# From inductive inference to machine LEARNING 

ADAPTED FROM AIMA SLIDES
Russel\&Norvig:Artificial Intelligence: A modern approach

AIMA: Inductive inference

## Outline

$\diamond$ Bayesian inferences with multiple models
$\diamond$ Bayesian learning
$\diamond$ Maximum a posteriori and maximum likelihood learning
$\diamond$ Bayes net learning

- ML parameter learning with complete data
- linear regression
$\diamond$ Inductive learning
$\diamond$ Decision tree learning
$\diamond$ Measuring learning performance


## Bayesian inference with multiple models

Assume multiple models $M_{i}=\left(S_{i}, \theta_{i}\right)$ with prior $p\left(M_{i}\right) i=1, \ldots, M$.
The inference $p(Q=q \mid E=e)$ can be performed as follows:

$$
p(q \mid e)=\sum_{i=1, \ldots, M} p\left(q, M_{i} \mid e\right)=\sum_{i=1, \ldots, M} p\left(q \mid M_{i}, e\right) p\left(M_{i} \mid e\right)
$$

Note that $p\left(M_{i} \mid e\right)$ is a posterior over models with evidence $e$ :

$$
p\left(M_{i} \mid e\right)=\frac{p\left(e \mid M_{i}\right) p\left(M_{i}\right)}{p(e)} \propto p\left(e \mid M_{i}\right) p\left(M_{i}\right)
$$

i.e., the evidence $e$ reweight our beliefs in multiple models.

The inference is performed by Bayesian Model Averaging (BMA). Epicurus' (342(?) B.C. - 270 B.C.) principle of multiple explanations which states that one should keep all hypotheses that are consistent with the data.

## Bayesian model averaging with data

Beside models, assume N multiple complete observations $D_{N}$.
The standard inference $p\left(Q=q \mid E=e, D_{N}\right)$ is defined as:

$$
p\left(q \mid e, D_{N}\right)=\sum_{i=1, \ldots, M} p\left(q, M_{i} \mid e, D_{N}\right)=\sum_{i=1, \ldots, M} p\left(q \mid M_{i}, e, D_{N}\right) p\left(M_{i} \mid e, D_{N}\right)
$$

Because $p\left(q \mid M_{i}, e, D_{N}\right)=p\left(q \mid M_{i}, e\right)$ and $p\left(M_{i} \mid e, D_{N}\right) \approx p\left(M_{i} \mid D_{N}\right)$ :

$$
p\left(q \mid e, D_{N}\right) \approx \sum_{i=1, \ldots, M} p\left(q \mid M_{i}, e\right) p\left(M_{i} \mid D_{N}\right)
$$

where again $p\left(M_{i} \mid D_{N}\right)$ is a posterior after observations $D_{N}$ :

$$
p\left(M_{i} \mid D_{N}\right)=\frac{p\left(D_{N} \mid M_{i}\right) p\left(M_{i}\right)}{p(e)} \propto \underbrace{p\left(D_{N} \mid M_{i}\right)}_{\text {likelihood }} \underbrace{p\left(M_{i}\right)}_{\text {prior }} .
$$

i.e., our rational foundation, probability theory, automatically includes and normatively defines learning from observations as standard Bayesian inference!

## Full Bayesian learning

View learning as Bayesian updating of a probability distribution over the hypothesis space
$H$ is the hypothesis variable, values $h_{1}, h_{2}, \ldots$, prior $\mathbf{P}(H) j$ th observation $d_{j}$ gives the outcome of random variable $D_{j}$ training data $\mathbf{d}=d_{1}, \ldots, d_{N}$

Given the data so far, each hypothesis has a posterior probability:

$$
P\left(h_{i} \mid \mathbf{d}\right)=\alpha P\left(\mathbf{d} \mid h_{i}\right) P\left(h_{i}\right)
$$

where $P\left(\mathbf{d} \mid h_{i}\right)$ is called the likelihood
Predictions use a likelihood-weighted average over the hypotheses:

$$
\mathbf{P}(X \mid \mathbf{d})=\sum_{i} \mathbf{P}\left(X \mid \mathbf{d}, h_{i}\right) P\left(h_{i} \mid \mathbf{d}\right)=\sum_{i} \mathbf{P}\left(X \mid h_{i}\right) P\left(h_{i} \mid \mathbf{d}\right)
$$

No need to pick one best-guess hypothesis!

