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Outline

♦ Bayesian inferences with multiple models

♦ Bayesian learning

♦ Maximum a posteriori and maximum likelihood learning

♦ Bayes net learning
– ML parameter learning with complete data
– linear regression

♦ Inductive learning

♦ Decision tree learning

♦ Measuring learning performance
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Bayesian inference with multiple models

Assume multiple modelsMi = (Si, θi) with prior p(Mi) i = 1, . . . ,M .

The inference p(Q = q|E = e) can be performed as follows:

p(q|e) = Σi=1,...,Mp(q,Mi|e) = Σi=1,...,Mp(q|Mi, e)p(Mi|e)
Note that p(Mi|e) is a posterior over models with evidence e:

p(Mi|e) = p(e|Mi)p(Mi)

p(e)
∝ p(e|Mi)p(Mi)

i.e., the evidence e reweight our beliefs in multiple models.

The inference is performed byBayesian Model Averaging (BMA).
Epicurus’ (342(?) B.C. - 270 B.C.) principle of multiple ex-
planations which states that one should keep all hypotheses that
are consistent with the data.
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Bayesian model averaging with data

Beside models, assume N multiple complete observations DN .

The standard inference p(Q = q|E = e,DN) is defined as:

p(q|e,DN) = Σi=1,...,Mp(q,Mi|e,DN) = Σi=1,...,Mp(q|Mi, e,DN)p(Mi|e,DN)

Because p(q|Mi, e,DN) = p(q|Mi, e) and p(Mi|e,DN) ≈ p(Mi|DN):

p(q|e,DN) ≈ Σi=1,...,Mp(q|Mi, e)p(Mi|DN)

where again p(Mi|DN) is a posterior after observations DN :

p(Mi|DN) =
p(DN |Mi)p(Mi)

p(e)
∝ p(DN |Mi)︸ ︷︷ ︸

likelihood

p(Mi)︸ ︷︷ ︸
prior

.

i.e., our rational foundation, probability theory, automatically includes
and normatively defines learning from observations as standard Bayesian
inference!
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Full Bayesian learning

View learning as Bayesian updating of a probability distribution
over the hypothesis space

H is the hypothesis variable, values h1, h2, . . ., prior P(H) jth ob-
servation dj gives the outcome of random variable Dj training data
d= d1, . . . , dN

Given the data so far, each hypothesis has a posterior probability:

P (hi|d) = αP (d|hi)P (hi)

where P (d|hi) is called the likelihood

Predictions use a likelihood-weighted average over the hypotheses:

P(X|d) = Σi P(X|d, hi)P (hi|d) = Σi P(X|hi)P (hi|d)
No need to pick one best-guess hypothesis!
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Example

Suppose there are five kinds of bags of candies:
10% are h1: 100% cherry candies
20% are h2: 75% cherry candies + 25% lime candies
40% are h3: 50% cherry candies + 50% lime candies
20% are h4: 25% cherry candies + 75% lime candies
10% are h5: 100% lime candies

Then we observe candies drawn from some bag:

What kind of bag is it? What flavour will the next candy be?
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Posterior probability of hypotheses
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Prediction probability

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

P
(n

ex
t c

an
dy

 is
 li

m
e 

| d
)

Number of samples in d

AIMA: Inductive inference 8



MAP approximation

Summing over the hypothesis space is often intractable
(e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)

Maximum a posteriori (MAP) learning: choose hMAP maximizing
P (hi|d)
I.e., maximize P (d|hi)P (hi) or logP (d|hi) + logP (hi)

Log terms can be viewed as (negative of)
bits to encode data given hypothesis + bits to encode hypothesis

This is the basic idea of minimum description length (MDL) learning

For deterministic hypotheses, P (d|hi) is 1 if consistent, 0 otherwise
⇒ MAP = simplest consistent hypothesis (cf. science)
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ML approximation

For large data sets, prior becomes irrelevant

Maximum likelihood (ML) learning: choose hML maximizing P (d|hi)

I.e., simply get the best fit to the data; identical to MAP for uniform
prior
(which is reasonable if all hypotheses are of the same complexity)

ML is the “standard” (non-Bayesian) statistical learning method
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ML parameter learning in Bayes nets

Bag from a new manufacturer; fraction θ of cherry candies?

Flavor

P F=cherry( )

θ
Any θ is possible: continuum of hypotheses hθ

θ is a parameter for this simple (binomial) model.

Suppose we unwrap N candies, c cherries and �=N − c limes
These are i.i.d. (independent, identically distributed) observations,

P (d|hθ) =
N∏

j=1
P (dj|hθ) = θc · (1− θ)�

Maximize this w.r.t. θ—which is easier for the log-likelihood:

L(d|hθ) = logP (d|hθ) =
N∑

j=1
logP (dj|hθ) = c log θ + � log(1− θ)

dL(d|hθ)

dθ
=

c

θ
− �

1− θ
= 0 ⇒ θ =

c

c + �
=

c

N
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Inductive learning (a.k.a. Science)

Simplest form: learn a function from examples (tabula rasa)

f is the target function

An example is a pair x, f(x), e.g.,
O O X

X
X

, +1

Problem: find a(n) hypothesis h such that h ≈ f given a training set
of examples.

(This is a highly simplified model of real learning:
– Ignores prior knowledge
– Assumes a deterministic, observable “environment”
– Assumes examples are given
– Assumes that the agent wants to learn f—why?)
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Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)
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Ockham’s razor

Ockham’s razor: balance consistency and simplicity

The principle of Occam’s razor (1285 - 1349, sometimes spelt Ock-
ham). Occam’s razor states that when inferring causes enti-
ties should not be multiplied beyond necessity. This is
widely understood to mean: Among all hypotheses consistent with
the observations, choose the simplest.

