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» Naive Bayesian networks

» SPAM filter

» Special local models
> Noisy-OR
> Decision tree CPDs
> Decision graph CPDs




Axioms of probability

» For any propositions A, 5
<
-0 <PA <1
> P(true) = 1 and P(false) = 0
> P(Av B) = P(A) + P(B) - P(AA B

True




Probability theory:
concepts for the course

» Joint distribution ("omic-ness”)
> (“omic-ness’: “comprehensiveness” + “query-free”)
» Conditional probability (“simple inference”)
» Chain rule (“factorization”)
» Bayes’ rule (“inversion”)
» Marginalization/expansion (“complex inference”)
» [Conditional] independence (“simplification”)




Bayes' Rule

Product rule P(anb) = P(a | b) P(b) = P(b | a) P(a)
— Bayes' rule: P(a | b) = P(b | a) P(a) / P(b)

v v

or in distribution form

P(Y|X) = P(X]Y) P(Y) / P(X) = a«P(X|Y) P(Y)

Hﬁgglélbﬁﬁ{yéssessing diagnostic probability from causal

- P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect)

v v

v

- E.g., let M be meningitis, S be stiff neck:
P(m|s) = P(s|m) P(m) / P(s) = 0.8 x 0.0001 / 0.1 = 0.0008
- Note: posterior probability of meningitis still very small!




Bayes rule

An algebraic triviality

pY1X)p(X) _ p(X1X)p(X)
p(Y) > pY1X)p(X)

p(X1Y)=

A scientific research paradigm

p(Model | Data) < p(Datal Model) p(Model)

A practical method for inverting causal knowledge to diagnostic tool.

p(Cause | Effect) < p(Effect | Cause) X p(Cause)




Inference by enumeration

Every question about a domain can be answered by the joint distribution.

Typically, we are interested in the posterior joint distribution of the query
variables Y  given specific values e for the evidence variables E

Let the hidden variables be H=X-Y-E

Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y | E = e) = xP(Y,E = e) = xZ,P(Y,E= e, H = h)

» The terms in the summation are joint entries because Y, Eand H
together exhaust the set of random variables
» Obvious problems:

1. Worst-case time complexity O(@”) where dis the largest arity
2. Space complexity O(@")to store the joint distribution
3. How to find the numbers for O(@") entries?




Decision theory=
probability theory+utility theory

» Decision situation:
> Actions a
> Qutcomes 0,
> Probabilities of outcomes P(Oj la,)

o Utilities/losses of
outcomes U(Oj la;)

* QALY, micromort EU(a,) = U(o.la)p(o.la)
- Maximum Expected Utility ’ ZJ’ J ot J

Principle (MEU) % _
- Best action is the one with a” = arg maXz’ EU(az)

maximum expected utility
Actions g, Outcomes Probabilities  Utilities, costs Expected utilities

(which experiment) (e.g. dataset)
Q< P(ojla) U(oy), C(ay) } EU(a) = 3 P(ola)U(ojla;)
o

i

J




About the event space

» Atomic events are mutually exclusive and
exhaustive.

» The single variable case.
o Weatheris one of <sunny,rainy,cloudy,snow>
o P((Weather =sunny) v (Weather =rainy))

» Challenges in the multivariate case.
- Weather is one of <sunny,rainy,cloudy,snow>
o TemperatureofRain is one of <icy,cold,warm>
- NONE?
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Classical vs probabilistic logic:
truth and beliefs

P, .. P, KB
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.01 1
12 2
35 3

Al 10/21/2013

10



Classical vs prol

provability and i

P
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Conditional independence 2§

,Probability theory=measure theory+independence” é/“/'//

1,(X;Y|Z) or (XLY|Z)p denotes that X is independent of Y gfven Z:
P(X:Y|z)=P(Y|z) P(X|z) for all z with P(z)>0.

