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Cross-validation is a widely used model evaluation method in data mining applications. However, it usually
takes a lot of effort to determine the appropriate parameter values, such as training data size and the number
of experiment runs, to implement a validated evaluation. This study develops an efficient cross-validation
method called Complexity-based Efficient (CBE) cross-validation for binary classification problems. CBE
cross-validation establishes a complexity index, called the CBE index, by exploring the geometric structure
and noise of data. The CBE index is used to calculate the optimal training data size and the number of
experiment runs to reduce model evaluation time when dealing with computationally expensive
classification data sets. A simulated and three real data sets are employed to validate the performance of
the proposed method in the study, while the validation methods compared are repeated random sub-
sampling validation and K-fold cross-validation. The results show that CBE cross-validation, repeated
random sub-sampling validation and K-fold cross-validation have similar validation performance, except
that the training time required for CBE cross-validation is indeed lower than that for the other two methods.
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1. Introduction

In data mining applications, researchers generally use cross-
validation to evaluate the learned classification model [11]. However,
this usually requires considerable computational costs. With K-fold
cross-validation, for example, the number of experiment runs must
increase when parameter K increases, making the training computa-
tionally expensive [1]. Specifically, ((K−1)/K)% training data are
theoretically needed for learning a classification model, and when the
data size is very large, ((K−1)/K)% training data makes computation
expensive [1].

In another common scenario, repeated random sub-sampling
validation is usually repeated 30 or 50 times for model evaluation
[23]. However, if the data structure is simple or uniform, the number
of times sub-sampling validation is repeated is much more than what
is needed, and thus the procedure is inefficient.

Our research develops an effective cross-validation procedure,
called Complexity-based Efficient (CBE) cross-validation, for binary
classification problems. The CBE cross-validation method can be used
to calculate the optimal training data size and the number of
experiment runs to reduce model validation time. The CBE cross-
validation procedure systematically establishes a non-linear data
complexity index (defined in Section 3) called CBE index by exploring
the geometric structure and noise of data.
The density-based clustering algorithm (DBSCAN) is used to
discover the geometric structure and noise, while the between-
distance and within-distance of the clusters found are used as the
factors of the CBE index. Based on this, this research develops an
efficient CBE cross-validation procedure to calculate the optimal
training data size and number of experiment runs.

The rest of this paper is organized as follows: The literature review
is given in Section 2 while the detailed procedure of the proposed
method is described in Section 3. One simulated and three real data
sets are used to illustrate the CBE cross-validation model in Section 4,
and Section 5 contains the conclusion and discussion of our research.

2. Literature review

In this section we review the concept of linear data complexity
(the definition is explained in Section 3), the geometric structure and
noise of data, and existing cross-validation methods.

2.1. Linear data complexity

For linear data complexity, the index used to detect the level of
data complexity is Fisher's discriminant ratio f [1,10]:

f¼ μ1�μ2ð Þ2
σ2
1þσ2

2

ð1Þ

where μ1,μ 2,σ1
2,and σ2

2 are themeans and variances of the two classes
in a data set, respectively. f is specific for one feature dimension case.
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For a multidimensional problem, the maximum f over all the feature
dimensions is used to describe the problem. For problems with
multidimensional features, Li and Fang proposed a Purity Level (PL) to
measure linear data complexity [15]. The parameters of the index are
defined as follows:

n: the number of data points. k: the number of dimensions of the
data (k≥2).
Aij
+,Aij

−: the value of the j-th dimension of the i-th data point in the
positive and negative classes, respectively.
Āj
+,Āj

−: the average value of the j-th dimension of the data in the
positive and negative classes, respectively.
Aj max ,Aj min : the maximum and the minimum values of the j-th
dimension, respectively. Using the parameters listed above, the
Purity Level is set as:

Purity Level =
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where the numerator is the sum of the between-class distance of the
whole data set, and the denominator is the sum of the within-class
distance of the whole data set. The results show that the smaller the
PL value, the higher the linear data complexity, and vice versa.
However, neither Fisher's discriminant ratio nor PL considers the
geometric structure and noise of data.

2.2. The concept of geometric structure and noise of data

Rubinov [21] discussed the relationship between classes and
clusters in data sets, and examined the distribution of classes within
the obtained clusters. He found that some characteristics link data
points more strongly than the classes they belong to. We thus believe
that the geometric structure of data is an essential characteristic for
classifying data sets.

In a study on the effect of noise in data processing, Lee et al. [14]
combined the fuzzy adaptive resonance theory and the general
regression neural network into a hybrid model, which assisted the
removal of noise embedded in training data in order to improve the
classification ability. Han et al. [9] proposed a revised Expectation-
Maximization (EM) algorithm to discover and remove noise to
improve the one-against-the-rest method in binary text classification.
Cao et al. [2] proposed a data preprocessing method for training data
to remove noise or outliers, and used the remaining data to obtain the
decision function. However, the drawback of this method is that it is
difficult to remove noise and outliers without the assistance of
problem domain knowledge.

