Adapted from AIMA slides

Simple probabilistic models

Peter Antal antal@mit.bme.hu

Outline

- Basics of probability theory
- Relation of two-valued vs probabilistic logic
 - Truth vs belief
 - Proofs vs inference
- Naïve Bayesian networks
- SPAM filter
- Special local models
 - Noisy-OR
 - Decision tree CPDs
 - Decision graph CPDs

Axioms of probability

▶ For any propositions *A*, *B*

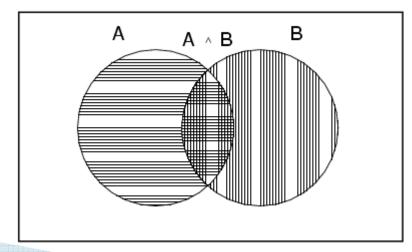
$$0 \leq P(A) \leq 1$$

•
$$P(true) = 1$$
 and $P(false) = 0$

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

0

True



Probability theory: concepts for the course

- Joint distribution ("omic-ness")
 - ("omic-ness": "comprehensiveness" + "query-free")
- Conditional probability ("simple inference")
- Chain rule ("factorization")
- Bayes' rule ("inversion")
- Marginalization/expansion ("complex inference")
- [Conditional] independence ("simplification")

Bayes' Rule

- ▶ Product rule $P(a \land b) = P(a \mid b) P(b) = P(b \mid a) P(a)$
- \Rightarrow Bayes' rule: P(a | b) = P(b | a) P(a) / P(b)
- or in distribution form

$$P(Y|X) = P(X|Y) P(Y) / P(X) = \alpha P(X|Y) P(Y)$$

- Useful for assessing diagnostic probability from causal probability:
 - P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect)
 - E.g., let M be meningitis, S be stiff neck:

$$P(m|s) = P(s|m) P(m) / P(s) = 0.8 \times 0.0001 / 0.1 = 0.0008$$

Note: posterior probability of meningitis still very small!

Bayes rule

An algebraic triviality

$$p(X|Y) = \frac{p(Y|X)p(X)}{p(Y)} = \frac{p(Y|X)p(X)}{\sum_{X} p(Y|X)p(X)}$$

A scientific research paradigm

$$p(Model \mid Data) \propto p(Data \mid Model) p(Model)$$

A practical method for inverting causal knowledge to diagnostic tool.

$$p(Cause \mid Effect) \propto p(Effect \mid Cause) \times p(Cause)$$

Inference by enumeration

Every question about a domain can be answered by the joint distribution.

Typically, we are interested in the posterior joint distribution of the query variables Y given specific values e for the evidence variables E

Let the hidden variables be H = X - Y - E

Then the required summation of joint entries is done by summing out the hidden variables:

$$P(Y \mid E = e) = \alpha P(Y,E = e) = \alpha \Sigma_h P(Y,E = e, H = h)$$

- The terms in the summation are joint entries because Y, E and H together exhaust the set of random variables
- Obvious problems:
 - 1. Worst-case time complexity $O(d^n)$ where d is the largest arity
 - 2. Space complexity $O(d^n)$ to store the joint distribution
 - 3. How to find the numbers for $O(d^n)$ entries?

Decision theory= probability theory+utility theory

- Decision situation:
 - Actions
 - Outcomes
 - Probabilities of outcomes
 - Utilities/losses of outcomes
 - QALY, micromort
 - Maximum Expected Utility Principle (MEU)
 - Best action is the one with maximum expected utility

Actions a_i Outcomes Probabilities (which experiment) (e.g. dataset)

$$\begin{bmatrix} a_i & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ &$$

$$\begin{aligned}
o_{j}^{i} \\
p(o_{j} \mid a_{i}) \\
U(o_{j} \mid a_{i}) \\
EU(a_{i}) &= \sum_{j} U(o_{j} \mid a_{i}) p(o_{j} \mid a_{i})
\end{aligned}$$

$$a^* = \arg\max_i EU(a_i)$$

About the event space

- Atomic events are mutually exclusive and exhaustive.
- ▶ The single variable case.
 - Weather is one of < sunny, rainy, cloudy, snow>
 - P((Weather = sunny) \(\times \) (Weather = rainy))
- Challenges in the multivariate case.
 - Weather is one of < sunny, rainy, cloudy, snow>
 - TemperatureofRain is one of <icy,cold,warm>
 - NONE?

