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1 Introduction 
Entry of large digital designs at the schematic level is very time consuming and can be exceedingly tedious 
for circuits with wide datapaths that must be repeated for each bit of the data path.  Hardware description 
languages (HDLs) provide a more compact textual description of a design.  Verilog is a powerful language 
and offers several different levels of descriptions.  The lowest level is the gate level, in which statements 
are used to define individual gates.  In the structural level, more abstract assign statements and always 
blocks are used.  These constructs are more powerful and can describe a design with fewer lines of code, 
but still provide a clearly defined relationship to actual hardware.  The behavioral level of description is the 
most abstract, resembling C with function calls (called tasks), for and while loops, etc.  Behavioral 
modeling describes what a design must do, but does not have an obvious mapping to hardware. 
 
This Verilog documentation will focus on the structural level of description because it is efficient to code, 
yet offers a predictable mapping to hardware in the hands of a skilled user.  A synthesis tool is used to 
translate the Verilog into actual hardware, such as logic gates on a custom Application Specific Integrated 
Circuit (ASIC) or configurable logic blocks (CLBs) on a Field Programmable Gate Array (FPGA). When 
you use Verilog to describe hardware that you will actually construct, it is extremely important to know 
what gates your code will describe.  Otherwise, you are almost guaranteed to get something that you didn’t 
want.  Sometimes this means extra latches appearing in your circuit in places you didn’t expect.  Other 
times, it means that the circuit is much slower than required or takes far more gates than it would if more 
carefully described.  Unfortunately, FPGA synthesis tools do not directly show you the gates synthesized 
from your code.  Therefore, it is particularly easy to get into trouble and that much more important to 
understand what gates your code is implying. 
 
There are two kinds of statements used to model logic.  Continuous assignment statements always imply 
combinational logic.  Always blocks can imply combinational logic or sequential logic, depending how they 
are used.  It is critical to partition your design into combinational and sequential components and write 
Verilog in such a way that you get what you want.  If you don’t know whether a block of logic is 
combinational or sequential, you are very likely to get the wrong thing.  A particularly common mistake is 
to use always blocks to model combinational logic, but to accidentally imply latches or flip-flops. 

2 Modeling with Continuous Assignments 
With schematics, a 32-bit adder is a complex design.  It can be constructed from 32 full adder cells, each of 
which in turn requires about six 2-input gates.  Verilog provides a much more compact description: 
 

module adder(a, b, y); 
 input  [31:0] a, b; 
 output [31:0] y; 
 
 assign y = a + b; 
endmodule 

 
A Verilog module is like a “cell” or “macro” in schematics.  It begins with a description of the inputs and 
outputs, which in this case are 32 bit busses.  In the structural description style, the module may contain 
assign statements, always blocks, or calls to other modules.  
 
During simulation, an assign statement causes the left hand side (y) to be updated any time the right side 
(a/b) changes.  This necessarily implies combinational logic; the output on the left side is a function of the 
current inputs given on the right side.  A 32-bit adder is a good example of combinational logic. 

2.1 Bitwise Operators 
Verilog has a number of bitwise operators that act on busses.  For example, the following module describes 
four inverters. 
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module inv(a, y); 
 input  [3:0] a; 
 output  [3:0] y; 
 
 assign y = ~a; 
endmodule 

 
Similar bitwise operations are available for the other basic logic functions: 
 

module gates(a, b, y1, y2, y3, y4, y5); 
 input  [3:0] a, b; 
 output  [3:0] y1, y2, y3, y4, y5; 
 
 /* Five different two-input logic gates acting on 4 bit busses */ 
 assign y1 = a & b; // AND 
 assign y2 = a | b; // OR 
 assign y3 = a ^ b; // XOR 
 assign y4 = ~(a & b); // NAND 
 assign y5 = ~(a | b); // NOR 
endmodule 

2.2 Comments & White Space 
 
The previous examples showed two styles of comments, just like those used in C or Java.  Comments 
beginning with /* continue, possibly across multiple lines, to the next */.  Comments beginning with 
// continue to the end of the line.  It is important to properly comment complex logic so you can understand 
what you did six months from now or so that some poor slob assigned to fix your buggy code will be able 
to figure it out rather than calling you at 2 am with a question. 
 
Verilog is not picky about the use of white space.  Nevertheless, proper indenting and spacing is very 
helpful to make nontrivial designs readable.  Verilog is case-sensitive.  Be consistent in your use of 
capitalization and underscores in signal and module names. 

2.3 Reduction Operators 
Reduction operators imply a multiple-input gate acting on a single bus.  For example, the following module 
describes an 8-input AND gate with inputs A[0], A[1], A[2], … , A[7]. 
 

module and8(a, y); 
 input  [7:0] a; 
 output    y; 
 
 assign y = &a; 
endmodule 

 
As one would expect, |, ^, ~&, and ~| reduction operators are available for OR, XOR, NAND, and NOR as 
well.  Recall that a multi-bit XOR performs parity, returning true if an odd number of inputs are true. 

2.4 Other Operators 
The conditional operator ?: works like the same operator in C or Java and is very useful for describing 
multiplexers.  It is called a ternary operator because it takes three inputs.  If the first input is nonzero, the 
result is the expression in the second input.  Otherwise, the result is the expression in the third input. 
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module mux2(d0, d1, s, y); 
 input  [3:0] d0, d1; 
 input    s; 
 output  [3:0] y; 
 
 assign y = s ? d1 : d0; // if s=1, y=d1, else y=d0 
endmodule 

 
A number of arithmetic functions are supported including +, -, *, <, >, <=, >=, = =, !=, <<, >>, / and %.  
Recall from other languages that % is the modulo operator:  a%b equals the remainder of a when divided 
by b.  These operations imply a vast amount of hardware.  = = and != (equality / inequality) on N-bit inputs 
require N 2-input XNORs to determine equality of each bit and an N-input AND or NAND to combine all 
the bits.  Addition, subtraction, and comparison all require an adder, which is very expensive in hardware.  
Variable left and right shifts << and >> imply a barrel shifter.  Multipliers are even more costly. Do not use 
these statements without contemplating the number of gates you are generating.  Moreover, the 
implementations are not always particularly efficient for your problem.  You’ll probably be disappointed 
with the speed and gate count of a multiplier your synthesis tool produces from when it sees *.  You’ll be 
better off writing your own Booth-encoded multiplier if these constraints matter.  Many synthesis tools 
choke on / and % because these are nontrivial functions to implement in combinational logic. 