2.3. Common types of cross-validation method

Cross-validation is a model evaluation method that is better than
residual analysis. The weakness of residual evaluation is that it does
not give an indication of how well the learner will do when it is used
to make predictions for unseen data. One way to overcome this
problem is to leave out part of the data points from the data set when
training a classifier, So that when training is finished the removed
data are used to test the performance of the model. This is the basic
idea for the model evaluation method called cross-validation [24].
Two widely used such methods, repeated random sub-sampling
validation and K-fold cross-validation, are described below.

2.3.1. Repeated random sub-sampling validation
This method randomly splits a data set into training and validation

data sets and then repeats this procedure several times. For each split,
the classifier is trained with the training data and validated with the
validation data. The results from each split can be averaged. This
method is usually applied in small sample learning cases that use a
small amount of training data to learn the model and large amount of
validation data to validate it [16,17].

2.3.2. K-fold cross-validation
In K-fold cross-validation, the original sample is partitioned into K

partitions. A partition is then used as the validation data for testing the
model, and the remaining K−1 partitions are used as the training
data. The cross-validation process is then repeated K times, with each
of the K partitions used as the validation data exactly once. The K
results from the folds can be averaged to produce a single estimation
[24]. The advantage of this method over the repeated random sub-
sampling validation method is that all observations are used for both
training and validation, and each observation is used for validation
exactly once. 10-fold cross-validation is commonly used by
researchers.

3. Proposed method

With binary classification problems, data complexity is defined as
the level of complexity for separating data into classes. When the data
complexity is high thismeans it is hard to classify. Complexities can be
subdivided into linear and non-linear cases: linear data complexity
means a complex level for separating the data using a linear
hyperplane; while non-linear data complexity means a complex
level for separating the data using a non-linear hyperplane. Taking the
XOR problem as an example, we usually use a non-linear hyperplane
to separate the data rather than a linear one.

This research focuses on finding an effective way to classify data by
calculating the non-linear data complexity for high dimensional
classification problems. We develop the CBE index by improving
the Purity Level (PL) method [15], and consider the geometric struc-
ture and noise of data to precisely measure the level of non-linear
separability. We then use the CBE index to form a sample size deter-
mination method to develop an efficient CBE cross-validation method
to improve computational efficiency. The proposed Complexity-based
Efficient (CBE) index is described in detail in subsection 3.1, and the
proposed CBE cross-validation is described in subsection 3.2.

3.1. CBE index

Research on pattern recognition suffers from the uncertainty
concerning the match between knowledge and a problem due to the
strong dependence of classifying performance on available data. In
other words, the accuracy of a classifier is highly dependent on the
data characteristics [10]. Unfortunately, this uncertainty often
remains because of a lack of understanding of the full data
characteristics [18], and this situation also occurs in model validation.
Therefore, in this work we consider more descriptors, such as the
geometric structure and noise of data, to further understand the data
characteristics with the goal of improving validation efficiency.

The CBE index relies heavily on the realization of the data's
geometric structure, because, in our experience, when the center of
the data belonging to a class is not located in the data cluster (such as
with the XOR problem in Fig. 1), it is not reasonable to use a linear
index, such as an F-test statistic or purity level, to measure the data
complexity. We thus develop the non-linear CBE index to find
multiple centers according to the geometric structures of data. In



Fig. 1. The structure of a XOR problem.

Table 1
The pseudo code of the DBSCAN algorithm.
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that we calculate the centers of data clusters and let the centers be
located in the data. Note that the linear index concept is a special case
of the non-linear one when it has only one cluster in each class.

To discover the geometric structure and noise of data, researchers
usually rely on prior knowledge, although this is experience oriented
and inconclusive [22]. This research thus proposes a non-linear data
complexity index, the CBE index, to systematically reflect the
geometric structure and noise of data precisely. This study uses the
density-based clustering (DBSCAN) algorithm to discover the geo-
metric structure and noise of data to find the complexity level to
separate data into classes, as explained below.

3.1.1. DBSCAN algorithm
DBSCAN is a clustering algorithm suitable for a data set with a large

amount of data with high dimensionality [7]. DBSCAN gathers
together high density data as clusters and the shape of each cluster
are arbitrary. The algorithm finds the clusters and then deletes data
that does not belong to any of them. It searches for clusters by
checking the surroundings of each data point within a scope called the
ε-neighborhood. If the ε-neighborhood of a data point contains other
data which has a data size that is more than a certain pre-defined
number (MinPts), a cluster with this data (called the core object) is
created; otherwise, the data is treated as noise which will be
eventually deleted. DBSCAN iteratively collects directly density-
reachable data (data within the ε-neighborhood of a core object)
until no new data can be added to any cluster, and this may involve
merging some clusters. We apply the DBSCAN algorithm to each class
to detect the geometric structure and noise of data in binary
classification. Table 1 shows the DASCAN algorithm pseudo code.

