
TA01 10:20
Proceedings of the 1996 IEEE International Symposium
on Computer-Aided Control System Design
Dearborn, MI September 15-18,1996

X

tisn with Ne s

M. N@rgaard*, 0. Ravn*, L.K. Hansen**, N.K. Poulsen**

*Department of Automation, building 326. pmn, or@iau.dtu.dk
Department of Mathematical Modelling, building 32 1. nkp, lkh @imm.dtu.dk

Technical University of Denmark (DTU), 2800 Lyngby, Denmark

**

Abstract

To assist the identification of nonlinear dynamic systems, a
set of tools has been developed for the MATLAB” envi-
ronment. The tools include a number of different model
structures, highly effective training algorithms, functions
for validating trained networks, and pruning algorithms for
determination of optimal network architectures. The tool-
box should be regarded as a nonlinear extension to the
System Identification Toolbox provided by The Math-
Works, Inc [9]. This paper gives a brief overview of the
entire collection of toolbox functions.

1. Introduction

Inferring models of dynamic systems from a set of experi-
mental data is a task which relates to a variety of areas.
Technical as well as non-technical. If the system to be
identified can be described by a linear model quite stan-
dardized methods exist for approaching the problem. Fur-
thermore, a number of highly advanced tools are available
which offer assistance in solving the problem 191. When it
is unreasonable to assume linearity and if the physical in-
sight into the system dynamics is too limited to propose a
suitable nonlinear model structure, the problem becomes
relatively complex. In this case some kind of generic non-
linear model structure is required. A large number of such
model structures exist, each characterized by having differ-
ent advantages and disadvantages. The multilayer percep-
tron neural network [7] has proven to be one of the most
powerful tools in practice and thus it has been selected as
the key technology in our work. The attention has been
restricted to networks with a single hidden layer of tunh (or
linear) units since these offer a satisfying flexibility for
most practical problems. MATLAB 4.2 has been chosen as
the environment in which to operate due to its popularity,
the simple user-interface, and its excellent data visualiza-
tion features. The Mathworks, Inc already offers a neural

network toolbox [2] . Although a small overlap with this has
been unavoidable the two toolboxes are, however, funda-
mentally different. While the Neural Network toolbox has
been designed for covering a variety of network architec-
tures and for solving many different types of problems, the
NNSYSID toolbox is specialized to solve system identifi-
cation problems. Because the overlap is limited we have
therefore chosen to develop NNSYSID completely inde-
pendent of the Neural Network toolbox.

All toolbox functions have been written as “m-functions,”
but some CMEX dublicates have been coded for speeding
up the most time consuming functions. The only official
Mathworks toolbox required is the Signal Processing
Toolbox.

The NNSYSID toolbox has primarily been designed from a
control engineering perspective, but can be used for many
other applications. For example is time series analysis also
supported (i.e. no exogenous variablekontrol signal). The
toolbox is mainly created for handling Multi-Input-Single-
Output systems (with possible time delays of different or-
der). Identification of multi-output systems is only sup-
ported for the most common model structures.

A number of demonstation programs have been imple-
mented with the GUI facilities of MATLAB 4.2. These are
designed to give a quick introduction to the toolbox and
demonstrates most of the functions. The toolbox is also
accompanied by a “MATLAB style” manual, which fully
documents the entire collection of functions [111.

The outline of the paper is as follows: first a brief recapitu-
lation of the basic identification procedure is given and
subsequently the toolbox functions are presented by cate-
gory in accordance with the overall identification proce-
dure.

394

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:30:10 EST from IEEE Xplore. Restrictions apply.

2. The Basic Procedure
Fig. 1 shows the procedure usually followed when identify-
ing a dynamic system. Prior to the execution of the proce-
dure two issues should be considered: what a priori knowl-
edge about the system is available and what is the purpose
(i.e., the intended application of the model)?. Typically,
these issues will have a strong impact on the entire proce-
dure.