## Example

Suppose there are five kinds of bags of candies:
$10 \%$ are $h_{1}: 100 \%$ cherry candies
$20 \%$ are $h_{2}: 75 \%$ cherry candies $+25 \%$ lime candies
$40 \%$ are $h_{3}: 50 \%$ cherry candies $+50 \%$ lime candies
$20 \%$ are $h_{4}: 25 \%$ cherry candies $+75 \%$ lime candies $10 \%$ are $h_{5}: 100 \%$ lime candies


Then we observe candies drawn from some bag:
What kind of bag is it? What flavour will the next candy be?

Posterior probability of hypotheses


## Prediction probability



## MAP approximation

Summing over the hypothesis space is often intractable (e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)

Maximum a posteriori (MAP) learning: choose $h_{\text {MAP }}$ maximizing $P\left(h_{i} \mid \mathbf{d}\right)$
I.e., maximize $P\left(\mathbf{d} \mid h_{i}\right) P\left(h_{i}\right)$ or $\log P\left(\mathbf{d} \mid h_{i}\right)+\log P\left(h_{i}\right)$

Log terms can be viewed as (negative of)
bits to encode data given hypothesis + bits to encode hypothesis This is the basic idea of minimum description length (MDL) learning

For deterministic hypotheses, $P\left(\mathbf{d} \mid h_{i}\right)$ is 1 if consistent, 0 otherwise
$\Rightarrow$ MAP $=$ simplest consistent hypothesis (cf. science)

## ML approximation

For large data sets, prior becomes irrelevant
Maximum likelihood (ML) learning: choose $h_{\text {ML }}$ maximizing $P\left(\mathbf{d} \mid h_{i}\right)$
I.e., simply get the best fit to the data; identical to MAP for uniform prior
(which is reasonable if all hypotheses are of the same complexity)
ML is the "standard" (non-Bayesian) statistical learning method

## ML parameter learning in Bayes nets

Bag from a new manufacturer; fraction $\theta$ of cherry candies? Any $\theta$ is possible: continuum of hypotheses $h_{\theta}$ $\theta$ is a parameter for this simple (binomial) model.


Flavor

Suppose we unwrap $N$ candies, $c$ cherries and $\ell=N-c$ limes These are i.i.d. (independent, identically distributed) observations,

$$
P\left(\mathbf{d} \mid h_{\theta}\right)=\prod_{j=1}^{N} P\left(d_{j} \mid h_{\theta}\right)=\theta^{c} \cdot(1-\theta)^{\ell}
$$

Maximize this w.r.t. $\theta$-which is easier for the log-likelihood:

$$
\begin{aligned}
L\left(\mathbf{d} \mid h_{\theta}\right) & =\log P\left(\mathbf{d} \mid h_{\theta}\right)=\sum_{j=1}^{N} \log P\left(d_{j} \mid h_{\theta}\right)=c \log \theta+\ell \log (1-\theta) \\
\frac{d L\left(\mathbf{d} \mid h_{\theta}\right)}{d \theta} & =\frac{c}{\theta}-\frac{\ell}{1-\theta}=0 \quad \Rightarrow \quad \theta=\frac{c}{c+\ell}=\frac{c}{N}
\end{aligned}
$$

## Inductive learning (a.k.a. Science)

Simplest form: learn a function from examples (tabula rasa)
$f$ is the target function

An example is a pair $x, f(x)$, e.g., | $O$ | $O$ | $X$ |
| :--- | :--- | :--- |
| $X$ | $X$ |  |,+1

Problem: find $\mathrm{a}(\mathrm{n})$ hypothesis $h$ such that $h \approx f$ given a training set of examples.
(This is a highly simplified model of real learning:

- Ignores prior knowledge
- Assumes a deterministic, observable "environment"
- Assumes examples are given
- Assumes that the agent wants to learn $f$-why?)