Consider the radius of a default ε, obtained by considering the
fraction of objects to be selected k =mð Þ and the volume V [6]. We
extend this concept to binary classification and suppose that n is the
dimension of the data, k is the number of MinPts, Γ is the gamma
function, m+ and m− are the amounts of data in the positive and
negative classes, repectively, and Vþ = ∏jrange xþj

� �
and V− =

∏jrange x−j
� �

forj = 1; ::; k are the data ranges in the positive and

negative classes, respectively. The following are the formula sets for
ε+, and ε− for positive and negative classes, respectively:

εþ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k =mþ
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πn

pn

s
ð3Þ

ε− =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Daszykowski et al. proposed a default MinPts calculation formu-
la [5]. We extend this formula to binary classification and define:

MinPtsþ = integer
mþ
25

� �
; for a positiveclass ð5Þ

MinPts− = integer
m−
25

� �
; for a negative class ð6Þ

For a data set with numerous data points of positive and negative
classes (m+orm−),we suggest thatMinPts+ orMinPts− be equal to 20.

3.1.2. The calculation of the CBE index
This research uses the CBE index to depict the level of non-linear

data complexity. The CBE index of binary classification can be
regarded as the relative distance of clusters discovered by the
DBSCAN algorithm for each class, and it is found as follows:

Let X¼ X1;:::;XNf g be a data set that includes positive samples

þX ¼ þX1 ;:::;þXnþ gn
and negative samples−X ¼ −X1 ;:::;−Xn− gn

,

where n++n−=N. Let þC = þC1; :::;þ C þCj j gn
be a set that consists

of þC j�� positive clusters, −C = −C1; :::;− C −Cj j gn
be a set consisting of

−C j�� negative clusters, d Xi;Xj
� �

be the distance betweenXi and Xj, and

þCi = þX
i
1; :::; þ Xi

þmi
gn

be the i-th positive cluster, where +mi is the

number of positive samples in the i-th cluster, and i = 1; :::; þC j�� .
Similarly, let −Ci = −Xi

1; :::;− Xi
−mi gn

be the i-th negative cluster,
where −mi is the number of negative samples in i-th cluster, and
i = 1; :::; −C j�� .Wefirst calculate theminimumaveragedistancebetween
a pair of clusters which belong to different classes as Min_Bet:

Min Bet ¼ Min
k=1;…; þC

�� j
l=1;…; −Cj j

∑
þmk

i=1
∑
j=1

−ml

d ðþXk
i ;− X

l
j Þ

þmk⋅− ml g8>>><
>>>:

ð7Þ

A large value of Min_Bet indicates that the data are widely
scattered and easy to classify.

Unlabelled image
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We then calculate the average distance within all clusters of the
positive class as:

Withinþ = ∑ j þC j
k = 1

∑þmk
i = 1∑−mk

j = 1d ðþXk
i ;− X

l
j Þ

þmkðþmk� 1Þ ð8Þ

and for all clusters of the negative class as:

Within−¼ ∑
j þC j

k=1

∑
þmk

i=1
∑
i=1

−mk

d ð�Xk
i ;− X

l
j Þ

�mkð�mk� 1Þ ð9Þ

If the value of the average distance within all clusters of a class
Withinþ and Within−ð Þ is small, it means that these clusters
congregate with each other.

The calculation of the CBE index is defined as follows:

CBE index ¼ MinBet
Withinþ + Within−

þC j + −C jjj
ð10Þ

The determination of the CBE index takes three steps:

Step 1: Normalize the data
For different units of dimensions, the data is normalized before
calculating the CBE index.
Step 2: Discover the geometric structure and noise of data
Use the DBSCAN algorithm in the binary classes with the suggested
parameter settings: ε+,ε−, MinPts+,and MinPts−, to detect the
geometric structure and remove the data noise.
Step 3: Calculate the CBE index
Calculate Min_Bet, Within+, and Within− to obtain the CBE index.

The CBE index has the following properties:

(1) 0≤CBE indexb∞.
(2) The smaller the CBE index is, the higher the data complexity is.
(3) The larger the CBE index is, the lower the data complexity is.

3.2. CBE cross-validation method

We apply the CBE index to develop the CBE cross-validation
method, where we first randomly select a certain small proportion
(for example, 5%) of samples as the training data and calculate the CBE
index. This process is repeated 30 times to calculate the averages XCBE
and the standard deviations SCBE. In order to achieve a stable CBE
index for the optimal training data size N, this process is iteratedwhile
increasing the proportion of the training data and checking the
difference of XCBE as:

When Xn%
CBE−X

n + 1%
CBE b0:01; THEN

N = Max no:of n% samples; no: of 10% samplesf g· data size
ð11Þ
Table 2
The CBE index and classification accuracies of the three classifiers for the simulated data s
number of noise found, “Average no. of clusters found” means for the average number of c

CBE index 2.964 2.447 2.743 2

Average no. of noisy samples found 0.46 0.32 0.68 0
Average no. of clusters found (pos., neg.) (2, 2) (2, 2) (2, 2) (
Accuracy of SVM 70.25 70.56 71.11 7
Accuracy of BPN 70.75 71.02 71.84 7
Accuracy of NBC 68.14 69.45 70.12 7
When the difference decreases by a level smaller than 0.01, we
consider the structure of the training data to be stable, and use this
training data size as the optimal one. Where 0.01 is only an empirical
suggestion and 10% is also an empirical save low sample size limit.