3 Useful Constructs 

3.1 Internal Signals 
Often it is convenient to break a complex calculation into intermediate variables.  For example, in a full 
adder, we sometimes define the propagate signal as the XOR of the two inputs A and B.  The sum from the 
adder is the XOR of the propagate signal and the carry in.  We can name the propagate signal using a wire 
statement, in much the same way we use local variables in a programming language. 

 
module fulladder(a, b, cin, s, cout); 
 input  a, b, cin; 
 output  s, cout; 
 
 wire  prop; 
 
 assign prop = a ^ b; 
 assign s = prop ^ cin; 
 assign cout = (a & b) | (cin & (a | b)); 
endmodule 

 
Technically, it is not necessary to declare single-bit wires.  However, it is necessary to declare multi-bit 
busses.  It is good practice to declare all signals.  Some Verilog simulation and synthesis tools give errors 
that are difficult to decipher when a wire is not declared. 

3.2 Precedence 
Notice that we fully parenthesized the cout computation.  We could take advantage of operator precedence 
to use fewer parentheses: 
 

assign cout = a&b | cin&(a|b) 
 
The operator precedence from highest to lowest is much as you would expect in other languages.  AND has 
precedence over OR. 
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~ Highest 
*, /, %  
+, -  
<<, >>  
<, <=, >, >=  
=, = =, !=  
&, ~&  
^, ~^  
|, ~|  
?: Lowest 

 

3.3 Constants 
Constants may be specified in binary, octal, decimal, or hexadecimal.  For example: 
 
Number # bits Base Decimal 

Equivalent 
Stored 

3’b101 3 Binary 5 101 
’b11 unsized Binary 3 000000..00011 
8’b11 8 Binary 3 00000011 
8’b1010_1011 8 binary 171 10101011 
3’d6 3 Decimal 6 110 
6’o42 6 Octal 34 100010 
8’hAB 8 Hexadecimal 171 10101011 
42 unsized Decimal 42 0000… 00101010 
 
It is good practice to specify the length of the number in bits, even though the second row shows that this is 
not strictly necessary.  If you don’t specify the length, one day you’ll get bitten when Verilog assumes the 
constant has additional leading 0’s that you didn’t intend.  Underscores in numbers are ignored and may be 
helpful in breaking long numbers into more readable chunks.  If the base is omitted, the number is assumed 
to be decimal. 

3.4 Hierarchy 
Nontrivial designs are developed in a hierarchical form, in which complex modules are composed of 
submodules.  For example, a 4-input MUX can be constructed from three 2-input multiplexers: 
 

module mux4(d0, d1, d2, d3, s, y); 
 input  [3:0] d0, d1, d2, d3; 
 input  [1:0] s; 
 output  [3:0] y; 
 
 wire  [3:0] low, high; 
 
 mux2 lowmux(d0, d1, s[0], low); 
 mux2 highmux(d2, d3, s[0], high); 
 mux2 finalmux(low, high, s[1], y); 
endmodule 

3.5 Tristates 
It is possible to leave a bus floating rather than drive it to 0 or 1.  This floating value is called ’z in Verilog.  
For example, a tri-state buffer produces a floating output when the enable is false. 
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module tristate(a, en, y); 
 input  [3:0] a; 
 input    en; 
 output  [3:0] y; 
 
 assign y = en ? a : 4’bz; 
endmodule 

 
Floating inputs to gates cause undefined outputs, displayed as ’x in Verilog.  At startup, state nodes such as 
the internal node of flip-flops are also usually initialized to ’x, as we will see later. 
 
We could define a multiplexer using two tristates so that the output is always driven by exactly one tristate.  
This guarantees there are no floating nodes.  
 

module mux2(d0, d1, s, y); 
 input  [3:0] d0, d1; 
 input    s; 
 output  [3:0] y; 
 
 tristate t0(d0, ~s, y); 
 tristate t1(d1, s, y); 
endmodule 

3.6 Bit Swizzling 
Often it is necessary to work on parts of a bus or to concatenate (join together) signals to construct busses.  
The previous example showed using the least significant bit s[0] of a 2-bit select signal for some muxes and 
the most significant bit s[1] for the final mux.  Use ranges to select subsets of a bus.  For example, an 8-bit 
wide 2-input mux can be constructed from two 4-bit wide 2-input muxes: 
 

module mux2_8(d0, d1, s, y); 
 input  [7:0] d0, d1; 
 input    s; 
 output  [7:0] y; 
 
 mux2 lsbmux(d0[3:0], d1[3:0], s, y[3:0]); 
 mux2 msbmux(d0[7:4], d1[7:4], s, y[7:4]); 
endmodule 

 
The {} notation is used to concatenate busses.  For example, the following 8x8 multiplier produces a 16-bit 
result, which is, placed on the upper and lower 8-bit result busses. 
 

