
 1

Structural Design with Verilog
David Harris

9/15/00

Table of Contents

1 Introduction .. 2
2 Modeling with Continuous Assignments.. 2

2.1 Bitwise Operators ... 2
2.2 Comments & White Space.. 3
2.3 Reduction Operators ... 3
2.4 Other Operators .. 3

3 Useful Constructs ... 4
3.1 Internal Signals ... 4
3.2 Precedence .. 4
3.3 Constants .. 5
3.4 Hierarchy .. 5
3.5 Tristates .. 5
3.6 Bit Swizzling .. 6

4 Modeling with Always Blocks ... 7
4.1 Flip-Flops.. 7
4.2 Latches.. 8
4.3 Counters.. 9
4.4 Combinational Logic .. 10
4.5 Memories .. 13
4.6 Blocking and Nonblocking Assignment ... 14

5 Finite State Machines ... 15
6 Verilog Style Guidelines .. 20

6.1 General Guidelines ... 20
6.2 Xilinx Hints .. 21

7 Bad Circuit Examples ... 21
7.1 Incorrect stimulus list ... 21
7.2 Missing begin/end block... 23
7.3 Undefined Outputs.. 23
7.4 Incomplete Specification of Cases.. 25
7.5 Shorted Outputs .. 28

8 Advanced Techniques... 29

 2

1 Introduction
Entry of large digital designs at the schematic level is very time consuming and can be exceedingly tedious
for circuits with wide datapaths that must be repeated for each bit of the data path. Hardware description
languages (HDLs) provide a more compact textual description of a design. Verilog is a powerful language
and offers several different levels of descriptions. The lowest level is the gate level, in which statements
are used to define individual gates. In the structural level, more abstract assign statements and always
blocks are used. These constructs are more powerful and can describe a design with fewer lines of code,
but still provide a clearly defined relationship to actual hardware. The behavioral level of description is the
most abstract, resembling C with function calls (called tasks), for and while loops, etc. Behavioral
modeling describes what a design must do, but does not have an obvious mapping to hardware.

This Verilog documentation will focus on the structural level of description because it is efficient to code,
yet offers a predictable mapping to hardware in the hands of a skilled user. A synthesis tool is used to
translate the Verilog into actual hardware, such as logic gates on a custom Application Specific Integrated
Circuit (ASIC) or configurable logic blocks (CLBs) on a Field Programmable Gate Array (FPGA). When
you use Verilog to describe hardware that you will actually construct, it is extremely important to know
what gates your code will describe. Otherwise, you are almost guaranteed to get something that you didn’t
want. Sometimes this means extra latches appearing in your circuit in places you didn’t expect. Other
times, it means that the circuit is much slower than required or takes far more gates than it would if more
carefully described. Unfortunately, FPGA synthesis tools do not directly show you the gates synthesized
from your code. Therefore, it is particularly easy to get into trouble and that much more important to
understand what gates your code is implying.

There are two kinds of statements used to model logic. Continuous assignment statements always imply
combinational logic. Always blocks can imply combinational logic or sequential logic, depending how they
are used. It is critical to partition your design into combinational and sequential components and write
Verilog in such a way that you get what you want. If you don’t know whether a block of logic is
combinational or sequential, you are very likely to get the wrong thing. A particularly common mistake is
to use always blocks to model combinational logic, but to accidentally imply latches or flip-flops.

2 Modeling with Continuous Assignments
With schematics, a 32-bit adder is a complex design. It can be constructed from 32 full adder cells, each of
which in turn requires about six 2-input gates. Verilog provides a much more compact description:

module adder(a, b, y);
 input [31:0] a, b;
 output [31:0] y;

 assign y = a + b;
endmodule

A Verilog module is like a “cell” or “macro” in schematics. It begins with a description of the inputs and
outputs, which in this case are 32 bit busses. In the structural description style, the module may contain
assign statements, always blocks, or calls to other modules.

During simulation, an assign statement causes the left hand side (y) to be updated any time the right side
(a/b) changes. This necessarily implies combinational logic; the output on the left side is a function of the
current inputs given on the right side. A 32-bit adder is a good example of combinational logic.

2.1 Bitwise Operators
Verilog has a number of bitwise operators that act on busses. For example, the following module describes
four inverters.

 3

module inv(a, y);
 input [3:0] a;
 output [3:0] y;

 assign y = ~a;
endmodule

Similar bitwise operations are available for the other basic logic functions:

module gates(a, b, y1, y2, y3, y4, y5);
 input [3:0] a, b;
 output [3:0] y1, y2, y3, y4, y5;

 /* Five different two-input logic gates acting on 4 bit busses */
 assign y1 = a & b; // AND
 assign y2 = a | b; // OR
 assign y3 = a ^ b; // XOR
 assign y4 = ~(a & b); // NAND
 assign y5 = ~(a | b); // NOR
endmodule

2.2 Comments & White Space

The previous examples showed two styles of comments, just like those used in C or Java. Comments
beginning with /* continue, possibly across multiple lines, to the next */. Comments beginning with
// continue to the end of the line. It is important to properly comment complex logic so you can understand
what you did six months from now or so that some poor slob assigned to fix your buggy code will be able
to figure it out rather than calling you at 2 am with a question.

Verilog is not picky about the use of white space. Nevertheless, proper indenting and spacing is very
helpful to make nontrivial designs readable. Verilog is case-sensitive. Be consistent in your use of
capitalization and underscores in signal and module names.