(Almost) alternatively, 1,(X;Y|Z) iff

P(X|Z,Y)= P(X|Z) for all z,y with P(z,y)>0.
Other notations: Dp(X;Y|Z) =def= 4 I(X;Y|2)
Contextual independence: for not all z.
Homeworks:

Intransitivity: show that it is possible that D(X;Y), D(Y;Z), but
1(X;Z).

order : show that it is possible that I(X;2), I(Y;Z), but D(X,Y;Z).




Naive Bayesian network

Assumptions:

1, Two types of nodes: a cause and effects.

2, Effects are conditionally independent of each other given their cause.

Variables (nodes)
Flu: present/absent
FeverAbove38C: present/absent

Coughing: present/absent P(Flu=present)=0.001
P(Flu=absent)=1-P(Flu=present)

Model

P(Fever=present|Flu=present)=0.6 P(Coughing=present|Flu=present)=0.3
P(Fever=absent|Flu=present)=1-0.6 P(Coughing=absent|Flu=present)=1-0.7
P(Fever=present|Flu=absent)=0- oughing=present|Flu=absent)=0.02
P(Fever=absent|Flu=absent)=1-0.01 absent|Flu=absent)=1-0.02



Naive Bayesian network (NBN)
Decomposition of the joint:
P(Y,X;,..X.)  =PMMPX,]Y, X0, X 4) //by the chain rule
= P(Y)[1P(X,]Y) // by the N-BN assumption
2n+1 parameteres!

Diagnostic inference:
P(Y[Xi,-Xi) = PO)TTPX[Y) 7 P(Xis,. %)

If Y is binary, then the odds

P(Y=11Xiy,...x5) / P(Y=0[x;y,...x3) = P(Y=1)/P(Y=0) [']; P(x;,[Y=1) / P(x;,[Y=0)

I]’

ij?

p(Flu = present | Fever = absent,Coughing = present)
o< p(Flu = present) p(Fever = absent | Flu = present) p(Coughing = present | Flu = present)




Conditional probabilities, odds, odds ratios

P(=S, -LC)  P(S, —LC) P(=LC)

. LC P(=S, LC) P(S, LC) P(LC)

Probability: P(=S) P(S)
P(LC)
Conditional probabilities (e.g., probability of LC given S):
P(LC| =S)= ??? P(LC| S)= ??? P(LC)
Odds:
[0,1] —[0,]: Odds(p)=p/(1-p)
O(LC| =S)= ??? O(LC| S)
Odds Ratio (OR) Independent of prevalence! _ | |
OR(LC,S)=0O(LC| S)/O(LC| —S) 0 05 L

o = N W h~ O




Probabilities, odds, odds ratios

|- |s |
=LC 8 / 15
LC 1 4 5
Independence: 9 11 20

» null modell (Hy) Contmgency table with margmals

LC .05 2 .25

Conditional probabilities: 45 .55
P(LC| —=S)=.11 ??? P(LC| S)=.36 ??? P(LC)=.25

Odds:

[0,1] —[0,]: Odds(p)=p/(1-p)

O(LC| =S)=.12 ??? O(LC| S)=.56

Odds Ratio (OR):

C,S)=0(LC| S)/O(LC| —S)=4.6




BAYES CUB]E (~BAYES EYE)

1 i &




Example: Construct a spam filter

3 Inference View

SPAM

false

=

true

< Sender suspicious=1
0
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& Subject suspicious=1
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[ Sampling View | = Properties
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SPAM/true 01 052381 018182 093876
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Summary

Naive Bayesian networks (N-BNs) demonstrate the use of independencies to cope with
- model complexity (~space complexity, number of parameters)

> inferential complexity (~time complexity).

The assumption of conditional independence of the effects given their common cause
allows

> the efficient representation of the joint distribution

(in the discrete, multinomial case: linear number of parameters instead of exponential),
> the efficient computation of the diagnostic posterior p(Y|X)

(linear number of steps instead of exponential),

Odds, log odds are popular transformations of probabilities.
N-BNs are robust knowledge engineering and data analysis tools.

Suggested reading:

> Druzdzell: Building Probabilistic Networks: Where Do the Numbers Come From?, IEEE
Transactions on Knowledge and data engineering, 2000