module mul(a, b, upper, lower); 
 input  [7:0] a, b; 
 output  [7:0] upper, lower; 
 
 assign {upper, lower} = a*b; 
endmodule 

 
A 16-bit 2’s complement number is sign-extended to 32-bits by copying the most significant bit to each of 
the upper 16 positions.  The Verilog syntax concatenates 16 copies of a[15] to the 16-bit a[15:0] bus.  You 
will get a warning from synthesis that a is a “feedthrough net.”  This means that the input “feeds through” 
to the output.  y[15:0] should have the same value as a[15:0], so this is what we intended.  If you get a 
feedthrough net warning where you did not intend a feedthrough, check for a mistake in your Verilog. 
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module signextend(a, y); 
 input  [15:0] a; 
 output  [31:0] y; 
 
 assign y = {16{a[15]}, a[15:0]}; 
endmodule 

 
The next statement generates a bizarre combination of two busses.  Don’t confuse the 3-bit binary constant 
3’b101 with bus b.  Note that it was important to specify the length of 3 bits in the constant; otherwise 
many additional 0’s might have appeared in the middle of y. 
 

assign y = {a[2:1], 3{b[0]}, a[0], 3’b101, b[1:3]} 

a[2] a[1] b[0] b[0] b[0] a[0] 1 0 1y = b[1] b[2] b[3]

 

4 Modeling with Always Blocks 
Assign statements are reevaluated every time any term on the right hand side changes.  Therefore, they 
must describe combinational logic.  Always blocks are reevaluated only when signals in the header 
change.  Depending on the form, always blocks may imply sequential or combinational circuits.   

4.1 Flip-Flops 
Flip-flops are described with an always @(posedge clk) statement: 
 

module flop(clk, d, q); 
 input    clk; 
 input  [3:0] d; 
 output  [3:0] q; 
 
 reg  [3:0] q; 
 
 always @(posedge clk) 
  q <= d; 
endmodule 

 
The body of the always statement is only evaluated on the rising (positive) edge of the clock.  At this 
time, the output q is copied from the input d.  The <= is called a nonblocking assignment.  Think of it as a 
regular equals sign for now; we’ll return to the subtle points later.  Notice that it is used instead of assign 
inside the always block. 
 
All the signals on the left hand side of assignments in always blocks must be declared as reg.  This is a 
confusing point for new Verilog users.  In this circuit, q is also the output.  Declaring a signal as reg does 
not mean the signal is actually a register!  All it means is it appears on the left side in an always block.  
We will see examples of combinational signals later that are declared reg but have no flip-flops. 
 
At startup, the q output is initialized to ’x. Generally, it is good practice to use flip-flops with reset inputs so 
that on power-up you can put your system in a known state.  The reset may be either asynchronous or 
synchronous.  Asynchronous resets occur immediately.  Synchronous resets only change the output on the 
rising edge of the clock.  Xilinx FPGAs have dedicated internal hardware to support initializing 
asynchronously resettable flip-flops on startup, so such flops are preferred. 
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module flopr(clk, reset, d, q); // asynchronous reset 
 input    clk; 
 input    reset; 
 input  [3:0] d; 
 output  [3:0] q; 
 
 reg  [3:0] q; 
 
 always @(posedge clk or posedge reset) 
  if (reset) q <= 4’b0; 
  else q <= d; 
endmodule 

 
module flopr(clk, reset, d, q); // synchronous reset 
 input    clk; 
 input    reset; 
 input  [3:0] d; 
 output  [3:0] q; 
 
 reg  [3:0] q; 
 
 always @(posedge clk) 
  if (reset) q <= 4’b0; 
  else q <= d; 
endmodule 

 
Note that the asynchronously resettable flop evaluates the always block when either clk or reset rise so 
that it immediately responds to reset.  The synchronously reset flop is not sensitized to reset in the @ list, 
so it waits for the next clock edge before clearing the output. 
 
One could also consider flip-flops with enables that only load the input when the enable is true.  The 
following flip-flop retains its old value if both reset and en are false. 
 

module flopenr(clk, reset, en, d, q); // asynchronous reset 
 input    clk; 
 input    reset; 
 input    en; 
 input  [3:0] d; 
 output  [3:0] q; 
 
 reg  [3:0] q; 
 
 always @(posedge clk or posedge reset) 
  if (reset) q <= 4’b0; 
  else if (en) q <= d; 
endmodule 

4.2 Latches 
Always blocks can also be used to model transparent latches, also known as D latches.  When the clock is 
high, the latch is transparent and the data input flows to the output.  When the clock is low, the latch goes 
opaque and the output remains constant.   
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module latch(clk, d, q); 
 input    clk; 
 input  [3:0] d; 
 output  [3:0] q; 
 
 reg  [3:0] q; 
 
 always @(clk or d) 
  if (clk) q <= d; 
endmodule 

 
The latch evaluates the always block any time either clk or d change.  If the clock is high, the output gets 
the input.  Notice that even though q is a latch node, not a register node, it is still declared as reg because 
it is on the left hand side of a <= in an always block. 
 
Most Xilinx FPGAs do not support latches very well.  If your code includes latches either intentionally or 
by accident, you will get a warning about “latch inferred in design” and should remove them.   

4.3 Counters 
Consider two ways of describing a four-bit counter with asynchronous reset.  The first scheme implies a 
sequential circuit containing both the 4-bit flip-flop and an adder.  The second scheme explicitly declares 
modules for the flip-flop and adder. 
 
Either scheme is good for a simple circuit such as a counter.  As you develop more complex finite state 
machines, it is a good idea to separate the next state logic from the flip-flops in your Verilog code.  Verilog 
does not protect you from yourself here and there are many simple errors that lead to circuits very different 
than you intended. 
 

module counter(clk, reset, q); 
 input    clk; 
 input    reset; 
 output  [3:0] q; 
 
 reg   [3:0] q; 
 

 // counter using always block 
 

 always @(posedge clk) 
  if (reset) q <= 4’b0; 
  else q <= q+1; 
endmodule 

 
module counter(clk, reset, q); 
 input    clk; 
 input    reset; 
 output  [3:0] q; 
 
 wire  [3:0] nextq; 
 

 // counter using module calls 
 

 flopr qflop(clk, reset, nextq, q); 
 adder inc(q, 4’b0001, nextq); // assumes a 4-bit adder 
endmodule 
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4.4 Combinational Logic 
Always blocks imply sequential logic when some of the inputs do not appear in the @ stimulus list or 
might not cause the output to change.  For example, in the flop module, d is not in the @ list, so the flop 
does not immediately respond to changes of d.  In the latch, d is in the @ list, but changes in d are ignored 
unless clk is high.  Always blocks can also be used to imply combinational logic if they are written in 
such a way that the output always is reevaluated given changes in any of the inputs.   
 