2.3 Reduction Operators
Reduction operators imply a multiple-input gate acting on a single bus. For example, the following module
describes an 8-input AND gate with inputs A[0], A[1], A[2], … , A[7].

module and8(a, y);
 input [7:0] a;
 output y;

 assign y = &a;
endmodule

As one would expect, |, ^, ~&, and ~| reduction operators are available for OR, XOR, NAND, and NOR as
well. Recall that a multi-bit XOR performs parity, returning true if an odd number of inputs are true.

2.4 Other Operators
The conditional operator ?: works like the same operator in C or Java and is very useful for describing
multiplexers. It is called a ternary operator because it takes three inputs. If the first input is nonzero, the
result is the expression in the second input. Otherwise, the result is the expression in the third input.

 4

module mux2(d0, d1, s, y);
 input [3:0] d0, d1;
 input s;
 output [3:0] y;

 assign y = s ? d1 : d0; // if s=1, y=d1, else y=d0
endmodule

A number of arithmetic functions are supported including +, -, *, <, >, <=, >=, = =, !=, <<, >>, / and %.
Recall from other languages that % is the modulo operator: a%b equals the remainder of a when divided
by b. These operations imply a vast amount of hardware. = = and != (equality / inequality) on N-bit inputs
require N 2-input XNORs to determine equality of each bit and an N-input AND or NAND to combine all
the bits. Addition, subtraction, and comparison all require an adder, which is very expensive in hardware.
Variable left and right shifts << and >> imply a barrel shifter. Multipliers are even more costly. Do not use
these statements without contemplating the number of gates you are generating. Moreover, the
implementations are not always particularly efficient for your problem. You’ll probably be disappointed
with the speed and gate count of a multiplier your synthesis tool produces from when it sees *. You’ll be
better off writing your own Booth-encoded multiplier if these constraints matter. Many synthesis tools
choke on / and % because these are nontrivial functions to implement in combinational logic.

3 Useful Constructs

3.1 Internal Signals
Often it is convenient to break a complex calculation into intermediate variables. For example, in a full
adder, we sometimes define the propagate signal as the XOR of the two inputs A and B. The sum from the
adder is the XOR of the propagate signal and the carry in. We can name the propagate signal using a wire
statement, in much the same way we use local variables in a programming language.

module fulladder(a, b, cin, s, cout);
 input a, b, cin;
 output s, cout;

 wire prop;

 assign prop = a ^ b;
 assign s = prop ^ cin;
 assign cout = (a & b) | (cin & (a | b));
endmodule

Technically, it is not necessary to declare single-bit wires. However, it is necessary to declare multi-bit
busses. It is good practice to declare all signals. Some Verilog simulation and synthesis tools give errors
that are difficult to decipher when a wire is not declared.

3.2 Precedence
Notice that we fully parenthesized the cout computation. We could take advantage of operator precedence
to use fewer parentheses:

assign cout = a&b | cin&(a|b)

The operator precedence from highest to lowest is much as you would expect in other languages. AND has
precedence over OR.

 5

~ Highest
*, /, %
+, -
<<, >>
<, <=, >, >=
=, = =, !=
&, ~&
^, ~^
|, ~|
?: Lowest

3.3 Constants
Constants may be specified in binary, octal, decimal, or hexadecimal. For example:

Number # bits Base Decimal

Equivalent
Stored

3’b101 3 Binary 5 101
’b11 unsized Binary 3 000000..00011
8’b11 8 Binary 3 00000011
8’b1010_1011 8 binary 171 10101011
3’d6 3 Decimal 6 110
6’o42 6 Octal 34 100010
8’hAB 8 Hexadecimal 171 10101011
42 unsized Decimal 42 0000… 00101010

It is good practice to specify the length of the number in bits, even though the second row shows that this is
not strictly necessary. If you don’t specify the length, one day you’ll get bitten when Verilog assumes the
constant has additional leading 0’s that you didn’t intend. Underscores in numbers are ignored and may be
helpful in breaking long numbers into more readable chunks. If the base is omitted, the number is assumed
to be decimal.

3.4 Hierarchy
Nontrivial designs are developed in a hierarchical form, in which complex modules are composed of
submodules. For example, a 4-input MUX can be constructed from three 2-input multiplexers:

module mux4(d0, d1, d2, d3, s, y);
 input [3:0] d0, d1, d2, d3;
 input [1:0] s;
 output [3:0] y;

 wire [3:0] low, high;

 mux2 lowmux(d0, d1, s[0], low);
 mux2 highmux(d2, d3, s[0], high);
 mux2 finalmux(low, high, s[1], y);
endmodule

3.5 Tristates
It is possible to leave a bus floating rather than drive it to 0 or 1. This floating value is called ’z in Verilog.
For example, a tri-state buffer produces a floating output when the enable is false.

 6

module tristate(a, en, y);
 input [3:0] a;
 input en;
 output [3:0] y;

 assign y = en ? a : 4’bz;
endmodule

Floating inputs to gates cause undefined outputs, displayed as ’x in Verilog. At startup, state nodes such as
the internal node of flip-flops are also usually initialized to ’x, as we will see later.