For the number of experiment runs, we repeat the process 30
times to calculate the average and standard deviation of CBE. Note
that the sample distribution of the CBE index will converge to a
normal distribution according to the Central Limit Theorem (CLT) [3],
and the optimal training data size (average Xn%

CBE and standard
deviations SCBEn% ) is used to calculate the number of experiment runs.
The number of experiment runs K is determined as:

CALCULATE
Zα=2

� �2
Sn%CBE

2

0:05⋅XCBEn%ð Þ2 = k; THEN

Max k; 5f g = K

ð12Þ

where α is the significance level, Zα /2 is the value with α/2% in the tail
of the cumulative standard Normal distribution, and 0:05⋅Xn%

CBE

� �
is set

as the desired margin of error, where 5 is again our suggestion.

4. Experiment

In this section, we use one simulated and three real data sets to
verify the performance of the Complexity-based Efficient (CBE) cross-
validation method. In the simulation experiments, a support vector
machine (SVM) [12], a Back-propagation Network (BPN) [8,20], and a
Naive Bayes Classifier (NBC) [24] are used as the classification tools,
while in the three real data sets, only SVM is used.

To find the relationship between CBE index and classification
accuracy, we randomly select 10% of the total samples and calculate
the CBE index with the suggested ε+,ε−,MinPt+,and MinPt− in
Section 3 to measure the relationship for all data sets. This process is
repeated 10 times, where SVM, BPN, and NBC are used as the
classifiers with the resubstitution method (all available data are used
for training and testing) [13].

To implement the CBE cross-validation, we randomly select a small
proportion of the data as the training set (such as 5%), and calculate
the CBE indexes. This procedure is repeated 30 times. The training
data size is gradually increased, where we calculate the average and
the standard deviation of the CBE index in order to find the optimal
training data size and the number of experiment runs.

4.1. Simulated data experiments

This research uses the Parametric Equation of a Hypersphere [16],
briefly introducedbelow, to generate simulateddata. Then-hypersphere
(often simply called the n-sphere) is a generalization of an object with n
dimensions in ℝn (the circle and sphere are called the two-sphere and
three-sphere, respectively). The n-sphere centered at the origin can
therefore be defined as a set of points x1; x2;…; xkð Þ such that:

x21 + x22 + … + x2n = r2 ð13Þ
ets with 1% noise where “Average no. of noise samples found” means for the average
luster found by using DBSCAN algorithm.

.594 3.628 3.264 3.896 3.889 4.168 4.357

.72 0.63 0.84 0.91 0.54 0.42 0.86
2, 2) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2)
1.45 72.42 72.56 72.44 75.35 76.55 77.89
1.76 72.12 72.84 75.32 75.98 76.35 78.52
0.85 71.34 72.81 73.56 74.38 75.92 75.45



Table 3
The averages and standard deviations (SDs) of CBE indexes with increasing size of the
training data sets for the simulated data set. (Bold value means the optimal data size).

Training data 40 (5%) 81 (10%) 121 (15%) 161 (20%) 202 (25%)

Average 3.836 3.474 3.408 3.071 2.684
SD 0.368 0.393 0.424 0.393 0.382

Training data 242 (30%) 283 (35%) 291 (36%) 299 (37%) 307 (38%)

Average 2.224 2.167 2.140 2.129 2.124
SD 0.236 0.287 0.296 0.138 0.161
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The hypersphere can be specified in a parametric equations as:

x1 = r sinθ1sinθ2⋯sinθn−1
x2 = r sinθ1sinθ2⋯cosθn−1
x3 = r sin θ1sinθ2⋯cosθn−2
x4 = r sinθ1sinθ2⋯cosθn−3

⋮
xn−1 = r sinθ1cosθ2
xn = r cosθ1

8>>>>>>><
>>>>>>>:

ð14Þ

where r is the radius and θ1; θ2;…; θn−1∈ 0; 2π½ � are the angles of the
hypersphere. The formula of parametric equations is not unique, but
must satisfy the identity x1

2+x2
2+…+xn

2=1.
We consider the two-cluster condition in each class and insert noise

into the data.Wegenerate 808five-dimensiondata (404positive and404
negative samples) following the Parametric Equation of a Hypersphere
[16]. In the positive class, the data is generated into two clusters. One is:

x1 = −0:7 + sinθ1 sinθ2⋯ sinθ4
x2 = −0:7 + sinθ1 sinθ2⋯ cosθ4
x3 = −0:7 + sinθ1 sin θ2⋯ cosθ3 ;0≤θ≤2π
x4 = −0:7 + sinθ1 sinθ2 cosθ2
x5 = −0:7 + cosθ1

8>>>><
>>>>:

ð15Þ

and the other is:

x1 = −0:7 + sinθ1 sinθ2⋯ sinθ4
x2 = 0:7 + sinθ1 sinθ2⋯ cosθ4
x3 = −0:7 + sinθ1 sinθ2⋯ cos θ3 ;0≤θ≤2π
x4 = −0:7 + sinθ1 sinθ2 cos θ2
x5 = −0:7 + cosθ1

8>>>><
>>>>:

ð16Þ

In the negative class, the data is generated into two clusters too.
One is

x1 = 0:7 + sinθ1 sinθ2⋯ sinθ4
x2 = −0:7 + sinθ1 sinθ2⋯ cosθ4
x3 = −0:7 + sinθ1 sinθ2⋯ cos θ3 ;0≤θ≤2π
x4 = −0:7 + sinθ1 sinθ2 cos θ2
x5 = −0:7 + cosθ1