The following code shows how to define a bank of inverters with an always block. 
 

module inv(a, y); 
 input  [3:0] a; 
 output [3:0] y; 
 
 reg   [3:0] y; 
 
 always @(a) 
  y <= ~a; 
endmodule 

 
Similarly, the next example defines a 5 banks of different kinds of gates.  Notice that the begin / end 
construct is necessary because multiple commands appear in the always block.  This is analogous to { } 
block structure in C or Java.  The begin / end was not needed in the flopr example because an if / else 
command counts as a single statement. 
 

module gates(a, b, y1, y2, y3, y4, y5); 
 input  [3:0] a, b; 
 output  [3:0] y1, y2, y3, y4, y5; 
 
 reg   [3:0] y1, y2, y3, y4, y5; 
 
 always @(a or b) 
  begin 
   y1 <= a & b; // AND 
   y2 <= a | b; // OR 
   y3 <= a ^ b; // XOR 
   y4 <= ~(a & b); // NAND 
   y5 <= ~(a | b); // NOR 
  end 
endmodule 

 
These two examples are poor applications of  always blocks for modeling combinational logic because 
they require more lines than the equivalent approach with assign statements as well as posing the risk of 
inadvertently implying sequential logic (see the bad circuit examples later).  A better application of the 
always block is a decoder, which takes advantage of the case statement that may only appear inside an 
always block. 
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module decoder_always(a, y); 
 input  [2:0] a; 
 output [7:0] y; 
 
 reg  [7:0] y; 
 
 // a 3:8 decoder 
 always @(a) 
  case (a) 
   3’b000: y <= 8’b00000001; 
   3’b001: y <= 8’b00000010; 
   3’b010: y <= 8’b00000100; 
   3’b011: y <= 8’b00001000; 
   3’b100: y <= 8’b00010000; 
   3’b101: y <= 8’b00100000; 
   3’b110: y <= 8’b01000000; 
   3’b111: y <= 8’b10000000; 
  endcase 
endmodule 
 

Using the case statement is probably clearer than a description of the same decoder using Boolean 
equations in an assign statement: 
 

module decoder_assign(a, y); 
  input  [2:0] a; 
  output [7:0] y; 
 
  assign y[0] = ~a[0] & ~a[1] & ~a[2]; 
  assign y[1] =  a[0] & ~a[1] & ~a[2]; 
  assign y[2] = ~a[0] &  a[1] & ~a[2]; 
  assign y[3] =  a[0] &  a[1] & ~a[2]; 
  assign y[4] = ~a[0] & ~a[1] &  a[2]; 
  assign y[5] =  a[0] & ~a[1] &  a[2]; 
  assign y[6] = ~a[0] &  a[1] &  a[2]; 
  assign y[7] =  a[0] &  a[1] &  a[2]; 
endmodule 

 
Another even better example is the logic for a 7-segment display decoder, taken from Ciletti’s Verilog 
book.  The equivalent logic with assign statements describing the detailed logic for each bit would be very 
tedious.  This more abstract approach is faster to write, clearer to read, and can be automatically 
synthesized down to an efficient logic implementation. 
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module seven_seg_display_decoder(data, segments); 
 input  [3:0] data; 
 output [6:0] segments; 
  
 reg  [6:0] segments; 
 
 // Segment  #          abc_defg     hex equivalent 
 parameter BLANK = 7’b111_1111; // h7F 
 parameter ZERO = 7’b000_0001; // h01 
 parameter ONE  = 7’b100_1111; // h4F 
 parameter TWO = 7’b001_0010; // h12 
 parameter THREE = 7’b000_0110; // h06 
 parameter FOUR = 7’b100_1100; // h4C 
 parameter FIVE = 7’b010_0100; // h24 
 parameter SIX = 7’b010_0000; // h20 
 parameter SEVEN = 7’b000_1111; // h0F 
 parameter EIGHT = 7’b000_0000; // h00 
 parameter NINE = 7’b000_0100; // h04 
  
 always @(data) 
  case (data) 
   0: segments <= ZERO; 
   1: segments <= ONE; 
   2: segments <= TWO; 
   3: segments <= THREE; 
   4: segments <= FOUR; 
   5: segments <= FIVE; 
   6: segments <= SIX; 
   7: segments <= SEVEN; 
   8: segments <= EIGHT; 
   9: segments <= NINE; 
   default: segments <= BLANK; 
  endcase 
endmodule 
 

This example shows the use of parameters to define constants to make the code more readable.  The case 
statement has a default to display a blank output when the input is outside the range of decimal digits. 
 
Finally, compare two descriptions of a priority encoder that sets one output true corresponding to the most 
significant input that is true.  The if statement can appear in always blocks and makes the logic very 
natural.  The assign statements synthesize to the same results, but are less clear to read. Note that a[3] is 
another example of a feedthrough net because y[3] = a[3]. 
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module priority_always(a, y); 
 input  [3:0] a; 
 output [3:0] y; 
 
 reg  [3:0] y; 
 
 always @(a) 
  if      (a[3]) y <= 4’b1000; 
  else if (a[2]) y <= 4’b0100; 
  else if (a[1]) y <= 4’b0010; 
  else if (a[0]) y <= 4’b0001; 
  else           y <= 4’b0000; 
endmodule 

 
module priority_assign(a, y); 
 input  [3:0] a; 
 output [3:0] y; 
 
 assign y[3] = a[3]; 
 assign y[2] = a[2] & ~a[3]; 
 assign y[1] = a[1] & ~|a[3:2]; 
 assign y[0] = a[0] & ~|a[3:1]; 
endmodule 

 
It is very easy to accidentally imply sequential logic with always blocks when combinational logic is 
intended. The resulting bugs can be difficult to track down.  Therefore, it is safer to use assign 
statements than always blocks to imply combinational logic.  Nevertheless, the convenience of constructs 
such as if or case that must appear in always blocks justifies the modeling style as long as you 
thoroughly understand what you are doing. 