## Inductive learning method

Construct/adjust $h$ to agree with $f$ on training set ( $h$ is consistent if it agrees with $f$ on all examples)
E.g., curve fitting:


## Inductive learning method

Construct/adjust $h$ to agree with $f$ on training set ( $h$ is consistent if it agrees with $f$ on all examples)
E.g., curve fitting:


## Inductive learning method

Construct/adjust $h$ to agree with $f$ on training set ( $h$ is consistent if it agrees with $f$ on all examples)
E.g., curve fitting:


## Inductive learning method

Construct/adjust $h$ to agree with $f$ on training set ( $h$ is consistent if it agrees with $f$ on all examples)
E.g., curve fitting:


## Inductive learning method

Construct/adjust $h$ to agree with $f$ on training set ( $h$ is consistent if it agrees with $f$ on all examples)
E.g., curve fitting:


## Ockham's razor

Ockham's razor: balance consistency and simplicity
The principle of Occam's razor (1285-1349, sometimes spelt Ockham). Occam's razor states that when inferring causes entities should not be multiplied beyond necessity. This is widely understood to mean: Among all hypotheses consistent with the observations, choose the simplest.

In terms of a prior distribution over hypotheses, this is the same as giving simpler hypotheses higher a priori probability, and more complex ones lower probability.

## Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.), e.g., situations where I will/won't wait for a table:

| Example | Carget |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type | Est | WillWait |
| $X_{1}$ | $T$ | $F$ | $F$ | $T$ | Some | $\$ \$ \$$ | $F$ | $T$ | French | $0-10$ | $T$ |
| $X_{2}$ | $T$ | $F$ | $F$ | $T$ | Full | $\$$ | $F$ | $F$ | Thai | $30-60$ | $F$ |
| $X_{3}$ | $F$ | $T$ | $F$ | $F$ | Some | $\$$ | $F$ | $F$ | Burger | $0-10$ | $T$ |
| $X_{4}$ | $T$ | $F$ | $T$ | $T$ | Full | $\$$ | $F$ | $F$ | Thai | $10-30$ | $T$ |
| $X_{5}$ | $T$ | $F$ | $T$ | $F$ | Full | $\$ \$ \$$ | $F$ | $T$ | French | $>60$ | $F$ |
| $X_{6}$ | $F$ | $T$ | $F$ | $T$ | Some | $\$ \$$ | $T$ | $T$ | Italian | $0-10$ | $T$ |
| $X_{7}$ | $F$ | $T$ | $F$ | $F$ | None | $\$$ | $T$ | $F$ | Burger | $0-10$ | $F$ |
| $X_{8}$ | $F$ | $F$ | $F$ | $T$ | Some | $\$ \$$ | $T$ | $T$ | Thai | $0-10$ | $T$ |
| $X_{9}$ | $F$ | $T$ | $T$ | $F$ | Full | $\$$ | $T$ | $F$ | Burger | $>60$ | $F$ |
| $X_{10}$ | $T$ | $T$ | $T$ | $T$ | Full | $\$ \$ \$$ | $F$ | $T$ | Italian | $10-30$ | $F$ |
| $X_{11}$ | $F$ | $F$ | $F$ | $F$ | None | $\$$ | $F$ | $F$ | Thai | $0-10$ | $F$ |
| $X_{12}$ | $T$ | $T$ | $T$ | $T$ | Full | $\$$ | $F$ | $F$ | Burger | $30-60$ | $T$ |

Classification of examples is positive (T) or negative (F)

## Decision trees

Common representation for protocols, e.g. here is the "true" tree for deciding whether to wait:


## Expressiveness

Decision trees can express any function of the input attributes. E.g., for Boolean functions, truth table row $\rightarrow$ path to leaf:


Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless $f$ nondeterministic in $x$ ), but it probably won't generalize to new examples.

Prefer to find more compact decision trees.
Hypothesis spaces

How many distinct decision trees with $n$ Boolean attributes??

## Hypothesis spaces

How many distinct decision trees with $n$ Boolean attributes??
$=$ number of Boolean functions

## Hypothesis spaces

How many distinct decision trees with $n$ Boolean attributes??
$=$ number of Boolean functions
$=$ number of distinct truth tables with $2^{n}$ rows

## Hypothesis spaces

How many distinct decision trees with $n$ Boolean attributes??
$=$ number of Boolean functions
$=$ number of distinct truth tables with $2^{n}$ rows $=2^{2^{n}}$

## Hypothesis spaces

How many distinct decision trees with $n$ Boolean attributes??
$=$ number of Boolean functions
$=$ number of distinct truth tables with $2^{n}$ rows $=2^{2^{n}}$
E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

## Hypothesis spaces

How many distinct decision trees with $n$ Boolean attributes??
$=$ number of Boolean functions
$=$ number of distinct truth tables with $2^{n}$ rows $=2^{2^{n}}$
E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry $\wedge \neg$ Rain)??