8>>>><
>>>>:

ð17Þ

and the other is:

x1 = 0:7 + sinθ1 sinθ2⋯ sinθ4
x2 = 0:7 + sinθ1 sinθ2⋯ cosθ4
x3 = −0:7 + sinθ1 sinθ2⋯ cos θ3 ;0≤θ≤2π
x4 = −0:7 + sinθ1 sinθ2 cos θ2
x5 = −0:7 + cosθ1

8>>>><
>>>>:

ð18Þ

We then add 1% noise to each class by randomly selecting 4
samples to change class label. Table 2 and Fig. 2 show the results of
using the CBE index with the simulated data sets.
Fig. 2. The relationship between classification accuracy and the CBE indexwith 1% noise.
From the table and figure above we can see that when the value of
CBE increases, the classification accuracies of SVM, BPN, and NBC also
rise. There is thus a highly positive correlation between the CBE index
and classification accuracy for the simulated data sets.

To find the optimal training data size, we calculate various CBE
indexes by increasing the training set size. Table 3 and Fig. 3 show the
results of using the CBE index with various simulated data sets.

WHEN X37%
CBE−X

38%
CBEb0:01; THEN

Max no: of 37% samples;no:of 10% samplesf g· data size

= 37%⋅808
= 299

ð19Þ

We determine that the optimal training data size is 299 when CBEX
decreases by less than 0.01, and consider that the geometric structure
of the optimal training data is stable.

To find the optimal number of experiment runs for the simulated
data set. We use the optimal sample size to measure the optimal
experiment runs as:

CALCULATE
Zα=2

� �2
0:1382

0:05⋅2:129ð Þ2 = 6:426; THEN

Max 6:456; 5f g
= 6

ð20Þ

In the simulated data set, with a significance level α=0.05 and a
margin of error of 0.1065, the optimal number of training data is 299,
and the optimal number of experiment runs is six.

We use repeated random sub-sampling validation (with 533 (66%)
training data points, 275 (34%) testing data points, experiment
repeated 30 times) to validate that our CBE cross-validation (with 299
(37%) training data points, 509 (63%) testing data points, experiment
repeated six times) is efficient. The average and standard deviations of
the SVM with the repeated random sub-sampling validation are
78.326 and 1.044, respectively; and of the CBE cross-validation are
77.779 and 1.145. The performances of the two cross-validation
methods thus have insignificant differences (the P-value is 0.125,
Fig. 3. Relationship between training size and the CBE index with the simulated data set.

image of Fig.�2
image of Fig.�3


Fig. 4. Relationship between CBE indexes and accuracies with the Pima data set
(correlation coefficient=0.773).

Table 6
The averages and standard deviations (SDs) of CBE indexes with increasing size of the
training data sets for the Pima data set. (Bold value means the optimal data size).

Training data 38 (5%) 46 (6%) 54 (7%) 61 (8%) 70 (9%)

Average 1.536 1.474 1.428 1.481 1.444
SD 0.260 0.292 0.321 0.293 0.287

Training data 77 (10%) 84 (11%) 92 (12%) 100 (13%) 108 (14%)

Average 1.202 1.177 1.170 1.128 1.123
SD 0.137 0.107 0.106 0.026 0.061

Table 4
Properties of the three data sets.

Data set No. of dimensions No. of samples No. of classes

Pima Indians diabetes 8 768 2
Haberman's survival 3 306 2
Australian credit approval 14 690 2
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using the independent t-test). The average training time of the
repeated random sub-sampling validation is 0.89⁎30=26.7 s, and
that of the CBE cross-validation is 0.51⁎6=3.1 s.We also use five-fold
cross-validation to validate that our CBE cross-validation is efficient.
The average and standard deviations of the SVM with five-fold cross-
validation are 78.454 and 1.141, respectively. The performances of the
cross-validationmethods have insignificant differences (the P-value is
0.138, using the independent t-test) and the average training time of
the five-fold cross-validation is 0.99⁎6=5.94 s.

In addition, when we use 10% of the total data (the lower bound of
the training data size) as the training data, and five experiments runs
(the lower bound of the experiment runs), the average and standard
deviations of SVM are 73.779 and 2.563, with a significant difference
(lower) compared to CBE cross-validation (the P-valuebb0.01, using
the independent t-test). The average training data is 0.32⁎5=1.68 s.
Since validation effectiveness is the bssic concern of researchers, the
CBE cross-validation is thus considered to be better than the cross-
validation using the lower bound of the training data size and
experiment runs, and so it is an efficient and effective method.

4.2. Real data experiment

This research uses two medical data sets, Pima Indians Diabetes
and and Haberman's Survival, and one business data set, Australian
Credit Approval, in the experiment. The Pima Indians diabetes data set
consists of 768 data with eight numeric dimensions (attributes), and
it is a two-class data set with target values denoted by 0 and 1. The
class value 1 means tested positive for diabetes, and the class value 0
means tested negative. The Haberman's Survival data set consists of
306 data with three numeric dimensions, and it is a two-class data set
to record the survival status for breast cancer patients. The Australian
Credit Approval data set consists of 690 data with 14 dimensions that
include six numerical and eight categorical data, and it is a two-class
data set. Table 4 shows the summary of the sample characteristics of
the three data sets, which are all downloaded from the UCI repository,
available at http://www.ics.uci.edu. The results of the experiment for
the three data sets are shown in the following subsection.