F - - 1
ODEL STRUCTU ----I

ESTIMATE

Figure 1. The system identijkation procedure.

It is assumed that experimental data describing the underly-
ing system in its entire operating range has been obtained
in advance with a proper choice of sampling frequency:

ZN = ([u(t) ,y(t)] It = l , . . . ,N]

U(?) specifies the input to the system while y (t) specifies the
output.

The toolbox is designed to cover the remaining three stages
as well as the paths leading from validation and back to
previous stages. The following chapters will briefly de-
scribe the functions contained in the toolbox.

3. Selecting a Model Structure

Assuming that a data set has been acquired the next step is
to select a set of candidate models. Unfortunately, this is
much more difficult in the nonlinear case than in the linear.
Not only is it necessary to choose a set of regressors, but a
network architecture is required as well. The implemented
model structures more or less follow the suggestions given
in [15]. The idea is to select the regressors as for the con-
ventional linear model structures and then, afterwards, de-
termine the best possible neural network achitecture with
the selected regressors as inputs.

The toolbox provides the six model structures listed below.
dt) is the regression vector, 8 is the parameter vector con-
taining the weights, g is the function realized by the neural

network, and j(tl6) = Y(tlt - I,@ denotes the one-step
ahead prediction of the output.

NNARX structure. ti($) = g(cp(t),13) and

q (O = [y (t - 1) ... y (t - n ,)
7 u(t -n ,) ... u (t - n , - n , + l)]

NNOE structure. i(tl8) = g(q(t)$) and

q(t) = [j (t - lie) . . . jyt - n,,le)
7 u (t - n ,) ... u (t - n , -nk +1)]

NNARMAXI structure. j(t(8) = g(q,(t),8) + C(q-')&(t)

q(t)=[q:(t) &(I-1) ... &(t-n')IT

= [y (t - l) ... y (t - n u)
~ (t - n ,) ... u (t - n , -n, +1)

&(t-1) ... € (t - n , f

~ (t) is the prediction error: ~ (t) = y (t) - jl(tl8) and C is
a polynomial in the delay operator:
C(q-1) = 1 + clq -1 +. . .+cnr q-"'

NNARMAX2 structure. i(tl6) = g(q(t) ,8) and

qw= [Y W) * * * y (t - n ,)
u (t -n ,) ... u(t -n , -n, + 1)

&(t-1) ... &(t-n,)IT

NNSSIF structure (state space innovations form). he-
dictor:

+ 1) = g (q (t) , e)
j(tl8) = C(8)i(t)

with

To obtain an an observable model structure, a set of
pseudo-observability indices must be specified just as in
[SI. For supplementary information see chapter 4, appendix
A in [8].

0 NNZOL structure (Input-Output Linearization).

i(tl@ = f (Y @ - I), . . . , y(t -nu >, u(t - 2), , . . , u(t - nh 1, e f l
+g(y(t - I),.. ., y (t - n,) ,u(t - 21,. . ., u(t - n,),B,)u(t - 1)

f and g are two separate networks. This structure differs
from the previous ones in that it is not motivated by a linear

375

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:30:10 EST from IEEE Xplore. Restrictions apply.

model structure. NNIOL models are particularly interesting
for control by input-output linearization.

For NNARX and NNIOL models there is an algebraic rela-
tionship between prediction and past data. The remaining
models are more complicated since they all contain a feed-
back from network output (the prediction) to network in-
put. In the neural network terminology these are called
recurrent networks. The feedback may lead to instability in
certain regimes of the system’s operating range which can
be very problematic. This will typically happen if either the
model structure or the data material is insufficiant. The
NNARMAXI structure has been constructed to overcome
this by using a linear moving average filter on the past
prediction errors.