In terms of a prior distribution over hypotheses, this is the same
as giving simpler hypotheses higher a priori probability, and more
complex ones lower probability.
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Attribute-based representations

Examples described by attribute values (Boolean, discrete, continu-
ous, etc.), e.g., situations where I will/won’t wait for a table:

Example Attributes Target

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 T F F T Some $$$ F T French 0–10 T

X2 T F F T Full $ F F Thai 30–60 F

X3 F T F F Some $ F F Burger 0–10 T

X4 T F T T Full $ F F Thai 10–30 T

X5 T F T F Full $$$ F T French >60 F

X6 F T F T Some $$ T T Italian 0–10 T

X7 F T F F None $ T F Burger 0–10 F

X8 F F F T Some $$ T T Thai 0–10 T

X9 F T T F Full $ T F Burger >60 F

X10 T T T T Full $$$ F T Italian 10–30 F

X11 F F F F None $ F F Thai 0–10 F

X12 T T T T Full $ F F Burger 30–60 T

Classification of examples is positive (T) or negative (F)
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Decision trees

Common representation for protocols, e.g. here is the “true” tree for
deciding whether to wait:

No  Yes

No  Yes

No  Yes

No  Yes

No  Yes

No  Yes

None Some Full

>60 30−60 10−30 0−10

No  Yes
Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

WaitEstimate?F T

F T

T

T

F T

TFT

TF
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Expressiveness

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row → path to leaf:

FT

A

B

F T

B

A B A xor B

F F F
F T T
T F T
T T F

F

F F

 T

 T  T

Trivially, there is a consistent decision tree for any training set with
one path to leaf for each example (unless f nondeterministic in x),
but it probably won’t generalize to new examples.

Prefer to find more compact decision trees.
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Hypothesis spaces

How many distinct decision trees with n Boolean attributes??
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Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
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Hypothesis spaces
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E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616
trees
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Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22

n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616
trees

How many purely conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)??
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Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22

n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616
trees

How many purely conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)??
Each attribute can be in (positive), in (negative), or out

⇒ 3n distinct conjunctive hypotheses

More expressive hypothesis space
– increases chance that target function can be expressed
– increases number of hypotheses consistent w/ training set
⇒ may get worse predictions
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Decision tree learning

Aim: find a small tree consistent with the training examples

Idea: recursively choose “most significant” attribute to branch

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default

else if all examples have the same classification then return the classification

else if attributes is empty then return Mode(examples)

else

best←Choose-Attribute(attributes, examples)

tree← a new decision tree with root test best

for each value vi of best do

examplesi←{elements of examples with best = vi}
subtree←DTL(examplesi,attributes− best,Mode(examples))

add a branch to tree with label vi and subtree subtree

return tree
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Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ide-
ally) “all positive” or “all negative”

None Some Full

Patrons?

French Italian Thai Burger

Type?

Patrons? is a better choice—gives information about the classi-
fication
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Information

Information answers questions

The more clueless I am about the answer initially, the more informa-
tion is contained in the answer

Scale: 1 bit = answer to Boolean question with prior 〈0.5, 0.5〉
Information in an answer when prior is 〈P1, . . . , Pn〉 is

H(〈P1, . . . , Pn〉) = Σn
i=1 − Pi log2 Pi

(also called entropy of the prior)
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Information contd.

Suppose we have p positive and n negative examples at the root
⇒ H(〈p/(p+n), n/(p+n)〉) bits needed to classify a new example
E.g., for 12 restaurant examples, p=n=6 so we need 1 bit

An attribute splits the examples E into subsets Ei, each of which
(we hope) needs less information to complete the classification

Let Ei have pi positive and ni negative examples ⇒ H(〈pi/(pi +
ni), ni/(pi + ni)〉) bits needed to classify a new example ⇒ ex-
pected number of bits per example over all branches is

Σi
pi + ni

p + n
H(〈pi/(pi + ni), ni/(pi + ni)〉)

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit ⇒
choose the attribute that minimizes the remaining information needed
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Example contd.

Decision tree learned from the 12 examples:

No  Yes
Fri/Sat?

None Some Full

Patrons?

No Yes
Hungry?

Type?

French Italian Thai Burger

F T

T F

F

T

F T

Substantially simpler than “true” tree—a more complex hypothesis
isn’t justified by small amount of data
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Decision tree as local conditional model
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Performance measurement

How do we know that h ≈ f? (Hume’s Problem of Induction)

1) Use theorems of computational/statistical learning theory

2) Try h on a new test set of examples (use same distribution
over example space as training set)

Learning curve = % correct on test set for increasing training set size
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Performance measurement contd.

Learning curve depends on
– realizable (can express target function) vs. non-realizable

non-realizability can be due to missing attributes
or restricted hypothesis class (e.g., thresholded linear function)

– redundant expressiveness (e.g., loads of irrelevant attributes)

% correct

# of examples

1

nonrealizable

redundant

realizable
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Summary

Learning needed for unknown environments, lazy designers

Learning method depends on type of performance element, available
feedback, type of component to be improved, and its representation

Full Bayesian learning gives best possible predictions but is intractable

MAP learning balances complexity with accuracy on training data

Maximum likelihood assumes uniform prior, OK for large data sets

For supervised learning, the aim is to find a simple hypothesis that is
approximately consistent with training examples

Decision tree learning using information gain

Learning performance = prediction accuracy measured on test set
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