4.5 Memories 
Verilog has an array construct used to describe memories.  The following module describes a 64 word x 16 
bit RAM that is written when wrb is low and otherwise read. 
 

module ram(addr, wrb, din, dout); 
 input  [5:0]  addr; 
 input     wrb; 
 input  [15:0] din; 
 output [15:0] dout; 
 
 reg  [15:0] mem[63:0]; // the memory 
 reg  [15:0] dout; 
 
 always @(addr or wrb or din) 
  if (~wrb) mem[addr] <= din; 
  else dout <= mem[addr]; 
 
endmodule 

 
FPGAs have a limited number of bits of RAM on board.  Large memories are extremely expensive.  In the 
Xilinx Foundation tools, it is more efficient to specify a RAM or ROM using the LogiBLOX tool. 
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4.6 Blocking and Nonblocking Assignment 
Verilog supports two types of assignments inside an always block.  Blocking assignments use the = 
statement.  Nonblocking assignments use the <= statement.  Do not confuse either type with the assign 
statement, which cannot appear inside always blocks at all. 
 
A group of blocking assignments inside a begin/end block are evaluated sequentially, just as one would 
expect in a standard programming language.  A group of nonblocking assignments are evaluated in parallel; 
all of the statements are evaluated before any of the left hand sides are updated.  This is what one would 
expect in hardware because real logic gates all operate independently rather than waiting for the completion 
of other gates. 
 
For example, consider two attempts to describe a shift register.  On each clock edge, the data at sin should 
be shifted into the first flop.  The first flop shifts to the second flop.  The data in the second flop shifts to 
the third flop, and so on until the last element drops off the end. 
 

clk

sin

q[0] q[1] q[2] q[3]  
Intended Shift Register 

 
module shiftreg(clk, sin, q); 
 input    clk; 
 input    sin; 
 output  [3:0] q; 
 
 // This is a correct implementation using nonblocking assignment 
 
 reg  [3:0] q; 
  
 always @(posedge clk) 
  begin 
   q[0] <= sin; // <= indicates nonblocking assignment 
   q[1] <= q[0]; 
   q[2] <= q[1]; 
   q[3] <= q[2]; 
   // it would be even more better to write q <= {q[2:0], sin}; 
  end 
endmodule 

 
The nonblocking assignments mean that all of the values on the right hand sides are assigned 
simultaneously.  Therefore, q[1] will get the original value of q[0], not the value of sin that gets loaded into 
q[0].  This is what we would expect from real hardware. Of course all of this could be written on one line 
for brevity. 
 
Blocking assignments are more familiar from traditional programming languages, but inaccurately model 
hardware.  Consider the same module using blocking assignments. When clk rises, the Verilog says that 
q[0] should be copied from sin.  Then q[1] should be copied from the new value of q[0] and so forth.  All 
four registers immediately get the sin value. 
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module shiftreg(clk, sin, q[3:0]); 
 input    clk; 
 input    sin; 
 output  [3:0] q; 
 
 // This is a bad implementation using blocking assignment 
 
 reg  [3:0] q; 
 
 always @(posedge clk) 
  begin 
   q[0] = sin; // = indicates blocking assignment 
   q[1] = q[0]; 
   q[2] = q[1]; 
   q[3] = q[2]; 
  end 
endmodule 

 
The moral of this illustration is to always use nonblocking assignment in always blocks when writing 
structural Verilog.  With sufficient cleverness, such as reversing the orders of the four commands, one 
might make blocking assignments work correctly, but they offer no advantages and great risks. 
 
Finally, note that each always block implies a separate block of logic.  Therefore, a given reg may be 
assigned in only one always block.  Otherwise, two pieces of hardware with shorted outputs would be 
implied. 

5 Finite State Machines 
There are two styles of designing finite state machines.  In Mealy machines, the output is a function of the 
current state and inputs.  In Moore machines, the output is a function of only the current state.  The styles 
are illustrated below.  
 

Output
Logic

Next State
Logic

clk

state outputsinputs next
state

Moore Machine

Output
Logic

Next State
Logic

clk

state outputsinputs next
state

Mealy Machine
 

FSMs are modeled in Verilog with an always block defining the state registers and combinational logic 
defining the next state and output logic.  
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Let us first consider a very simple finite state machine with one output and no inputs, a divide by 3 counter.  
The output should be asserted every three clock cycles.  A state transition diagram for a Moore state 
machine is given below.  The output value is labeled in each state because the output is only a function of 
the state. 
 

S2

out = 1

S1

out = 0

S0

out = 0

reset

 
Divide-by-3 Counter State Transition Diagram 
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module divideby3FSM(clk, reset, out); 
 input    clk; 
 input    reset; 
 output   out; 
 
 reg  [1:0] state; 
 
 reg  [1:0] nextstate; 
 
 parameter  S0 = 2’b00; 
 parameter  S1 = 2’b01; 
 parameter  S2 = 2’b10; 
 
 // State Register 
 
 always @(posedge clk or posedge reset) 
  if (reset) state <= S0; 
  else       state <= nextstate; 
 
 // Next State Logic 
 
 always @(state) 
  case (state) 
   S0: nextstate <= S1; 
   S1: nextstate <= S2; 
   S2: nextstate <= S0; 
   default: nextstate <= S0; 
  endcase 
 
 // Output Logic 
 
 assign out = (state == S2); 
 
endmodule 

 
The FSM model is divided into three portions:  the state register, next state logic, and output logic.  The 
state logic describes an asynchronously resettable flip-flop that resets to an initial state and otherwise 
advances to the computed next state.  Defining states with parameters allows the easy modification of state 
encodings and makes the code easier to read.  The next state logic computes the next state as a function of 
the current state and inputs; in this example there are no inputs.  A case statement in an always 
@(state or inputs) block is a convenient way to define the next state.  It is important to have a 
default if not all cases are enumerated; otherwise the nextstate would not be assigned in the undefined 
cases.  This implies that nextstate should keep its old value, which would require the existence of latches.  
Finally, the output logic may be a function of the current state alone in a Moore machine or of the current 
state and inputs in a Mealy machine.  Depending on the complexity of the design, assign statements, if 
statements, or case statements may be most readable and efficient. 
 