We could define a multiplexer using two tristates so that the output is always driven by exactly one tristate.
This guarantees there are no floating nodes.

module mux2(d0, d1, s, y);
 input [3:0] d0, d1;
 input s;
 output [3:0] y;

 tristate t0(d0, ~s, y);
 tristate t1(d1, s, y);
endmodule

3.6 Bit Swizzling
Often it is necessary to work on parts of a bus or to concatenate (join together) signals to construct busses.
The previous example showed using the least significant bit s[0] of a 2-bit select signal for some muxes and
the most significant bit s[1] for the final mux. Use ranges to select subsets of a bus. For example, an 8-bit
wide 2-input mux can be constructed from two 4-bit wide 2-input muxes:

module mux2_8(d0, d1, s, y);
 input [7:0] d0, d1;
 input s;
 output [7:0] y;

 mux2 lsbmux(d0[3:0], d1[3:0], s, y[3:0]);
 mux2 msbmux(d0[7:4], d1[7:4], s, y[7:4]);
endmodule

The {} notation is used to concatenate busses. For example, the following 8x8 multiplier produces a 16-bit
result, which is, placed on the upper and lower 8-bit result busses.

module mul(a, b, upper, lower);
 input [7:0] a, b;
 output [7:0] upper, lower;

 assign {upper, lower} = a*b;
endmodule

A 16-bit 2’s complement number is sign-extended to 32-bits by copying the most significant bit to each of
the upper 16 positions. The Verilog syntax concatenates 16 copies of a[15] to the 16-bit a[15:0] bus. You
will get a warning from synthesis that a is a “feedthrough net.” This means that the input “feeds through”
to the output. y[15:0] should have the same value as a[15:0], so this is what we intended. If you get a
feedthrough net warning where you did not intend a feedthrough, check for a mistake in your Verilog.

 7

module signextend(a, y);
 input [15:0] a;
 output [31:0] y;

 assign y = {16{a[15]}, a[15:0]};
endmodule

The next statement generates a bizarre combination of two busses. Don’t confuse the 3-bit binary constant
3’b101 with bus b. Note that it was important to specify the length of 3 bits in the constant; otherwise
many additional 0’s might have appeared in the middle of y.

assign y = {a[2:1], 3{b[0]}, a[0], 3’b101, b[1:3]}

a[2] a[1] b[0] b[0] b[0] a[0] 1 0 1y = b[1] b[2] b[3]

4 Modeling with Always Blocks
Assign statements are reevaluated every time any term on the right hand side changes. Therefore, they
must describe combinational logic. Always blocks are reevaluated only when signals in the header
change. Depending on the form, always blocks may imply sequential or combinational circuits.

4.1 Flip-Flops
Flip-flops are described with an always @(posedge clk) statement:

module flop(clk, d, q);
 input clk;
 input [3:0] d;
 output [3:0] q;

 reg [3:0] q;

 always @(posedge clk)
 q <= d;
endmodule

The body of the always statement is only evaluated on the rising (positive) edge of the clock. At this
time, the output q is copied from the input d. The <= is called a nonblocking assignment. Think of it as a
regular equals sign for now; we’ll return to the subtle points later. Notice that it is used instead of assign
inside the always block.

All the signals on the left hand side of assignments in always blocks must be declared as reg. This is a
confusing point for new Verilog users. In this circuit, q is also the output. Declaring a signal as reg does
not mean the signal is actually a register! All it means is it appears on the left side in an always block.
We will see examples of combinational signals later that are declared reg but have no flip-flops.

At startup, the q output is initialized to ’x. Generally, it is good practice to use flip-flops with reset inputs so
that on power-up you can put your system in a known state. The reset may be either asynchronous or
synchronous. Asynchronous resets occur immediately. Synchronous resets only change the output on the
rising edge of the clock. Xilinx FPGAs have dedicated internal hardware to support initializing
asynchronously resettable flip-flops on startup, so such flops are preferred.

 8

module flopr(clk, reset, d, q); // asynchronous reset
 input clk;
 input reset;
 input [3:0] d;
 output [3:0] q;

 reg [3:0] q;

 always @(posedge clk or posedge reset)
 if (reset) q <= 4’b0;
 else q <= d;
endmodule

module flopr(clk, reset, d, q); // synchronous reset
 input clk;
 input reset;
 input [3:0] d;
 output [3:0] q;

 reg [3:0] q;

 always @(posedge clk)
 if (reset) q <= 4’b0;
 else q <= d;
endmodule

Note that the asynchronously resettable flop evaluates the always block when either clk or reset rise so
that it immediately responds to reset. The synchronously reset flop is not sensitized to reset in the @ list,
so it waits for the next clock edge before clearing the output.

One could also consider flip-flops with enables that only load the input when the enable is true. The
following flip-flop retains its old value if both reset and en are false.

module flopenr(clk, reset, en, d, q); // asynchronous reset
 input clk;
 input reset;
 input en;
 input [3:0] d;
 output [3:0] q;

 reg [3:0] q;

 always @(posedge clk or posedge reset)
 if (reset) q <= 4’b0;
 else if (en) q <= d;
endmodule

4.2 Latches
Always blocks can also be used to model transparent latches, also known as D latches. When the clock is
high, the latch is transparent and the data input flows to the output. When the clock is low, the latch goes
opaque and the output remains constant.

 9

module latch(clk, d, q);
 input clk;
 input [3:0] d;
 output [3:0] q;

 reg [3:0] q;

 always @(clk or d)
 if (clk) q <= d;
endmodule

The latch evaluates the always block any time either clk or d change. If the clock is high, the output gets
the input. Notice that even though q is a latch node, not a register node, it is still declared as reg because
it is on the left hand side of a <= in an always block.

Most Xilinx FPGAs do not support latches very well. If your code includes latches either intentionally or
by accident, you will get a warning about “latch inferred in design” and should remove them.