When a particular class of model structure has been se-
lected, the next choice to be made is the number of past
signals used as regressors (i.e. “the model order” or the
“lag space”). It is desireable that the user has sufficient
physical insight to choose these properly. However, the
toolbox provides a function which occasional may come in
handy. It implements a method based on so-called
“lipschitz coefficients” which has been proposed in [6]. It
is restricted to the determinstic case (or when signal-to-
noise ratio is high). The MATLAB call is:

>> OrderlndexMat = lipschit(lJ, Y,nb,na)

where
U: input sequence.
Y: outputs sequence
nu: vector specifying input lags to be investigated.
ny: vector specifying output lags to be investigated.

4. Estimate a Model

The model estimation stage includes choosing a criterion of
fit and an iterative search algorithm for finding the mini-
mum of the criterion (i.e., training the network). The only
type of criterion implemented is a regularized mean square
error type criterion:

The matrix D is a diagonal matrix which is usually set to
D = d . For a discussion of regularization by simple weight
decay, see for example [IO] and [161. The toolbox provides
the following four possibilities: no regularization, one
common weight decay coefficient, one weight decay for the
input-to-hidden layer and one for the hidden-to-output
layer, and individual weight decay for all weights.

For multi-output systems it is possible to train NNARX and
state-space models according to the criterion:

1
2N

+-OTDO

The function nnigls implements the iterated generalized
least squares procedure for iterative estimation of network
weights and noise covariance matrix. The inverse of the
estimated covariance matrix is in this case used as weight
matrix in the criterion.

The main engine for solving the optimization problem is a
version of the Levenberg-Marquardt method [3] . This is a
batch method providing a very robust and rapid conver-
gence. Moreover, it does not require a number of exotic
design parameters which makes it very easy to use. In ad-
dition it is for some of the model structures also possible to
train the network with a recursive prediction error algo-
rithm [8]. This may have some advantages over batch al-
gorithms when networks are trained on very large data sets.
Either due to redundancy in the data set or because lack of
computer storage is a problem. The recursive algorithm has
been implemented with three different types of forgetting:
Exponential forgetting, constant trace, and the EFRA al-
gorithm [141.

The toolbox contains the following functions for generating
models from a specified model structure:

1: “ h e a r System I ~ e ~ t i ~ c a t i ~ ~

nnarmaxl Identify a neural network ARMAX (or ARMA)
model (linear noise filter).
Identify a neural network ARMAX (or ARMA)
model.

nnarx Identify a neural network ARX (or AR) model.
nnigls IGLS procedure for multi-output systems.
nnarxm Identify a multi-output NNARX model.
nniol Identify a neural network model suited for 1-0
nnoe linearization type control.

Identify a neural network Output Error model.
nnssif Identify a neural network state space model.
nnrarmxl Recursive counterpart to NNARMAX I.
nnrarmx2 Recursive counterpart to NNARMAXZ
nnrarx Recursive counterpart to NNARX.

nnarmax2

To exemplify how these functions are called from MAT-
LAB consider the nnarx function:
>> [Wl, W2,crit,iter]=

nnarx(NetDejNN, w l , w2, trparms, U)

NetDef: A “string matrix” defining the network architec-
ture.

NetDef=[‘HHHHHH’
‘L-----] .

376

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:30:10 EST from IEEE Xplore. Restrictions apply.

NN:

wl, w2:

U:

y:
trparms:

WI, w2:
crit:

iter:

specifies that the network has 6 tanh hidden
units and 1 linear output.
“=[nu nb nk] defines the regression vector. nu
specifies past outputs, nh past inputs, and nk the
time delay. For multi-input systems, nb and nk
are row vectors.
Matrices containing initial weights. If passed as
[] they are initialized automatically

Vector (Matrix) containing the input(s). This is
left out for time series.
Vector containing the desired outputs.
Vector containing different parameters associ-
ated with the training (max. # of iterations, error
bound, weight decay). Can be passed as [I .
Weights after training.
Vector containing the criterion evaluated after
each iteration.
Iterations executed before termination.