The next example shows a finite state machine with an input A and two outputs.  Output X is true when the 
input is the same now as it was last cycle.  Output Y is true when the input is the same now as it was for the 
past two cycles.  This is a Mealy machine because the output depends on the current inputs as well as the 
state.  The outputs are labeled on each transition after the input.  The state transition diagram is shown 
below: 
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S1 S3

S2 S4

S0

reset

A / X=0, Y=0

A

A / X=1, Y=0

A / X=1, Y=1

A /
X=0,
Y=0

A /
X=0,
Y=0

A / X=0, Y=0

A / X=1, Y=0

A / X=1, Y=1

A / X=0, Y=0

A / X=0, Y=0

 
History Finite State Machine 
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module historyFSM(clk, reset, a, x, y); 
 input    clk; 
 input    reset; 
 input    a; 
 output   x, y; 
 
 reg  [2:0] state; 
 
 reg  [2:0] nextstate; 
 
 parameter  S0 = 3’b000; 
 parameter  S1 = 3’b010; 
 parameter  S2 = 3’b011; 
 parameter  S3 = 3’b100; 
 parameter  S4 = 3’b101; 
 
 // State Register 
 
 always @(posedge clk or posedge reset) 
  if (reset) state <= S0; 
  else       state <= nextstate; 
 
 // Next State Logic 
 
 always @(state or a) 
  case (state) 
   S0:  if (a) nextstate <= S3; 
     else   nextstate <= S1; 
   S1:  if (a) nextstate <= S3; 
     else   nextstate <= S2; 
   S2:  if (a) nextstate <= S3; 
     else   nextstate <= S2; 
   S3:  if (a) nextstate <= S4; 
     else   nextstate <= S1; 
   S4:  if (a) nextstate <= S4; 
     else   nextstate <= S1; 
   default: nextstate <= S0; 
  endcase 
 
 // Output Logic 
 
 assign x = (state[1] & ~a) | (state[2] & a); 
 assign y = (state[1] & state[0] & ~a) | (state[2] & state[0] & a); 
 
endmodule 
 

The output logic equations depend on the specific state encoding and were worked out by hand.  A more 
general approach is independent of the encodings and requires less thinking, but might require more gates 
and code: 
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 // Output Logic 
 
 always @(state or a) 
  case (state) 
   S0:  begin 
      x <= 0; y <= 0; 
     end 
   S1:  if (A) begin 
      x <= 0; y <= 0; 
     end else begin 
      x <= 1; y <= 0; 
     end 
   S2:  if (A) begin 
      x <= 0; y <= 0; 
     end else begin 
      x <= 1; y <= 1; 
     end 
   S3:  if (A) begin 
      x <= 1; y <= 0; 
     end else begin 
      x <= 0; y <= 0; 
     end 
   S4:  if (A) begin 
      x <= 1; y <= 1; 
     end else begin 
      x <= 0; y <= 0; 
     end 
  endcase 

 
One might be tempted so simplify the case statement.  For example, case S4 might be reduced to: 
 

   // bad simplification of S4 
   S4:  if (A) begin 
      y <= 1; 
     end else begin 
      x <= 0; y <= 0; 
     end 

 
The designer reasons that to get to state S4, we must have passed through state S3 with A high, setting x 
high.  Therefore, the assignment of x is optimized out of S4 when A is high.  This is incorrect reasoning.  
The modified approach implies sequential logic.  Specifically, a latch is implied that holds the old value of 
x when x is not assigned.  The latch holds its output under a very peculiar set of circumstances; A and the 
state must be used to compute the latch clock signal.  This is undoubtedly not what you want, but was very 
easy to imply.  The moral of this example is that if any signal gets assigned in any branch of an if or 
case statement, it must be assigned in all branches lest a latch be implied. 
 

6 Verilog Style Guidelines 
If you follow these style guidelines, you will avoid many of the common Verilog pitfalls and will produce 
code that is easier for you or others to modify in the future. 

6.1 General Guidelines 
1. Use only nonblocking assignments inside always blocks. 
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2. Define your combinational logic using assign statements when practical.  Only use always blocks 
to define combinational logic if constructs like if or case make your logic much clearer or more 
compact. 

3. When modeling combinational logic with an always block, if a signal is assigned in any branch of an 
if or case statement, it must be assigned in all branches. 

4. Partition your design into leaf cells and non-leaf cells.  Leaf cells contain assign statements or 
always blocks but do not instantiate other cells.  Non-leaf cells instantiate other cells but contain no 
logic.  Minor exceptions to this guideline may be made to keep the code readable. 

5. Use a design style with positive edge-triggered flip-flops as your only sequential elements.  Avoid SR 
latches, negative edge-triggered flops, and transparent latches. 

6. Use parameters to define state names and constants. 
7. Properly indent your code, as shown in the examples in this guide. 
8. Use comments liberally. 
9. Use meaningful signal names.  Use a, b, c, …  for generic logic gate inputs.  Use x, y, z for generic 

combinational outputs and q for a generic state element output.  Use descriptive names for nongeneric 
cells. Do not use foo, bar, or baz! 