4.3 Counters
Consider two ways of describing a four-bit counter with asynchronous reset. The first scheme implies a
sequential circuit containing both the 4-bit flip-flop and an adder. The second scheme explicitly declares
modules for the flip-flop and adder.

Either scheme is good for a simple circuit such as a counter. As you develop more complex finite state
machines, it is a good idea to separate the next state logic from the flip-flops in your Verilog code. Verilog
does not protect you from yourself here and there are many simple errors that lead to circuits very different
than you intended.

module counter(clk, reset, q);
 input clk;
 input reset;
 output [3:0] q;

 reg [3:0] q;

 // counter using always block

 always @(posedge clk)
 if (reset) q <= 4’b0;
 else q <= q+1;
endmodule

module counter(clk, reset, q);
 input clk;
 input reset;
 output [3:0] q;

 wire [3:0] nextq;

 // counter using module calls

 flopr qflop(clk, reset, nextq, q);
 adder inc(q, 4’b0001, nextq); // assumes a 4-bit adder
endmodule

 10

4.4 Combinational Logic
Always blocks imply sequential logic when some of the inputs do not appear in the @ stimulus list or
might not cause the output to change. For example, in the flop module, d is not in the @ list, so the flop
does not immediately respond to changes of d. In the latch, d is in the @ list, but changes in d are ignored
unless clk is high. Always blocks can also be used to imply combinational logic if they are written in
such a way that the output always is reevaluated given changes in any of the inputs.

The following code shows how to define a bank of inverters with an always block.

module inv(a, y);
 input [3:0] a;
 output [3:0] y;

 reg [3:0] y;

 always @(a)
 y <= ~a;
endmodule

Similarly, the next example defines a 5 banks of different kinds of gates. Notice that the begin / end
construct is necessary because multiple commands appear in the always block. This is analogous to { }
block structure in C or Java. The begin / end was not needed in the flopr example because an if / else
command counts as a single statement.

module gates(a, b, y1, y2, y3, y4, y5);
 input [3:0] a, b;
 output [3:0] y1, y2, y3, y4, y5;

 reg [3:0] y1, y2, y3, y4, y5;

 always @(a or b)
 begin
 y1 <= a & b; // AND
 y2 <= a | b; // OR
 y3 <= a ^ b; // XOR
 y4 <= ~(a & b); // NAND
 y5 <= ~(a | b); // NOR
 end
endmodule

These two examples are poor applications of always blocks for modeling combinational logic because
they require more lines than the equivalent approach with assign statements as well as posing the risk of
inadvertently implying sequential logic (see the bad circuit examples later). A better application of the
always block is a decoder, which takes advantage of the case statement that may only appear inside an
always block.

 11

module decoder_always(a, y);
 input [2:0] a;
 output [7:0] y;

 reg [7:0] y;

 // a 3:8 decoder
 always @(a)
 case (a)
 3’b000: y <= 8’b00000001;
 3’b001: y <= 8’b00000010;
 3’b010: y <= 8’b00000100;
 3’b011: y <= 8’b00001000;
 3’b100: y <= 8’b00010000;
 3’b101: y <= 8’b00100000;
 3’b110: y <= 8’b01000000;
 3’b111: y <= 8’b10000000;
 endcase
endmodule

Using the case statement is probably clearer than a description of the same decoder using Boolean
equations in an assign statement:

module decoder_assign(a, y);
 input [2:0] a;
 output [7:0] y;

 assign y[0] = ~a[0] & ~a[1] & ~a[2];
 assign y[1] = a[0] & ~a[1] & ~a[2];
 assign y[2] = ~a[0] & a[1] & ~a[2];
 assign y[3] = a[0] & a[1] & ~a[2];
 assign y[4] = ~a[0] & ~a[1] & a[2];
 assign y[5] = a[0] & ~a[1] & a[2];
 assign y[6] = ~a[0] & a[1] & a[2];
 assign y[7] = a[0] & a[1] & a[2];
endmodule

Another even better example is the logic for a 7-segment display decoder, taken from Ciletti’s Verilog
book. The equivalent logic with assign statements describing the detailed logic for each bit would be very
tedious. This more abstract approach is faster to write, clearer to read, and can be automatically
synthesized down to an efficient logic implementation.

 12

module seven_seg_display_decoder(data, segments);
 input [3:0] data;
 output [6:0] segments;

 reg [6:0] segments;

 // Segment # abc_defg hex equivalent
 parameter BLANK = 7’b111_1111; // h7F
 parameter ZERO = 7’b000_0001; // h01
 parameter ONE = 7’b100_1111; // h4F
 parameter TWO = 7’b001_0010; // h12
 parameter THREE = 7’b000_0110; // h06
 parameter FOUR = 7’b100_1100; // h4C
 parameter FIVE = 7’b010_0100; // h24
 parameter SIX = 7’b010_0000; // h20
 parameter SEVEN = 7’b000_1111; // h0F
 parameter EIGHT = 7’b000_0000; // h00
 parameter NINE = 7’b000_0100; // h04

 always @(data)
 case (data)
 0: segments <= ZERO;
 1: segments <= ONE;
 2: segments <= TWO;
 3: segments <= THREE;
 4: segments <= FOUR;
 5: segments <= FIVE;
 6: segments <= SIX;
 7: segments <= SEVEN;
 8: segments <= EIGHT;
 9: segments <= NINE;
 default: segments <= BLANK;
 endcase
endmodule

This example shows the use of parameters to define constants to make the code more readable. The case
statement has a default to display a blank output when the input is outside the range of decimal digits.