## Hypothesis spaces

## How many distinct decision trees with $n$ Boolean attributes??

$=$ number of Boolean functions
$=$ number of distinct truth tables with $2^{n}$ rows $=2^{2^{n}}$
E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry $\wedge \neg$ Rain)??
Each attribute can be in (positive), in (negative), or out $\Rightarrow 3^{n}$ distinct conjunctive hypotheses

More expressive hypothesis space

- increases chance that target function can be expressed
- increases number of hypotheses consistent w/ training set
$\Rightarrow$ may get worse predictions


## Decision tree learning

Aim: find a small tree consistent with the training examples
Idea: recursively choose "most significant" attribute to branch
function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default else if all examples have the same classification then return the classification else if attributes is empty then return Mode(examples) else
best $\leftarrow$ Choose-Attribute $($ attributes, examples)
tree $\leftarrow$ a new decision tree with root test best
for each value $v_{i}$ of best do
examples $_{i} \leftarrow\left\{\right.$ elements of examples with best $\left.=v_{i}\right\}$
subtree $\leftarrow \mathrm{DTL}\left(\right.$ examples $_{i}$, attributes - best, Mode(examples)) add a branch to tree with label $v_{i}$ and subtree subtree
return tree

## Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"


Patrons? is a better choice-gives information about the classification

## Information

Information answers questions
The more clueless I am about the answer initially, the more information is contained in the answer

Scale: 1 bit $=$ answer to Boolean question with prior $\langle 0.5,0.5\rangle$
Information in an answer when prior is $\left\langle P_{1}, \ldots, P_{n}\right\rangle$ is

$$
H\left(\left\langle P_{1}, \ldots, P_{n}\right\rangle\right)=\sum_{i=1}^{n}-P_{i} \log _{2} P_{i}
$$

(also called entropy of the prior)

## Information contd.

Suppose we have $p$ positive and $n$ negative examples at the root $\Rightarrow H(\langle p /(p+n), n /(p+n)\rangle)$ bits needed to classify a new example E.g., for 12 restaurant examples, $p=n=6$ so we need 1 bit

An attribute splits the examples $E$ into subsets $E_{i}$, each of which (we hope) needs less information to complete the classification

Let $E_{i}$ have $p_{i}$ positive and $n_{i}$ negative examples $\Rightarrow H\left(\left\langle p_{i} /\left(p_{i}+\right.\right.\right.$ $\left.\left.\left.n_{i}\right), n_{i} /\left(p_{i}+n_{i}\right)\right\rangle\right)$ bits needed to classify a new example $\Rightarrow$ expected number of bits per example over all branches is

$$
\sum_{i} \frac{p_{i}+n_{i}}{p+n} H\left(\left\langle p_{i} /\left(p_{i}+n_{i}\right), n_{i} /\left(p_{i}+n_{i}\right)\right\rangle\right)
$$

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit $\Rightarrow$ choose the attribute that minimizes the remaining information needed

## Example contd.

Decision tree learned from the 12 examples:


Substantially simpler than "true" tree-a more complex hypothesis isn't justified by small amount of data

Decision tree as local conditional model


AIMA: Inductive inference

## Performance measurement

How do we know that $h \approx f$ ? (Hume's Problem of Induction)

1) Use theorems of computational/statistical learning theory
2) Try $h$ on a new test set of examples (use same distribution over example space as training set)

Learning curve $=\%$ correct on test set for increasing training set size


Training set size

## Performance measurement contd.

Learning curve depends on

- realizable (can express target function) vs. non-realizable non-realizability can be due to missing attributes or restricted hypothesis class (e.g., thresholded linear function)
- redundant expressiveness (e.g., loads of irrelevant attributes)



## Summary

Learning needed for unknown environments, lazy designers
Learning method depends on type of performance element, available feedback, type of component to be improved, and its representation

Full Bayesian learning gives best possible predictions but is intractable
MAP learning balances complexity with accuracy on training data
Maximum likelihood assumes uniform prior, OK for large data sets
For supervised learning, the aim is to find a simple hypothesis that is approximately consistent with training examples

Decision tree learning using information gain
Learning performance $=$ prediction accuracy measured on test set