The functions €or identifying models based on recurrent
networks furthermore requires the parameter skip. This is
used for preventing transient effects from corrupting the
training (the ‘skip’ first samples are not used for updating
the weights):

> >[WI, W2, crit, iter]=. . .
nnoe(NetDejNN,wl,w2,trparms,skip, Y , U)

5. Validation and Model Comparison

When a network has been trained, the next step is, accord-
ing the procedure, to validate it. Table 2 shows the func-
tions associated with this stage of the identification proce-
dure.

2: Evaluation of Trained Networks

ifvalid
ioleval
kpredict
nnfpe
nloo
nnsimul
nnvalid
xcorrel Display diffent cross-correlation functions.

Validation of models generated by NNSSIF.
Validation of models generated by NNIOL.
Compute and plot k-step ahead predictions.
WE-estimate for 1-0 models of dynamic systems.
Leave-one-out estimate for NNARX models.
Simulate model of dynamic system.
Validation of 1-0 models of dynamic systems.

The most common method of validation is to investigate
predictions and prediction errors (residuals) by cross-
validation on a fresh set of data, a test set. The functions
nnvalid, ioleval, ifvalid assist such an investigation. This
includes a comparison of the actual outputs and the pre-
dicted outputs, a histogram showing the distribution of the
residuals, and the auto-correlation function of the residuals.
A linear model is extracted from the network at each
sampling instant to provide an impression of the “degree of
nonlinearity” (see [17]). xcorrel computes a series of cross-

377

correlation functions to check that the residuals are inde-
pendent of (past) inputs and outputs [11.

As an example, the function nnvalid, which handles the
validation for most of the model types, is called as follows
if nnarx was used for generating the model:

>> [Yhat, V]=nnvalid(‘nnarx’,NefDejNN, WI, W2,y,u)

U and y specify the test set input and output signals (for
multi-output systems only one output at a time is consid-
ered). Yhat contains the one-step ahead predictions pro-
duced by the network while V is the normalized sum of
squared errors:

evaluated on the test set (the so-called test error). V is an
important quantity since it can be regarded as an estimate
of the generalization error. This should not be too large
compared to the training error, in which case one can sus-
pect that the network is overfitting the training data. If a
test set is not available, the average generalization error:

can be estimated from the training set alone by Akaike’s
final prediction error (WE) estimate. Although a test set is
available, the FPE estimate might still offer some valuable
insights and in particular it can be quite useful for model
comparison. For the basic unregularized criterion the esti-
mate reads [8]:

d denotes the number of weights in the network. When the
regularized criterion is used, the expression becomes more
complex [101:

where

y , = tr[R(G)(R(G) + + D)-’R(h)(R(6) + + D)-’]

and

y z = tr[R(i)(R(G) + + D)-’]

R is the Gauss-Newton Hessian evaluated in the minimum
and y, (s yz) specifies the so-called effective number of
weights in the network. The function nnfpe computes the
FPE estimate and is for NNARX models called by:
>> [FPE,deff]= ...

nnfpe(‘nnarx’,NetDej W1, W2, U, NN,trparms);

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:30:10 EST from IEEE Xplore. Restrictions apply.

In addition to the FPE estimate the effective number of
weights in the network, deff, is also returned.

For NNARX models it is also possible to compute the so-
called leave-one-out estimate of the average generalization
error (nnloo). Due to the nature of this estimate it cannot be
calculated for model structures based on recurrent net-
works.

6. The “Feedback” Paths

In fig. 1 a number of paths leading from validation back to
the previous stages are shown. The path from validation to
training symbolizes that it might be possible to obtain a
better model if the network is trained with a different
weight decay or if the weights are initialized differently.
Since it is likely that the training algorithm ends up in a
non-global minimum, the network should be trained a
couple of times with different initializations of the weights.
Regularization by weight decay has a smoothing effect on
the criterion and several of the local minima are often re-
moved when this is used.