Finally, compare two descriptions of a priority encoder that sets one output true corresponding to the most
significant input that is true. The if statement can appear in always blocks and makes the logic very
natural. The assign statements synthesize to the same results, but are less clear to read. Note that a[3] is
another example of a feedthrough net because y[3] = a[3].

 13

module priority_always(a, y);
 input [3:0] a;
 output [3:0] y;

 reg [3:0] y;

 always @(a)
 if (a[3]) y <= 4’b1000;
 else if (a[2]) y <= 4’b0100;
 else if (a[1]) y <= 4’b0010;
 else if (a[0]) y <= 4’b0001;
 else y <= 4’b0000;
endmodule

module priority_assign(a, y);
 input [3:0] a;
 output [3:0] y;

 assign y[3] = a[3];
 assign y[2] = a[2] & ~a[3];
 assign y[1] = a[1] & ~|a[3:2];
 assign y[0] = a[0] & ~|a[3:1];
endmodule

It is very easy to accidentally imply sequential logic with always blocks when combinational logic is
intended. The resulting bugs can be difficult to track down. Therefore, it is safer to use assign
statements than always blocks to imply combinational logic. Nevertheless, the convenience of constructs
such as if or case that must appear in always blocks justifies the modeling style as long as you
thoroughly understand what you are doing.

4.5 Memories
Verilog has an array construct used to describe memories. The following module describes a 64 word x 16
bit RAM that is written when wrb is low and otherwise read.

module ram(addr, wrb, din, dout);
 input [5:0] addr;
 input wrb;
 input [15:0] din;
 output [15:0] dout;

 reg [15:0] mem[63:0]; // the memory
 reg [15:0] dout;

 always @(addr or wrb or din)
 if (~wrb) mem[addr] <= din;
 else dout <= mem[addr];

endmodule

FPGAs have a limited number of bits of RAM on board. Large memories are extremely expensive. In the
Xilinx Foundation tools, it is more efficient to specify a RAM or ROM using the LogiBLOX tool.

 14

4.6 Blocking and Nonblocking Assignment
Verilog supports two types of assignments inside an always block. Blocking assignments use the =
statement. Nonblocking assignments use the <= statement. Do not confuse either type with the assign
statement, which cannot appear inside always blocks at all.

A group of blocking assignments inside a begin/end block are evaluated sequentially, just as one would
expect in a standard programming language. A group of nonblocking assignments are evaluated in parallel;
all of the statements are evaluated before any of the left hand sides are updated. This is what one would
expect in hardware because real logic gates all operate independently rather than waiting for the completion
of other gates.

For example, consider two attempts to describe a shift register. On each clock edge, the data at sin should
be shifted into the first flop. The first flop shifts to the second flop. The data in the second flop shifts to
the third flop, and so on until the last element drops off the end.

clk

sin

q[0] q[1] q[2] q[3]
Intended Shift Register

module shiftreg(clk, sin, q);
 input clk;
 input sin;
 output [3:0] q;

 // This is a correct implementation using nonblocking assignment

 reg [3:0] q;

 always @(posedge clk)
 begin
 q[0] <= sin; // <= indicates nonblocking assignment
 q[1] <= q[0];
 q[2] <= q[1];
 q[3] <= q[2];
 // it would be even more better to write q <= {q[2:0], sin};
 end
endmodule

The nonblocking assignments mean that all of the values on the right hand sides are assigned
simultaneously. Therefore, q[1] will get the original value of q[0], not the value of sin that gets loaded into
q[0]. This is what we would expect from real hardware. Of course all of this could be written on one line
for brevity.

Blocking assignments are more familiar from traditional programming languages, but inaccurately model
hardware. Consider the same module using blocking assignments. When clk rises, the Verilog says that
q[0] should be copied from sin. Then q[1] should be copied from the new value of q[0] and so forth. All
four registers immediately get the sin value.

 15

module shiftreg(clk, sin, q[3:0]);
 input clk;
 input sin;
 output [3:0] q;

 // This is a bad implementation using blocking assignment

 reg [3:0] q;

 always @(posedge clk)
 begin
 q[0] = sin; // = indicates blocking assignment
 q[1] = q[0];
 q[2] = q[1];
 q[3] = q[2];
 end
endmodule

The moral of this illustration is to always use nonblocking assignment in always blocks when writing
structural Verilog. With sufficient cleverness, such as reversing the orders of the four commands, one
might make blocking assignments work correctly, but they offer no advantages and great risks.

Finally, note that each always block implies a separate block of logic. Therefore, a given reg may be
assigned in only one always block. Otherwise, two pieces of hardware with shorted outputs would be
implied.

5 Finite State Machines
There are two styles of designing finite state machines. In Mealy machines, the output is a function of the
current state and inputs. In Moore machines, the output is a function of only the current state. The styles
are illustrated below.

Output
Logic

Next State
Logic

clk

state outputsinputs next
state

Moore Machine

Output
Logic

Next State
Logic

clk

state outputsinputs next
state

Mealy Machine

FSMs are modeled in Verilog with an always block defining the state registers and combinational logic
defining the next state and output logic.

 16

Let us first consider a very simple finite state machine with one output and no inputs, a divide by 3 counter.
The output should be asserted every three clock cycles. A state transition diagram for a Moore state
machine is given below. The output value is labeled in each state because the output is only a function of
the state.