4.2.1. The Pima data set
The relationship between the CBE indexes and classification

accuracies is shown in Table 5 and Fig. 4.
Fromthe table andfigure abovewecan see thatwhen thevalueof CBE

decreases, the classification accuracy of the SVM also falls. There is thus a
highly positive correlation between the CBE index and classification
accuracy for the Pima data set. Table 6 and Fig. 5 show the experimental
results of CBE cross-validation for the Pima data set.

WHEN X13%
CBE�X

14%
CBE b 0:01; THEN

Max no: of 13% samples; no: of 10% samplesf g· data size

¼ 13%⋅768
¼ 100

ð21Þ
Table 5
Pima data set with 77 selected samples as the training data (default MinPt=3).

Accuracy 63.75 71.25 68.75 75 76.2
CBE index 1.063 1.089 1.098 1.123 1.1
We determine this size as the optimal training data size to be 100,
and thus consider that the geometric structure of the optimal training
data is stable.

We use the optimal sample size to calculate the optimal number of
experiment runs with the Pima data set as:

CALCULATE
Zα=2

� �2
0:0262

0:05⋅1:128ð Þ2 = 0:815; THEN

Max 0:815; 5f g
= 5

ð22Þ

where α=0.05 is the significance level, and 0:05⋅1:128ð Þ¼ 0:0564 is
the desired margin of error. We thus determine that the optimal
number of experiment runs to be five.

We then use repeated random sub-sampling validation (with 507
(66%) training data points, 261 (34%) testing data points, experiment
repeated 30 times) to validate that our CBE cross-validation (with 100
(13%) training data points, 668 (87) testing data points, experiment
repeated five times) is efficient. The average and standard deviations
of the SVM with the repeated random sub-sampling validation are
76.578 and 1.743, respectively; and of the CBE cross-validation are
74.192 and 2.044. The performances of the two cross-validation
methods have insignificant differences (the P-value is 0.043, using the
independent t-test). The average training time of the repeated
random sub-sampling validation is 0.91⁎30=27.3 s and the average
training time of the CBE cross-validation is 1.9⁎5=6.2 s.

We also use five-fold cross-validation to validate that our CBE
cross-validation is efficient. The average and standard deviations of
the SVM with the five-fold cross-validation are 75.824 and 1.874,
respectively. The performances of the two cross-validation methods
have insignificant differences (the P-value is 0.052, using the
independent t-test). The average training time of the five-fold cross-
validation is 3.16⁎5=15.8 s.

In addition, when we use 10% of the total data (the lower bound of
the training data size) as the training data with five experiment runs
5 78.75 82.5 85 81.25 86.25
24 1.163 1.176 1.215 1.221 1.481

http://www.ics.uci.edu
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Fig. 5. Relationship between training size and CBE index with the Pima data set.

Fig. 6. Relationship between CBE indexes and accuracies with the Haberman data set
(correlation coefficient=0.827).
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(the lower bound of the experiment runs), the average and standard
deviationsof SVMare72.731and2.942, and it has significantdifferences
with CBE cross-validation (the P-value=0.055, using the independent
t-test). The average training data is 1.69⁎5=8.4 s. The CBE cross-
validation is better than the cross-validation using the lower bounds of
the training data size and experiment runs. Therefore, CBE cross-
validation is considered an efficient and effective method.

4.2.2. The Haberman data set
The relationship between the CBE indexes and classification

accuracies is shown in Table 7 and Fig. 6.
From the table and figure above we can see that when the value of

CBE decreases, the classification accuracy of the SVM also falls. There is
thus a highly positive correlation between the CBE index and
classification accuracy for this data set. Table 8 and Fig. 7 show the
results of CBE cross-validation for the Haberman data set.

WHENX33%
CBE−X

34%
CBEb0:01; THEN

Max no:of 33% samples;no:of10% samplesf g· data size

= 33%⋅306
= 101

ð23Þ

Using the above equation, we determine the optimal training data
size to be 101. With that, we consider the geometric structure of the
optimal training data is stable.

By a similar procedure, the optimal number of experiment runs is:

CALCULATE
Zα=2

� �2
0:0192

0:05⋅1:132ð Þ2 = 9:973;THEN

Max 9:973; 5f g
≈10

ð24Þ

where α=0.05 is the significance level, and 0:05⋅1:132ð Þ¼ 0:0566 is
the desiredmargin of error.We thus determine the optimal number of
experiment runs to be 10.

We then use repeated random sub-sampling validation (with 204
(66%) training data points, 104 (34%) testing data points, experiment
repeated 30 times) to validate that our CBE cross-validation (with 101
(33%) training data points, 205 (67%) testing data points, experiment
repeated 10 times) is efficient. The average and standard deviations of
the SVM with the repeated random sub-sampling validation are
74.027 and 3.219, respectively, and the average and standard
deviations of the SVM with the CBE cross-validation are 73.058 and
Table 7
Haberman data set with 31 samples selected as the training data (Default MinPt=2).