Another path leads back to model structure selection. Be-
cause the model structure selection problem has been di-
vided into two seperate subproblems, this can mean two
things. Namely, “try another set of regressors” or “try an-
other network architecture.” While the regressors typically
have to be chosen on a trial-and-error basis, it is to some
extent possible to automate the network architecture selec-
tion. The most commonly used method is to prune a very
large network until the optimal architecture is reached. The
toolbox provides the so-called Optimal Brain Surgeon
(OBS) algorithm for pruning the networks. OBS was origi-
nally proposed in [5], but in [4] it is modified to cover net-
works trained according to a regularized criterion.

I 3 Determination of Optimal Network Architecture I
netstruc Extract weight matrices from matrix of parameter

vectors.
Prune models of dynamic systems with Optimal nnprune

If a model has been generated by nnarx, the OBS function
is called as follows:

>> [thd,tr-err, FPE,te-err,defJ;pvec] =nnprune(‘nnarx’, ...
NetDef, W l , W2, U , Y,NN,trparms,prparms,u,y);

U,Y and u,y are input-output sequences for training and test
set, respectively.

prparms specifies how often the network is retrained. To
run a maximum of 30 iterations each time 2% of the
weights have been eliminated, set prparms=[30 21.
prparms=[] gives the default [50 51.

tr-err, FPE, and te-err are training error, FPE estimate,
and test error, respectively. These are all plotted while
pruning and can be used for pointing out the optimal net-
work architecture.

thd is a matrix containing the parameter vectors, 0, after
each weight elimination. The last column of thd contains
the weights for the initial network. The next-to-last column
contains the weights for the network appearing after elimi-
nation of one weight, and so forth. To extract the weight
matrices from thd, the function netstuc has been imple-
mented. If, for example, the network containing 25 weights
is the optimal, the weights are retrieved by:

>> [Wl , W2] = netstruc(NetDejthd,25);

7. Additional Functions

The toolbox contains a number of additional functions
which did not fit directly into any of the groups mentioned
above. In relation to system identification the functions in
table 4 are often relevant.

I 4: Miscellanous Utilities I
drawnet
dscale
getgrad

Draws a two-layer feedforward network.
Scale data to zero mean and vanance 1.
Derivative of network outputs w.r.t. weights.

A number of functions for training and evaluation of ordi-
nary feedforward networks for many other purposes than
system identification (e.g., curve fitting) are provided as
well. These are listed in table 5.

I I 5: Functions for ordinary feedforward networks

batbp

igls
incbp

loo
marq
marqlm
nneval
obdprune
obsprune

fPe

rpe

Batch version of the back-propagation algorithm.
FPE estimate of generalization error.
IGLS estimation for multi-output networks.
Recursive (incremental) back-prop. algorithm.
Leave-One-Out estimate of generalization error.
Levenberg-Marquardt method.
Memory saving implementation of L-M method.
Validation of feed-forward networks.
Prune with Optimal Brain Damage (OBD).
Prune with Optimal Brain Surgeon (OBS).
Recursive prediction error method.

378

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:30:10 EST from IEEE Xplore. Restrictions apply.

To demonstrate the toolbox, a number of demonstration
examples are provided. Together these demonstrates most
of the functions in the toolbox. See table 6.

6: Demonstration Examples

test1
test2
test3
test4
test5
test6
test7

~ ~~ ~~ ~

Demonstrates different training methods.
Demonstrates the nnurx function.
Demonstrates the nnarmm2 function.
Demonstrates the nnssif function.
Demonstrates the nnoe function.
Demonstrates the regularization.
Demonstrates pruning by OBS on the sunspot
benchmark problem.

8. Conclusions

A variety of neural network architectures and training
schemes have been proposed through time. The NNSYSID
toolbox has been implemented under the philosophy:
“always try simple things first” and is regarded as the sub-
sequent step if one fails in identifying a linear model. It has
been a key issue that the basis was a relatively simple type
of neural network, and that training, evaluation, and archi-
tecture determination was made as automatic as possible.
The toolbox has succesfully been used in a number of
practical applications.