S2

out = 1

S1

out = 0

S0

out = 0

reset

Divide-by-3 Counter State Transition Diagram

 17

module divideby3FSM(clk, reset, out);
 input clk;
 input reset;
 output out;

 reg [1:0] state;

 reg [1:0] nextstate;

 parameter S0 = 2’b00;
 parameter S1 = 2’b01;
 parameter S2 = 2’b10;

 // State Register

 always @(posedge clk or posedge reset)
 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic

 always @(state)
 case (state)
 S0: nextstate <= S1;
 S1: nextstate <= S2;
 S2: nextstate <= S0;
 default: nextstate <= S0;
 endcase

 // Output Logic

 assign out = (state == S2);

endmodule

The FSM model is divided into three portions: the state register, next state logic, and output logic. The
state logic describes an asynchronously resettable flip-flop that resets to an initial state and otherwise
advances to the computed next state. Defining states with parameters allows the easy modification of state
encodings and makes the code easier to read. The next state logic computes the next state as a function of
the current state and inputs; in this example there are no inputs. A case statement in an always
@(state or inputs) block is a convenient way to define the next state. It is important to have a
default if not all cases are enumerated; otherwise the nextstate would not be assigned in the undefined
cases. This implies that nextstate should keep its old value, which would require the existence of latches.
Finally, the output logic may be a function of the current state alone in a Moore machine or of the current
state and inputs in a Mealy machine. Depending on the complexity of the design, assign statements, if
statements, or case statements may be most readable and efficient.

The next example shows a finite state machine with an input A and two outputs. Output X is true when the
input is the same now as it was last cycle. Output Y is true when the input is the same now as it was for the
past two cycles. This is a Mealy machine because the output depends on the current inputs as well as the
state. The outputs are labeled on each transition after the input. The state transition diagram is shown
below:

 18

S1 S3

S2 S4

S0

reset

A / X=0, Y=0

A

A / X=1, Y=0

A / X=1, Y=1

A /
X=0,
Y=0

A /
X=0,
Y=0

A / X=0, Y=0

A / X=1, Y=0

A / X=1, Y=1

A / X=0, Y=0

A / X=0, Y=0

History Finite State Machine

 19

module historyFSM(clk, reset, a, x, y);
 input clk;
 input reset;
 input a;
 output x, y;

 reg [2:0] state;

 reg [2:0] nextstate;

 parameter S0 = 3’b000;
 parameter S1 = 3’b010;
 parameter S2 = 3’b011;
 parameter S3 = 3’b100;
 parameter S4 = 3’b101;

 // State Register

 always @(posedge clk or posedge reset)
 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic

 always @(state or a)
 case (state)
 S0: if (a) nextstate <= S3;
 else nextstate <= S1;
 S1: if (a) nextstate <= S3;
 else nextstate <= S2;
 S2: if (a) nextstate <= S3;
 else nextstate <= S2;
 S3: if (a) nextstate <= S4;
 else nextstate <= S1;
 S4: if (a) nextstate <= S4;
 else nextstate <= S1;
 default: nextstate <= S0;
 endcase

 // Output Logic

 assign x = (state[1] & ~a) | (state[2] & a);
 assign y = (state[1] & state[0] & ~a) | (state[2] & state[0] & a);

endmodule

The output logic equations depend on the specific state encoding and were worked out by hand. A more
general approach is independent of the encodings and requires less thinking, but might require more gates
and code:

 20

 // Output Logic

 always @(state or a)
 case (state)
 S0: begin
 x <= 0; y <= 0;
 end
 S1: if (A) begin
 x <= 0; y <= 0;
 end else begin
 x <= 1; y <= 0;
 end
 S2: if (A) begin
 x <= 0; y <= 0;
 end else begin
 x <= 1; y <= 1;
 end
 S3: if (A) begin
 x <= 1; y <= 0;
 end else begin
 x <= 0; y <= 0;
 end
 S4: if (A) begin
 x <= 1; y <= 1;
 end else begin
 x <= 0; y <= 0;
 end
 endcase

One might be tempted so simplify the case statement. For example, case S4 might be reduced to:

 // bad simplification of S4
 S4: if (A) begin
 y <= 1;
 end else begin
 x <= 0; y <= 0;
 end

The designer reasons that to get to state S4, we must have passed through state S3 with A high, setting x
high. Therefore, the assignment of x is optimized out of S4 when A is high. This is incorrect reasoning.
The modified approach implies sequential logic. Specifically, a latch is implied that holds the old value of
x when x is not assigned. The latch holds its output under a very peculiar set of circumstances; A and the
state must be used to compute the latch clock signal. This is undoubtedly not what you want, but was very
easy to imply. The moral of this example is that if any signal gets assigned in any branch of an if or
case statement, it must be assigned in all branches lest a latch be implied.

6 Verilog Style Guidelines
If you follow these style guidelines, you will avoid many of the common Verilog pitfalls and will produce
code that is easier for you or others to modify in the future.

6.1 General Guidelines
1. Use only nonblocking assignments inside always blocks.

 21

2. Define your combinational logic using assign statements when practical. Only use always blocks
to define combinational logic if constructs like if or case make your logic much clearer or more
compact.

3. When modeling combinational logic with an always block, if a signal is assigned in any branch of an
if or case statement, it must be assigned in all branches.

4. Partition your design into leaf cells and non-leaf cells. Leaf cells contain assign statements or
always blocks but do not instantiate other cells. Non-leaf cells instantiate other cells but contain no
logic. Minor exceptions to this guideline may be made to keep the code readable.