Accuracy 73.3 76.67 80 76.67 80
CBE index 1.66 1.884 2.055 2.289 2.4
2.024. The performances of the two cross-validations have insignif-
icant differences (the P-value is 0.379, using the independent t-test).
The average training time of the repeated random sub-sampling
validation is 0.33⁎30=9.9 s, while that of the CBE cross-validation is
0.23⁎10=2.3 s.

We then use 10-fold cross-validation to validate that our CBE
cross-validation is efficient. The average and standard deviations of
SVM with the five-fold cross-validation are 75.124 and 2.168,
respectively. The performances of the two cross-validation methods
have insignificant differences (the P-value is 0.075, using the
independent t-test). The average training time of the 10-fold cross-
validation is 0.512⁎10=5.12 s.

In addition, when we use 10% of the total data (the lower bound of
the training data size) as the training data with five experiment runs,
the average and standard deviations of the SVM are 72.913 and 3.641,
and it has significant differences with the CBE cross-validation (the P-
valuebb 0.01, using the independent t-test). The average training data
is 0.18⁎5=0.9 s. By considering validation effectiveness, the CBE
cross-validation is thus again considered better than the cross-
validation using the lower bounds of training data size and
experiment runs. Therefore, CBE cross-validation is an efficient and
effective method.

4.2.3. The Australian credit approval
First, for numerical independent variables analysis, we delete the

categorical independent variables X1;X4;X8;X9;X11; andX12 and
delete the data that have missing value. The relationship between the
CBE indexes and classification accuracies is shown in Table 9 and
Fig. 8.

From the table and figure above we can see a highly positive
correlation between the CBE index and classification accuracy.
76.67 83.33 80 86.67 86.67
92 2.703 2.75 3.552 3.697 4.54
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Fig. 7. Relationship between training size and the CBE index with the Haberman data set.

Table 8
The averages and standard deviations (SD) of CBE indexes with increasing the size of the training data set for the Haberman data set. (Bold value means the optimal data size).

Training data 42 (14%) 52 (17%) 61 (20%) 70 (23%) 73 (24%) 77 (25%) 80 (26%) 83 (27%)

Average 2.532 2.298 2.417 2.165 2.092 2.105 2.066 2.019
SD 1.104 0.706 0.874 0.361 0.692 0.518 0.726 0.512

Training data 86 (28%) 89 (29%) 92 (30%) 95 (31%) 97 (32%) 101 (33%) 104 (34%)

Average 1.452 1.349 1.342 1.362 1.287 1.131 1.122
SD 0.395 0.292 0.288 0.315 0.255 0.091 0.057

Table 9
Australian data set with 1,902 samples selected as training data (Default MinPt=3).

Accuracy 68.12 68.44 69.4 70.37 70.05 71.01 71.18 71.82 71.66 72.62
CBE index 2.868 2.998 3.042 3.059 3.572 3.868 4.467 4.867 4.96 5.021
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Table 10 and Fig. 9 show the results of CBE cross-validation for the
Australian data set.

WHENX42%
CBE−X

43%
CBEb0:01; THEN

Max no:of 37% samples;no:of 10% samplesf g · data size

= 42%⋅690
= 290

ð25Þ

By a similar procedure, we determine the optimal number of
training data points to be 290, and measure the optimal number of
experiment runs as:

CALCULATE
Zα=2

� �2
0:0832

0:05⋅2:231ð Þ2 = 2:127;THEN

Max 2:127; 5f g
= 5

ð26Þ

where α=0.05 is the significance level, and 0:05⋅2:231ð Þ = 0:1116 is
the desired margin of error. We determine the optimal number of
experiment runs to be five.
Fig. 8. Relationship between CBE indexes and accuracies with the Australian data set
(correlation coefficient=0.892).
Again, when we use repeated random sub-sampling validation
(with 455 (66%) training data points, 235 (34%) testing data points,
experiment repeated 30 times) to validate that our CBE cross-
validation (with 290 (42%) training data points, 400 (58%) testing
data points, experiment repeated 5 times) is efficient. The average and
standard deviations of the SVM with the repeated random sub-
sampling validation are 79.17 and 1.302, respectively, and the average
and standard deviations of the SVM with the CBE cross-validation are
77.870 and 1.504. The performances of the two cross-validations have
insignificant differences (the P-value is 0.305, using the independent
t-test). The average training time of the repeated random sub-
sampling validation is 1.83⁎30=54.9 s, and that of the CBE cross-
validation is 1.84⁎5=9.2 s.

When we use five-fold cross-validation to validate CBE cross-
validation, the average and standard deviations of SVM with the five-
fold cross-validation are 79.2 and 1.351, respectively. Thus, the
performance of the two cross-validation methods has insignificant
differences (the P-value is 0.333, using the independent t-test). The
average training time of the five-fold cross-validation is 1.98⁎5=9.9 s.