In [121 an add-on toolkit for control engineers is presented.
This toolkit can be used for construction and simulation of
a number of control systems based on neural networks.

The NNSYSID toolbox is available from the web-site at
The Department of Automation, DTU. The address is:
http://www.iau.dtu.dk/Projects/proj/nnsysid.html

References

Systems,” Proc. of the American Control Conf., S.F., Cali-
fornia, 1993.
[7] J. Hertz, A. Krogh & R.G. Palmer, “Introduction to the
Theory of Neural Computation,” Addison-Wesley, 199 1.
[8] L. Ljung, “System Identification - Theory for the User,”
Prentice-Hall, 1987.
[9] L. Ljung, “System Identification Toolbox User’s
Guide,” The Mathworks Inc., 1991
[101 J. Larsen & L.K. Hansen, “Generalization Perform-
ance of Regularized Neural Network Models,” Proc. of the
IEEE Workshop on Neural networks for Signal Proc. IV,
Piscataway, New Jersey, pp.42-5 1, 1994.
[111 M. Ngrgaard, “Neural Network Based System Identi-
fication Toolbox,” Tech. report 95-E-773, Department of
Automation, Technical University of Denmark, 1995.
[12] M. Nergaard, 0. Ravn, N.K. Poulsen, L.K. Hansen,
“NNCTRL - A CANCSD toolkit for MATLAB,” accepted
for the 1996 IEEE Symposium on Computer-Aided Control
System Design, Dearborn, Michegan, USA.
[13] M.W. Pedersen, L.K. Hansen, J. Larsen, “Pruning
With Generalization Based Weight Saliences: @BD,
@BS,” Proceedings of the Neural Informatioon Systems 8,
1995.
[14] M.E. Salgado, G. Goodwin, R.H. Middleton,
“Modified Least Squares Algorithm Incorporating Expo-
nential Forgetting And Resetting,” Int. J. Control, 47, pp.

[15] J. Sjoberg, H. Hjalmerson, L. Ljung, “Neural Net-
works in System Identification,” Preprints 10th IFAC sym-
posium on SYSID, Copenhagen, Denmark. V01.2, pp. 49-
71, 1994.
[161 J. Sjoberg & L. Ljung, “Overtraining, Regularization,
and Searching for Minimum in Neural Networks,” Preprint
IFAC Symp. on Adaptive Systems in Control and Signal
Processing, Grenoble, France. pp. 669-674, 1992.
[17] 0. SZrensen, “Neural Networks in Control Applica-
tions,’’ Ph.D. Thesis, Aalborg University, Department of
Control Engineering, 1994.

477-491, 1988.

[11 S.A. Billings, H.B., Jamaluddin, S. Chen, “Properties of
Neural Networks With Applications to Modelling non-
linear Dynamical Systems,” Int. J. Control, Vol. 55, No 1,

[2] H. Demuth & M. Beale, “Neural Network Toolbox,”
The Mathworks Inc., 1993.
[3] R. Fletcher, “Practical Methods of Optimization,”
Wiley, 1987.
[4] L.K. Hansen & M. W. Pedersen, “Controlled Growth of
Cascade Correlation Nets,” Proc. ICANN ‘94, Sorrento,
Italy, 1994, Eds. M. Marinaro & P.G. Morasso, pp. 797-
800,1994
[5] B. Hassibi, D.G. Stork, “Second Order Derivatives for
Network Pruning: Optimal Brain Surgeon,” NIPS 5, Eds.
S.J. Hanson et al., 164, San Mateo, Morgan Kaufmann,
1993.
[6] X. He & H. Asada, “A New Method for Identifying
Orders of Input-Output Models for Nonlinear Dynamic

pp. 193-224, 1992.

379

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:30:10 EST from IEEE Xplore. Restrictions apply.

http://www.iau.dtu.dk/Projects/proj/nnsysid.html