5. Use a design style with positive edge-triggered flip-flops as your only sequential elements. Avoid SR
latches, negative edge-triggered flops, and transparent latches.

6. Use parameters to define state names and constants.
7. Properly indent your code, as shown in the examples in this guide.
8. Use comments liberally.
9. Use meaningful signal names. Use a, b, c, … for generic logic gate inputs. Use x, y, z for generic

combinational outputs and q for a generic state element output. Use descriptive names for nongeneric
cells. Do not use foo, bar, or baz!

10. Be consistent in your use of capitalization and underscores.

6.2 Xilinx Hints

1. Use only positive edge-triggered flip-flops. Avoid @(negedge clk) and latches.
2. Be certain not to inadvertently imply latches. If you do and are targeting the Spartan family of FPGAs,

which do not have built-in latches, you will get the following warning, which you should fix. The
warning will not appear when targeting the 4000XL or SpartanXL families that have latches, but you
should still be careful not to inadvertently create logic that implies latches.

Warning: Latch inferred in design ‘… ’ read with ‘hdlin_check_no_latch’. (HDL-307)

3. Provide an asynchronous reset to all of your flip-flops with a common signal name. If you do, Xilinx

will automatically tie this reset to the chip’s global reset and reset your flip-flops on power-up. If not,
Xilinx will give you the following warnings. Fix the warning by providing a proper reset to all
elements.

Warning: No net is connected to the set/reset pin of Cell ‘/”q_reg<0>”/Q_reg’. (FPGA-GSRMAP-16)
Warning: No global set/reset (GSR) net could be used in the design because there is not a unique net
that sets or resets all the sequential cells. (FPGA-GSRMAP-5)

4. Provide a common clock to all of your flip-flops whenever possible.
5. If you get any “Bus Conflict” messages or X’s in your simulation, be sure to find their cause and fix

the problem.

7 Bad Circuit Examples
This section includes examples of a number of bad circuits produced by common Verilog coding errors.
Some examples include the results of synthesis using Synopsys’ Design Analyzer and/or the Xilinx
Foundation tools.

7.1 Incorrect stimulus list

The following circuit was intended to be a transparent latch, but the d input was omitted from the stimulus
list. When synthesized with Synopsys or Xilinx, it still produces a transparent latch, but with the warning:

Warning: Variable 'd' is being read
 in routine notquitealatch line 8 in file 'J:/Classes/E155/Fall2000/synopsys/notquitealatch.v',
 but does not occur in the timing control of the block which begins

 22

 there. (HDL-180)

module notquitealatch(clk, d, q);
 input clk;
 input [3:0] d;
 output [3:0] q;

 reg [3:0] q;

 always @(clk) // left out ‘or d’
 if (clk) q <= d;
endmodule

Similarly, the b input in the following combinational logic was omitted from the stimulus list of the
always block. Synopsis successfully created the intended logic, but gave the warning:

Warning: Variable 'b' is being read
 in routine gates line 7 in file 'J:/Classes/E155/Fall2000/synopsys/gates.v',
 but does not occur in the timing control of the block which begins
 there. (HDL-180)

module gates(a, b, y1, y2, y3, y4, y5);
 input [3:0] a;
 output [3:0] y1, y2, y3, y4, y5;

 reg [3:0] y1, y2, y3, y4, y5;

 always @(a) // missing ‘or b’
 begin
 y1 <= a & b; // AND
 y2 <= a | b; // OR
 y3 <= a ^ b; // XOR
 y4 <= ~(a & b); // NAND
 y5 <= ~(a | b); // NOR
 end
endmodule

Don’t depend on your synthesizer doing the right thing when an input is omitted. If you see such a
warning, correct your code.

The next example is supposed to model a multiplexer, but the author incorrectly wrote @(posedge s)
rather than @(s). This would result in meaningless logic because s must be high immediately after the
positive edge of s. The Xilinx tools give the following error message:

Error: clock variable s is being used as data. (HDL-175)

 23

module badmux(d0, d1, s, y);
 input [3:0] d0, d1;
 input s;
 output [3:0] y;

 reg [3:0] y;

 always @(posedge s)
 if (s) y <= d1;
 else y <= d0;

endmodule

7.2 Missing begin/end block

In the following example, two variables are supposed to be assigned in the always block. The begin/end
block is missing.

Synopsys gives the following error trying to read the design. Xilinx gives the same error.

Error: syntax error at or near token '[' (File: J:/Classes/E155/Fall2000/synopsys/flop2.v Line: 10) (VE-0)
Error: Can't read 'verilog' file 'J:/Classes/E155/Fall2000/synopsys/flop2.v'. (UID-59)

module notquiteatwobitflop(clk, d, q);
 input clk;
 input [1:0] d;
 output [1:0] q;

 reg [1:0] q;

 always @(posedge clk)
 q[1] = d[1];
 q[0] = d[0];
endmodule

7.3 Undefined Outputs

In the next example of a finite state machine, the user intended out1 to be high when the state is 0 and out2
to be high when the state is 1. However, the code neglects to ever set the outputs low.

 24

module FSMbad(clk, a, out1, out2);
 input clk;
 input a;
 output out1, out2;

 reg state;
 reg out1, out2;

 always @(posedge clk)
 if (state == 0) begin
 if (a) state <= 1;
 end else begin
 if (~a) state <= 0;
 end

 always @(state) // neglect to set out1/out2 to 0
 if (state == 0) out1 <= 1;
 else out2 <= 1;

endmodule

The FSM synthesizes into a circuit with an SR latch and a transparent latch that can set the output high but
never reset the output low, as shown below:

A fixed version of the code eliminates the latches from the synthesized result.

