows 
if nnarx was used for generating the model: 

>> [Yhat, V]=nnvalid( ‘nnarx’,NefDejNN, WI, W2,y,u) 

U and y specify the test set input and output signals (for 
multi-output systems only one output at a time is consid- 
ered). Yhat contains the one-step ahead predictions pro- 
duced by the network while V is the normalized sum of 
squared errors: 

evaluated on the test set (the so-called test error). V is an 
important quantity since it can be regarded as an estimate 
of the generalization error. This should not be too large 
compared to the training error, in which case one can sus- 
pect that the network is overfitting the training data. If a 
test set is not available, the average generalization error: 

can be estimated from the training set alone by Akaike’s 
final prediction error (WE) estimate. Although a test set is 
available, the FPE estimate might still offer some valuable 
insights and in particular it can be quite useful for model 
comparison. For the basic unregularized criterion the esti- 
mate reads [8]: 

d denotes the number of weights in the network. When the 
regularized criterion is used, the expression becomes more 
complex [ 101: 

where 

y ,  = tr[R(G)(R(G) + + D)-’R(h)(R(6) + + D)-’] 

and 

y z  = tr[R(i)(R(G) + + D)-’] 

R is the Gauss-Newton Hessian evaluated in the minimum 
and y, (s yz) specifies the so-called effective number of 
weights in the network. The function nnfpe computes the 
FPE estimate and is for NNARX models called by: 
>> [FPE,deff]= ... 

nnfpe( ‘nnarx’,NetDej W1, W2, U, NN,trparms); 
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In addition to the FPE estimate the effective number of 
weights in the network, deff, is also returned. 

For NNARX models it is also possible to compute the so- 
called leave-one-out estimate of the average generalization 
error (nnloo). Due to the nature of this estimate it cannot be 
calculated for model structures based on recurrent net- 
works. 

6. The “Feedback” Paths 

In fig. 1 a number of paths leading from validation back to 
the previous stages are shown. The path from validation to 
training symbolizes that it might be possible to obtain a 
better model if the network is trained with a different 
weight decay or if the weights are initialized differently. 
Since it is likely that the training algorithm ends up in a 
non-global minimum, the network should be trained a 
couple of times with different initializations of the weights. 
Regularization by weight decay has a smoothing effect on 
the criterion and several of the local minima are often re- 
moved when this is used. 

Another path leads back to model structure selection. Be- 
cause the model structure selection problem has been di- 
vided into two seperate subproblems, this can mean two 
things. Namely, “try another set of regressors” or “try an- 
other network architecture.” While the regressors typically 
have to be chosen on a trial-and-error basis, it is to some 
extent possible to automate the network architecture selec- 
tion. The most commonly used method is to prune a very 
large network until the optimal architecture is reached. The 
toolbox provides the so-called Optimal Brain Surgeon 
(OBS) algorithm for pruning the networks. OBS was origi- 
nally proposed in [5], but in [4] it is modified to cover net- 
works trained according to a regularized criterion. 

I 3 Determination of Optimal Network Architecture I 
netstruc Extract weight matrices from matrix of parameter 

vectors. 
Prune models of dynamic systems with Optimal nnprune 

If a model has been generated by nnarx, the OBS function 
is called as follows: 

>> [thd,tr-err, FPE,te-err,defJ;pvec] =nnprune( ‘nnarx’, ... 
NetDef, W l ,  W2, U ,  Y,NN,trparms,prparms,u,y); 

U,Y and u,y are input-output sequences for training and test 
set, respectively. 

prparms specifies how often the network is retrained. To 
run a maximum of 30 iterations each time 2% of the 
weights have been eliminated, set prparms=[30 21. 
prparms=[] gives the default [50 51. 

tr-err, FPE, and te-err are training error, FPE estimate, 
and test error, respectively. These are all plotted while 
pruning and can be used for pointing out the optimal net- 
work architecture. 

thd is a matrix containing the parameter vectors, 0, after 
each weight elimination. The last column of thd contains 
the weights for the initial network. The next-to-last column 
contains the weights for the network appearing after elimi- 
nation of one weight, and so forth. To extract the weight 
matrices from thd, the function netstuc has been imple- 
mented. If, for example, the network containing 25 weights 
is the optimal, the weights are retrieved by: 

>> [Wl ,  W2] = netstruc(NetDejthd,25); 

7. Additional Functions 

The toolbox contains a number of additional functions 
which did not fit directly into any of the groups mentioned 
above. In relation to system identification the functions in 
table 4 are often relevant. 

I 4: Miscellanous Utilities I 
drawnet 
dscale 
getgrad 

Draws a two-layer feedforward network. 
Scale data to zero mean and vanance 1. 
Derivative of network outputs w.r.t. weights. 

A number of functions for training and evaluation of ordi- 
nary feedforward networks for many other purposes than 
system identification (e.g., curve fitting) are provided as 
well. These are listed in table 5.  

I I 5: Functions for ordinary feedforward networks 

batbp 

igls 
incbp 

loo 
marq 
marqlm 
nneval 
obdprune 
obsprune 

fPe 

rpe 

Batch version of the back-propagation algorithm. 
FPE estimate of generalization error. 
IGLS estimation for multi-output networks. 
Recursive (incremental) back-prop. algorithm. 
Leave-One-Out estimate of generalization error. 
Levenberg-Marquardt method. 
Memory saving implementation of L-M method. 
Validation of feed-forward networks. 
Prune with Optimal Brain Damage (OBD). 
Prune with Optimal Brain Surgeon (OBS). 
Recursive prediction error method. 
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To demonstrate the toolbox, a number of demonstration 
examples are provided. Together these demonstrates most 
of the functions in the toolbox. See table 6. 

6: Demonstration Examples 

test1 
test2 
test3 
test4 
test5 
test6 
test7 

~ ~~ ~~ ~ 

Demonstrates different training methods. 
Demonstrates the nnurx function. 
Demonstrates the nnarmm2 function. 
Demonstrates the nnssif function. 
Demonstrates the nnoe function. 
Demonstrates the regularization. 
Demonstrates pruning by OBS on the sunspot 
benchmark problem. 

8. Conclusions 

A variety of neural network architectures and training 
schemes have been proposed through time. The NNSYSID 
toolbox has been implemented under the philosophy: 
“always try simple things first” and is regarded as the sub- 
sequent step if one fails in identifying a linear model. It has 
been a key issue that the basis was a relatively simple type 
of neural network, and that training, evaluation, and archi- 
tecture determination was made as automatic as possible. 
The toolbox has succesfully been used in a number of 
practical applications. 

In [ 121 an add-on toolkit for control engineers is presented. 
This toolkit can be used for construction and simulation of 
a number of control systems based on neural networks. 

The NNSYSID toolbox is available from the web-site at 
The Department of Automation, DTU. The address is: 
http://www.iau.dtu.dk/Projects/proj/nnsysid.html 
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