10. Be consistent in your use of capitalization and underscores. 

6.2 Xilinx Hints 
 
1. Use only positive edge-triggered flip-flops.  Avoid @(negedge clk) and latches. 
2. Be certain not to inadvertently imply latches.  If you do and are targeting the Spartan family of FPGAs, 

which do not have built-in latches, you will get the following warning, which you should fix.  The 
warning will not appear when targeting the 4000XL or SpartanXL families that have latches, but you 
should still be careful not to inadvertently create logic that implies latches. 

 
Warning:  Latch inferred in design ‘… ’ read with ‘hdlin_check_no_latch’. (HDL-307) 

 
3. Provide an asynchronous reset to all of your flip-flops with a common signal name.  If you do, Xilinx 

will automatically tie this reset to the chip’s global reset and reset your flip-flops on power-up.  If not, 
Xilinx will give you the following warnings.  Fix the warning by providing a proper reset to all 
elements. 

 
Warning: No net is connected to the set/reset pin of Cell ‘/”q_reg<0>”/Q_reg’. (FPGA-GSRMAP-16) 
Warning: No global set/reset (GSR) net could be used in the design because there is not a unique net 
that sets or resets all the sequential cells. (FPGA-GSRMAP-5) 
 

4. Provide a common clock to all of your flip-flops whenever possible. 
5. If you get any “Bus Conflict” messages or X’s in your simulation, be sure to find their cause and fix 

the problem. 

7 Bad Circuit Examples 
This section includes examples of a number of bad circuits produced by common Verilog coding errors.  
Some examples include the results of synthesis using Synopsys’ Design Analyzer and/or the Xilinx 
Foundation tools. 

7.1 Incorrect stimulus list 
 
The following circuit was intended to be a transparent latch, but the d input was omitted from the stimulus 
list.  When synthesized with Synopsys or Xilinx, it still produces a transparent latch, but with the warning: 
 
Warning: Variable 'd' is being read  
 in routine notquitealatch line 8 in file 'J:/Classes/E155/Fall2000/synopsys/notquitealatch.v', 
 but does not occur in the timing control of the block which begins 
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 there.   (HDL-180) 
 

module notquitealatch(clk, d, q); 
 input    clk; 
 input  [3:0] d; 
 output  [3:0] q; 
 
 reg  [3:0] q; 
 
 always @(clk) // left out ‘or d’ 
  if (clk) q <= d; 
endmodule 

 
Similarly, the b input in the following combinational logic was omitted from the stimulus list of the 
always block.  Synopsis successfully created the intended logic, but gave the warning: 
 
Warning: Variable 'b' is being read  
 in routine gates line 7 in file 'J:/Classes/E155/Fall2000/synopsys/gates.v', 
 but does not occur in the timing control of the block which begins 
 there.   (HDL-180) 
 

module gates(a, b, y1, y2, y3, y4, y5); 
 input  [3:0] a; 
 output  [3:0] y1, y2, y3, y4, y5; 
 
 reg   [3:0] y1, y2, y3, y4, y5; 
 
 always @(a) // missing ‘or b’ 
  begin 
   y1 <= a & b; // AND 
   y2 <= a | b; // OR 
   y3 <= a ^ b; // XOR 
   y4 <= ~(a & b); // NAND 
   y5 <= ~(a | b); // NOR 
  end 
endmodule 

 
Don’t depend on your synthesizer doing the right thing when an input is omitted.  If you see such a 
warning, correct your code. 
 
The next example is supposed to model a multiplexer, but the author incorrectly wrote @(posedge s) 
rather than @(s).  This would result in meaningless logic because s must be high immediately after the 
positive edge of s.  The Xilinx tools give the following error message: 

 
Error: clock variable s is being used as data. (HDL-175) 
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module badmux(d0, d1, s, y); 
 input  [3:0] d0, d1; 
 input    s; 
 output  [3:0] y; 
  
 reg  [3:0] y; 
  
 always @(posedge s) 
  if (s) y <= d1; 
  else y <= d0; 
  
endmodule 

7.2 Missing begin/end block 
 
In the following example, two variables are supposed to be assigned in the always block.  The begin/end 
block is missing. 
 
Synopsys gives the following error trying to read the design.  Xilinx gives the same error. 
 
Error: syntax error at or near token '[' (File: J:/Classes/E155/Fall2000/synopsys/flop2.v Line: 10) (VE-0) 
Error: Can't read 'verilog' file 'J:/Classes/E155/Fall2000/synopsys/flop2.v'. (UID-59) 
 

module notquiteatwobitflop(clk, d, q); 
 input    clk; 
 input  [1:0] d; 
 output  [1:0] q; 
 
 reg  [1:0] q; 
 
 always @(posedge clk) 
  q[1] = d[1]; 
  q[0] = d[0]; 
endmodule 

 

7.3 Undefined Outputs 
 
In the next example of a finite state machine, the user intended out1 to be high when the state is 0 and out2 
to be high when the state is 1.  However, the code neglects to ever set the outputs low.  
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module FSMbad(clk, a, out1, out2); 
 input    clk; 
 input    a; 
 output   out1, out2; 
 
 reg    state; 
 reg    out1, out2; 
 
 always @(posedge clk) 
  if (state == 0) begin 
   if (a) state <= 1; 
  end else begin 
   if (~a) state <= 0; 
  end 
 
 always @(state) // neglect to set out1/out2 to 0 
  if (state == 0) out1 <= 1; 
  else     out2 <= 1; 
 
endmodule 

 
The FSM synthesizes into a circuit with an SR latch and a transparent latch that can set the output high but 
never reset the output low, as shown below: 

 
A fixed version of the code eliminates the latches from the synthesized result. 
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module FSMgood(clk, a, out1, out2); 
 input    clk; 
 input    a; 
 output   out1, out2; 
 
 reg    state; 
 reg    out1, out2; 
 
 always @(posedge clk) 
  if (state == 0) begin 
   if (a) state <= 1; 
  end else begin 
   if (~a) state <= 0; 
  end 
 
 always @(state) 
  if (state == 0) begin 
   out1 <= 1; 
   out2 <= 0; 
  end else begin 
   out2 <= 1; 
   out1 <= 0; 
      end 
 
endmodule 

7.4 Incomplete Specification of Cases 
The next examples show an incomplete specification of input possibilities.  The priority encoder fails to 
check for the possibility of no true inputs.  It therefore incorrectly implies latches to hold the previous 
output when all four inputs are false!  The four-input OR gate controls the latch. There is a race condition 
between the latch control and the latch data that might lead to incorrect results even if this were the 
intended operation. 
 