In addition, using 10% of the total data (the lower bound of the
training data size) as training data with five experiment runs, the
average and standard deviations of SVM are 74.124 and 2.169, showing
significantdifferenceswith theCBE cross-validation (the P-valuebb0.01,
using the independent t-test). The average training data is 1.49⁎5=7.5
s. Similarly, the CBE cross-validation is better than the cross-validation
using the lower bounds of the training data size and experiment runs.
Therefore, CBE cross-validation is an efficient and effective method.

4.3. Discussion of CBE index for various data characteristics

In this subsection, we apply sensitivity analysis to the calculation
of the CBE index using unbalanced classes, dimensions, and sample
sizes of a data set as the attributes.

4.3.1. Unbalanced class
Nguyen and Yonggwan proposed that the accuracy of classifiers

goes down as the unbalanced level increases. Specifically, they used
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Table 10
The averages and standard deviations (SD) of CBE indexes with increasing the size of
the training data set for the Australian data set. (Bold value means the optimal data
size).

Training data 23 (10%) 138 (20%) 173 (25%) 207 (30%) 242 (35%)

Average 3.051 2.873 2.651 2.501 2.371
SD 0.397 0.185 0.146 0.2 0.139

Training data 276 (40%) 283 (41%) 290 (42%) 296 (43%)

Average 2.283 2.256 2.231 2.225
SD 0.097 0.089 0.083 0.063

Table 11
Sensitivity analysis of the CBE index for unbalanced data sets.

Positive samples Negative samples MinPts CBE index

Case1 100 100 8 2.122
Case2 100 150 10 2.087
Case3 100 200 12 1.887
Case4 100 250 14 1.653
Case5 100 300 16 1.481

Table 12
Sensitivity analysis of the CBE index for various data dimensions.

No. of dimensions MinPts CBE index

Case 1 50 2 1.501
Case 2 60 2 1.366
Case 3 70 2 1.318
Case 4 80 2 1.302
Case 5 90 2 1.296

Table 13
Sensitivity analysis of the CBE index for various sample sizes of both classes.

Positive samples Negative samples MinPts CBE index

Case 1 100 100 8 2.122
Case 2 150 150 12 2.116
Case 3 200 200 16 2.113
Case 4 250 250 20 2.112
Case 5 300 300 20 2.112
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SVM as the classification tool and found that it was affected by the
unbalanced effect [19]. In our experiments, we first consider the
unbalanced class characteristic of a data set with the same data
structure.We generate data sets by fixing the positive sample size and
increasing the negative sample size, and the results are shown in
Table 11. Table 11 shows that the higher the unbalanced level, the
higher the data complexity and the lower the CBE index.

4.3.2. Dimensions
For a fixed sample size, adding dimensions will degrade the

performance (high data complexity) of a classifier if the number of
training data points is small relative to the number of dimensions [4].
For the second characteristic, a fixed sample size of 50 is used. When
increasing the number of dimensions with the same data structure,
given that the number of training data is smaller than the number of
dimensions in the experiments, the results are obtained and shown in
Table 12. Table 12 shows that when the dimensions are high, the data
complexity is also high, while the CBE index is low.

4.3.3. Sample size
For the third characteristic in our experiments, we use the same

sample sizes for both classes, and these are increasing with the same
structure. The results are shown in Table 13.

Table 13 shows that when the samples of both classes increase, the
data complexity stays the same, as does the CBE index.

5. Conclusion and discussions

Our research develops an efficient and effective cross-validation
method called Complexity-based Efficient (CBE) cross-validation. The
CBE cross-validation uses the CBE index (calculated by exploring the
data's geometric structure and noise) to precisely discover the data's
characteristics and its non-linear complexity, in order to help
understand the data set. We also employ the CBE index to calculate
the optimal training data size and number of experiment runs. CBE
cross-validation aims to reduce model evaluation time when a
complex and computationally expensive classifier is used.

We expect that when we apply CBE cross-validation to real binary
data sets, we can use the proposedmethod to find the optimal training
Fig. 9. Relationship between training size
data and the number of experiment runs, to help researchers to
develop more precise classification tools with less evaluation time.
Thus this work can assist researchers in developing new classification
tools.

The threshold criterion of X
n%
CBE−X

n+1%
CBE , the lower bound sample

size of 0.01, and the lower bound of experiment runs of five are
empirical values, that we hope to find theoretical values in future
studies. With regard to the setting of the threshold criterion of the
lower bound, we consider that when the number of data is large, we
do not want to use too few data for the analysis, even though the data
is easy to classify, because the information lost could be significant,
and thus it is very difficult to convince decision makers intuitively.
Besides, when we use these low limits, we are indicating that there
are about 40% of the whole data that have the chance to be selected as
the training data 1− 1−1=10Þ5≈40%

���
.

As to the experiment being repeated 30 times, we consider that the
CBE distribution will normally converge to a normal distribution
when n is large. As a matter of convenience, we thus use 30 times to
approximate a normal distribution. In fact, one may need to use Q-Q
plot to check if the statistics (accuracy) does in fact follow a normal
distribution.
and CBE index of Australian data set.
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CBE cross-validation is a binary classification validation method.
However, multi-class classification problems are very common in
both studies and real-world applications. Therefore, the study of CBE
cross-validation with multiple classes is also considered as one
direction for future research.
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