Classical vs probabilistic logic: truth and beliefs

P ₁		P ₃	KB	S	рКВ	P(query evidence)
F	F	F	F	T	.01	.1
F	F	Т	Т	F	.12	.2
F	T	F	F	T	.35	.3
F	Т	Т	F	F		
Т	F	F	F	T		
T	F	Т	Т	T		
Т	Т	F	F	T		
Т	Т	Т	F	Т		

Classical vs probabilistic logic: provability and inference

 $P(KB \mid \alpha = \text{sentence } \alpha \text{ can be derived from } KB \text{ by procedure } i \mid pKB)$

"Belief propagation in networks"

Conditional independence

"Probability theory=measure theory+independence" $\{P_p(X;Y|Z)\}$ or $\{X \perp Y|Z\}_p$ denotes that X is independent of Y given Z: P(X;Y|z)=P(Y|z) P(X|z) for all z with P(z)>0.

(Almost) alternatively, $I_P(X;Y|Z)$ iff

P(X|Z,Y) = P(X|Z) for all z,y with P(z,y) > 0.

Other notations: $D_P(X;Y|Z) = def = \neg I_P(X;Y|Z)$

Contextual independence: for not all z.

Homeworks:

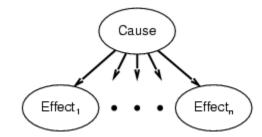
Intransitivity: show that it is possible that D(X;Y), D(Y;Z), but I(X;Z).

order: show that it is possible that I(X;Z), I(Y;Z), but D(X,Y;Z).

Naive Bayesian network

Assumptions:

1, Two types of nodes: a cause and effects.



2, Effects are conditionally independent of each other given their cause.

Flu

Variables (nodes)

Flu: present/absent

FeverAbove38C: present/absent

Coughing: present/absent

P(Flu=present)=0.001

P(Flu=absent)=1-P(Flu=present)

Model

P(Fever=present|Flu=present)=0.6

P(Fever=absent|Flu=present)=1-0.6

P(Fever=present|Flu=absent)=0.01

P(Fever=absent|Flu=absent)=1-0.01

Fever

P(Coughing=present|Flu=present)=0.3

P(Coughing=absent|Flu=present)=1-0.7

P(Coughing=present|Flu=absent)=0.02

P(Coughing=absent|Flu=absent)=1-0.02

Coughing

Naive Bayesian network (NBN)

Decomposition of the joint:

$$P(Y,X_1,...,X_n) = P(Y)\prod_i P(X_i,|Y,X_1,...,X_{i-1}) \qquad //by \ the \ chain \ rule \\ = P(Y)\prod_i P(X_i,|Y) \qquad //by \ the \ N-BN \ assumption \\ 2n+1 \ parameteres!$$

Diagnostic inference:

$$P(Y|x_{i1},...,x_{ik}) = P(Y)\prod_{j}P(x_{ij},|Y) / P(x_{i1},...,x_{ik})$$

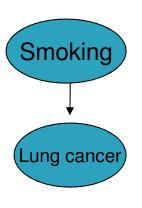
If Y is binary, then the odds

$$P(Y=1|X_{i1},...,X_{ik}) / P(Y=0|X_{i1},...,X_{ik}) = P(Y=1)/P(Y=0) \prod_{j} P(X_{ij},|Y=1) / P(X_{ij},|Y=0)$$
Flu
Coughing

p(Flu = present | Fever = absent, Coughing = present)

 $\propto p(Flu = present) p(Fever = absent | Flu = present) p(Coughing = present | Flu = present)$

Conditional probabilities, odds, odds ratios



	¬S	S	
¬LC	P(¬S, ¬LC)	P(S, ¬LC)	P(¬LC)
LC	P(¬S, LC)	P(S, LC)	P(LC)
	P(¬S)	P(S)	

Probability:

P(LC)

Conditional probabilities (e.g., probability of LC given S):

 $P(LC| \neg S) = ??? P(LC| S) = ??? P(LC)$

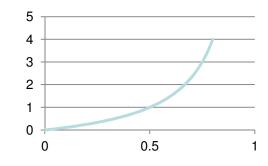
Odds:

 $[0,1] \rightarrow [0,\infty]$: Odds(p)=p/(1-p)

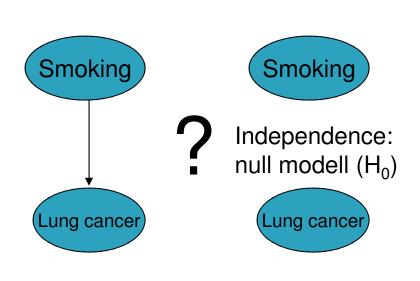
 $O(LC| \neg S) = ??? O(LC| S)$

Odds Ratio (OR) Independent of prevalence!

 $OR(LC,S)=O(LC|S)/O(LC|\neg S)$



Probabilities, odds, odds ratios



	¬S	S	
¬LC	8	7	15
LC	1	4	5
	9	11	20

Contingency table with marginals

	¬S	S	
¬LC	.4	.35	.75
LC	.05	.2	.25
	.45	.55	

Conditional probabilities:

 $P(LC|\neg S)=.11$??? P(LC|S)=.36 ??? P(LC)=.25

Odds:

 $[0,1] \rightarrow [0,\infty]$: Odds(p)=p/(1-p)

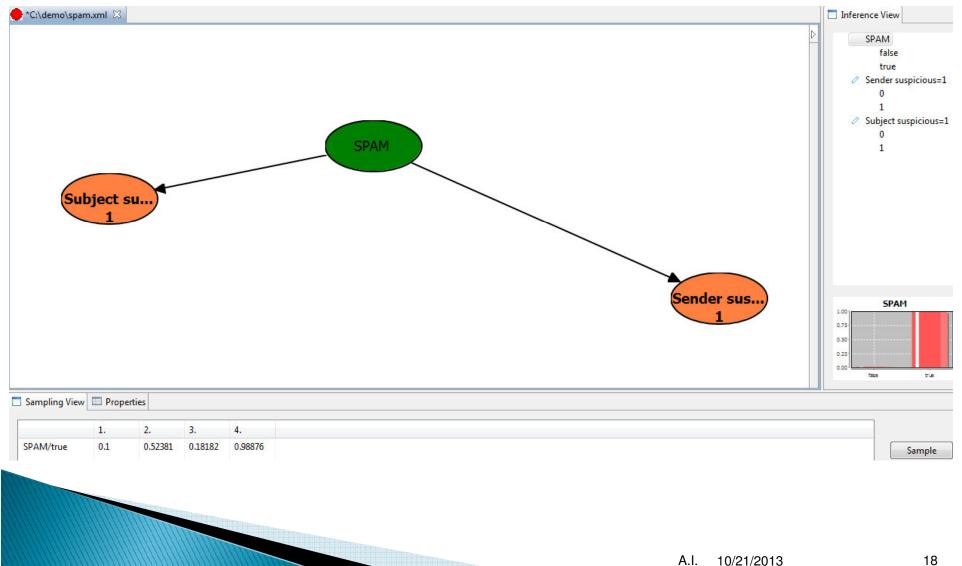
 $O(LC|\neg S)=.12$??? O(LC|S)=.56

Odds Ratio (OR):

 $OR(LC,S)=O(LC|S)/O(LC|\neg S)=4.6$

BAYES CUBE (~BAYES EYE)

Example: Construct a spam filter



Summary

- ▶ Naïve Bayesian networks (N-BNs) demonstrate the use of independencies to cope with
 - model complexity (~space complexity, number of parameters)
 - inferential complexity (~time complexity).
- The assumption of conditional independence of the effects given their common cause allows
 - the efficient representation of the joint distribution
 - (in the discrete, multinomial case: linear number of parameters instead of exponential),
 - the efficient computation of the diagnostic posterior p(Y|X)
 - (linear number of steps instead of exponential),
- Odds, log odds are popular transformations of probabilities.
- N-BNs are robust knowledge engineering and data analysis tools.
- Suggested reading:
 - Druzdzell: Building Probabilistic Networks: Where Do the Numbers Come From?, IEEE
 Transactions on Knowledge and data engineering, 2000