Synopsys gives the following message during synthesis.  The astute designer will detect the problem by 
knowing that a priority encoder should be a combinational circuit and therefore have no memory devices. 
 
Inferred memory devices in process in routine priority_always line 7 in file 
         'J:/Classes/E155/Fall2000/synopsys/priority.v'. 
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module priority_always(a, y); 
 input  [3:0] a; 
 output [3:0] y; 
 
 reg  [3:0] y; 
 
 always @(a) 
  if      (a[3]) y <= 4’b1000; 
  else if (a[2]) y <= 4’b0100; 
  else if (a[1]) y <= 4’b0010; 
  else if (a[0]) y <= 4’b0001; 
  // else        y <= 4’b0000; 
endmodule 

 
Priority encoder with implied latches because of missing else 

 
The next example of a seven-segment display decoder shows the same type of problem in a case 
statement. 
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module seven_seg_display_decoder(data, segments); 
 input  [3:0] data; 
 output [6:0] segments; 
  
 reg  [6:0] segments; 
 
 // Segment #           abc_defg     hex equivalent 
 parameter BLANK = 7’b111_1111; // h7F 
 parameter ZERO = 7’b000_0001; // h01 
 parameter ONE  = 7’b100_1111; // h4F 
 parameter TWO = 7’b001_0010; // h12 
 parameter THREE = 7’b000_0110; // h06 
 parameter FOUR = 7’b100_1100; // h4C 
 parameter FIVE = 7’b010_0100; // h24 
 parameter SIX = 7’b010_0000; // h20 
 parameter SEVEN = 7’b000_1111; // h0F 
 parameter EIGHT = 7’b000_0000; // h00 
 parameter NINE = 7’b000_0100; // h04 
  
 always @(data) 
  case (data) 
   0: segments <= ZERO; 
   1: segments <= ONE; 
   2: segments <= TWO; 
   3: segments <= THREE; 
   4: segments <= FOUR; 
   5: segments <= FIVE; 
   6: segments <= SIX; 
   7: segments <= SEVEN; 
   8: segments <= EIGHT; 
   9: segments <= NINE; 
   // default: segments <= BLANK; 
  endcase 
endmodule 

 
Similarly, it is a common mistake to forget the default in next-state or output logic in a FSM. 
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module divideby3FSM(clk, reset, out); 
 input    clk; 
 input    reset; 
 output   out; 
 
 reg  [1:0] state; 
 
 wire  [1:0] nextstate; 
 
 parameter  S0 = 2’b00; 
 parameter  S1 = 2’b01; 
 parameter  S2 = 2’b10; 
 
 // State Register 
 
 always @(posedge clk or posedge reset) 
  if (reset) state <= S0; 
  else       state <= nextstate; 
 
 // Next State Logic 
 
 always @(state) 
  case (state) 
   S0: nextstate <= S1; 
   S1: nextstate <= S2; 
   S2: nextstate <= S0; 
   //default: nextstate <= S0; 
  endcase 
 
 // Output Logic 
 
 assign out = (state == S2); 
 
endmodule 

 

7.5 Shorted Outputs 
Bad code may sometimes lead to shorted outputs of gates.  For example, the tristate drivers in the following 
multiplexer should have mutually exclusive enable signals, but instead are both active simultaneously and 
produce a conflict when d0 and d1 are not equal. 
 
Synthesis may not report any errors.  However, during simulation, you will observe X’s rather than 0’s or 
1’s when the bus is simultaneously being driven high and low.  You may also get a “Bus Conflict” warning 
message. 
 

module mux2(d0, d1, s, y); 
 input  [3:0] d0, d1; 
 input    s; 
 output  [3:0] y; 
 
 tristate t0(d0, s, y); // should have been ~s 
 tristate t1(d1, s, y); 
endmodule 

 
Another cause of shorted outputs is when a reg is assigned in two different always blocks.  For example, 
the following code trys to model a flip-flop with asynchronous reset and asynchronous set.    The first 
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always block models the reset and ordinary operation.  The second always block attempts to 
incorporate the asynchronous set.  Synthesis infers a separate piece of hardware for each always block, 
with a shorted output.  Xilinx reports the following error: 
 

Error: the net '/ver1/q' has more than one driver (FPGA-CHECK-5) 
 
The module also produces a warning because the second always block implies a latch. 
 

module floprs(clk, reset, set, d, q); 
 input    clk; 
 input    reset; 
 input    set; // force q true 
 input    d; 
 output    q; 
 
 reg    q; 
 
 always @(posedge clk or posedge reset) 
  if (reset) q <= 0; 
  else q <= d; 
 
 always @(set) 
  if (set) q <= 1; 
endmodule 

8 Advanced Techniques 
It would be nice to add advanced techniques here including: 
 
? ? Test fixture design 

? ? memreadh 
? ? ===, !== 
? ? Accessing internal state nodes 
? ? Assertions and $display 
? ? initial statements 
? ? forever loops and clock generation 
? ? delays 

? ? Xilinx techniques: interfacing with LogiBLOX cells and schematics 
? ? flush out commands: 

? ? casex, casez 
? ? transistor modeling 
? ? UDPs 

? ? Gate-level Modeling 