 25

module FSMgood(clk, a, out1, out2);
 input clk;
 input a;
 output out1, out2;

 reg state;
 reg out1, out2;

 always @(posedge clk)
 if (state == 0) begin
 if (a) state <= 1;
 end else begin
 if (~a) state <= 0;
 end

 always @(state)
 if (state == 0) begin
 out1 <= 1;
 out2 <= 0;
 end else begin
 out2 <= 1;
 out1 <= 0;
 end

endmodule

7.4 Incomplete Specification of Cases
The next examples show an incomplete specification of input possibilities. The priority encoder fails to
check for the possibility of no true inputs. It therefore incorrectly implies latches to hold the previous
output when all four inputs are false! The four-input OR gate controls the latch. There is a race condition
between the latch control and the latch data that might lead to incorrect results even if this were the
intended operation.

Synopsys gives the following message during synthesis. The astute designer will detect the problem by
knowing that a priority encoder should be a combinational circuit and therefore have no memory devices.

Inferred memory devices in process in routine priority_always line 7 in file
 'J:/Classes/E155/Fall2000/synopsys/priority.v'.

 26

module priority_always(a, y);
 input [3:0] a;
 output [3:0] y;

 reg [3:0] y;

 always @(a)
 if (a[3]) y <= 4’b1000;
 else if (a[2]) y <= 4’b0100;
 else if (a[1]) y <= 4’b0010;
 else if (a[0]) y <= 4’b0001;
 // else y <= 4’b0000;
endmodule

Priority encoder with implied latches because of missing else

The next example of a seven-segment display decoder shows the same type of problem in a case
statement.

 27

module seven_seg_display_decoder(data, segments);
 input [3:0] data;
 output [6:0] segments;

 reg [6:0] segments;

 // Segment # abc_defg hex equivalent
 parameter BLANK = 7’b111_1111; // h7F
 parameter ZERO = 7’b000_0001; // h01
 parameter ONE = 7’b100_1111; // h4F
 parameter TWO = 7’b001_0010; // h12
 parameter THREE = 7’b000_0110; // h06
 parameter FOUR = 7’b100_1100; // h4C
 parameter FIVE = 7’b010_0100; // h24
 parameter SIX = 7’b010_0000; // h20
 parameter SEVEN = 7’b000_1111; // h0F
 parameter EIGHT = 7’b000_0000; // h00
 parameter NINE = 7’b000_0100; // h04

 always @(data)
 case (data)
 0: segments <= ZERO;
 1: segments <= ONE;
 2: segments <= TWO;
 3: segments <= THREE;
 4: segments <= FOUR;
 5: segments <= FIVE;
 6: segments <= SIX;
 7: segments <= SEVEN;
 8: segments <= EIGHT;
 9: segments <= NINE;
 // default: segments <= BLANK;
 endcase
endmodule

Similarly, it is a common mistake to forget the default in next-state or output logic in a FSM.

 28

module divideby3FSM(clk, reset, out);
 input clk;
 input reset;
 output out;

 reg [1:0] state;

 wire [1:0] nextstate;

 parameter S0 = 2’b00;
 parameter S1 = 2’b01;
 parameter S2 = 2’b10;

 // State Register

 always @(posedge clk or posedge reset)
 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic

 always @(state)
 case (state)
 S0: nextstate <= S1;
 S1: nextstate <= S2;
 S2: nextstate <= S0;
 //default: nextstate <= S0;
 endcase

 // Output Logic

 assign out = (state == S2);

endmodule

7.5 Shorted Outputs
Bad code may sometimes lead to shorted outputs of gates. For example, the tristate drivers in the following
multiplexer should have mutually exclusive enable signals, but instead are both active simultaneously and
produce a conflict when d0 and d1 are not equal.

Synthesis may not report any errors. However, during simulation, you will observe X’s rather than 0’s or
1’s when the bus is simultaneously being driven high and low. You may also get a “Bus Conflict” warning
message.

module mux2(d0, d1, s, y);
 input [3:0] d0, d1;
 input s;
 output [3:0] y;

 tristate t0(d0, s, y); // should have been ~s
 tristate t1(d1, s, y);
endmodule

Another cause of shorted outputs is when a reg is assigned in two different always blocks. For example,
the following code trys to model a flip-flop with asynchronous reset and asynchronous set. The first

 29

always block models the reset and ordinary operation. The second always block attempts to
incorporate the asynchronous set. Synthesis infers a separate piece of hardware for each always block,
with a shorted output. Xilinx reports the following error:

Error: the net '/ver1/q' has more than one driver (FPGA-CHECK-5)

The module also produces a warning because the second always block implies a latch.

module floprs(clk, reset, set, d, q);
 input clk;
 input reset;
 input set; // force q true
 input d;
 output q;

 reg q;

 always @(posedge clk or posedge reset)
 if (reset) q <= 0;
 else q <= d;

 always @(set)
 if (set) q <= 1;
endmodule

8 Advanced Techniques
It would be nice to add advanced techniques here including:

? ? Test fixture design

? ? memreadh
? ? ===, !==
? ? Accessing internal state nodes
? ? Assertions and $display
? ? initial statements
? ? forever loops and clock generation
? ? delays

? ? Xilinx techniques: interfacing with LogiBLOX cells and schematics
? ? flush out commands:

? ? casex, casez
? ? transistor modeling
? ? UDPs

? ? Gate-level Modeling

