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Clustering is one of the most common data mining tasks, usegiéntly for data
categorization and analysis in both industry and acaderfiee focus of our research is
on semi-supervised clustering, where we study how prionkedge, gathered either from
automated information sources or human supervision, candogporated into clustering
algorithms. In this thesis, we present probabilistic medet semi-supervised clustering,
develop algorithms based on these models and empiricdilyata their performances by
extensive experiments on data sets from different domaigs, text analysis, hand-written
character recognition, and bioinformatics.

In many domains where clustering is applied, some prior kedge is available
either in the form of labeled data (specifying the categorwhich an instance belongs) or
pairwise constraints on some of the instances (specifylmgtier two instances should be in

same or different clusters). In this thesis, we first anagffective methods of incorporating
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labeled supervision into prototype-based clusteringralyos, and propose two variants of
the well-known KMeans algorithm that can improve their parfance with limited labeled
data.

We then focus on the problem of semi-supervised clusteriitly @onstraints and
show how this problem can be studied in the framework of a-defined probabilistic
generative model of a Hidden Markov Random Field. We denvefficient KMeans-type
iterative algorithm, HMRF-KMeans, for optimizing a senuipgrvised clustering objective
function defined on the HMRF model. We also give convergen@antees of our algo-
rithm for a large class of clustering distortion measureg.(esquared Euclidean distance,
KL divergence, and cosine distance).

Finally, we develop an active learning algorithm for acipgrmaximally informa-
tive pairwise constraints in an interactive query-driveanfework, which to our knowledge
is the first active learning algorithm for semi-superviségstering with constraints.

Other interesting problems of semi-supervised clustetitad we discuss in this
thesis include (1) semi-supervised graph-based clugtersing kernels, (2) using prior
knowledge to improve overlapping clustering of data, (3ggmnation of both constraint-
based and distance-based semi-supervised clusteringdsatting the HMRF model, and
(4) model selection techniques that use the available gigi@n to automatically select the

right number of clusters.
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Chapter 1

Introduction

Two of the most widely-used methods in machine learning fedjgtion and data analysis
are classification and clustering (Duda, Hart, & Stork, 200itchell, 1997). Classification

is a purely supervised learning model, whereas clustesgmpletely unsupervised. Re-
cently, there has been a lot of interest in the continuum &éetwompletely supervised and
unsupervised learning (Nigam, 2001; Ghani, Jones, & RasgnR003). In this chapter, we
will give an overview of traditional supervised classifioatand unsupervised clustering,
and then describe learning in the continuum between theggevilvere we have partially

supervised data. We conclude this chapter with a discusditite thesis contributions.



1.1 Classification

Classification is a supervised task, where supervisionasiged in the form of a set of
labeled training data, each data point having a class ladetted from a fixed set of
classes (Mitchell, 1997). The goal in classification is tartea function from the training
data that gives the best prediction of the class label ofamgest) data points. Generative
models for classification learn the joint distribution oétthata and class variables by assum-
ing a particular parametric form of the underlying disttiba that generated the data points
in each class. Subsequently, Bayes Rule is applied to oblas conditional probabilities
that are used to predict the class labels for test point (wiknown class labels) drawn
from the same distribution (Ng & Jordan, 2002). In the diwimiative framework, the focus
is on learning the discriminant function for the class banes or a posterior probability
for the class labels directly without learning the underygenerative densities (Jaakkola
& Haussler, 1999). It can be shown that the discriminativelehof classification has better
generalization error than the generative model undericestssumptions (Vapnik, 1998),
which has made discriminative classifiers, e.g., suppatovemachines (Vapnik, 1998)
and nearest neighbor classifiers (Devroye, Gyorfi, & Lugb86), very popular for the

classification task.



1.2 Clustering

Clustering is an unsupervised learning problem, whiclstteegroup a set of points into
clusters such that points in the same cluster are more sitoilaach other than points
in different clusters, under a particular clustering digém or distance measure (Jain &
Dubes, 1988). Here, the learning algorithm just observes afgoints without observing
any corresponding class/category labels. Clusteringl@nod can also be categorized as
generative or discriminative. In the generative clustpnmodel, a parametric form of data
generation is assumed, and the goal in the maximum liketifoomulation is to find the
parameters that maximize the probability (likelihood) ehgration of the data given the
model. In the most general formulation, the number of chssteis also considered to
be an unknown parameter. Such a clustering formulation llecca “model selection”
framework, since it has to choose the best valué& ahder which the clustering model
fits the data. We will be assuming thiais known in the clustering frameworks that we
will be considering, unless explicitly mentioned othemvitn the discriminative clustering
setting (e.g., graph-theoretic clustering), the clustgelgorithm tries to cluster the data so
as to maximize within-cluster similarity and minimize bewwn-cluster similarity, based on
a similarity matrix defined over the input data set — in thisaplggm, it is not necessary
to consider an underlying parametric data generation molteboth the generative and
discriminative models, clustering algorithms are gemgmbdsed as optimization problems

and solved by iterative methods like EM (Dempster, Laird, 8bi, 1977), approximation



algorithms like KMedian (Jain & Vazirani, 2001), or heuigsinethods like Metis (Karypis

& Kumar, 1998).

1.3 Semi-supervised learning

In many practical learning domains (e.g. text processimginformatics), there is a large
supply of unlabeled data but limited labeled data, and introases it can be expensive
to generate that labeled data. Consequemsiyni-supervised learnindearning from a
combination of both labeled and unlabeled data, has becomgi@of significant recent
interest. The framework of semi-supervised learning idiegiple to both classification and

clustering.

1.3.1 Semi-supervised classification

Supervised classification has a fixed known set of categaaied category-labeled train-
ing data is used to induce a classification function. In tkigirsy, the training can also
exploit additional unlabeled data, frequently resultimgai more accurate classification
function. Several semi-supervised classification algorg that use unlabeled data to im-
prove classification accuracy have become popular in thefg@as/ears, which include co-
training (Blum & Mitchell, 1998), transductive support ¥ecmachines (Joachims, 1999),
and using Expectation Maximization to incorporate unlatiedata into training (Ghahra-

mani & Jordan, 1994; Nigam, McCallum, Thrun, & Mitchell, 20 Unlabeled data have



also been used to learn good distance measures in the classifisetting (Hastie & Tibshi-
rani, 1996). A good review of semi-supervised classificatitethods is given in (Seeger,

2000).

1.3.2 Semi-supervised clustering

Semi-supervised clustering, which uses class labels owrjs&i constraints on some exam-
ples to aid unsupervised clustering, has been the focusvefaerecent projects (Basu,
Banerjee, & Mooney, 2002; Klein, Kamvar, & Manning, 2002; §§taff, Cardie, Rogers,
& Schroedl, 2001; Xing, Ng, Jordan, & Russell, 2003). If thgarvised data is available
in the form of category labels and the labeled data represéiie relevant categories,
then both semi-supervised clustering and semi-superdssgdification algorithms can be
used for data categorization. However in many domains, letge of the relevant cate-
gories is incomplete. Unlike semi-supervised classificatsemi-supervised clustering (in
the model-selection framework) can group data using thegoaies in the initial labeled
data as well as extend and modify the existing set of categ@$ needed to reflect other
regularities in the data.

Existing methods for semi-supervised clustering fall i@ general approaches

that we callconstraint-base@dnddistance-basedethods.



Constraint-based methods

In constraint-based approaches, the clustering algotiitbeif is modified so that the avail-
able labels or constraints are used to bias the search fopmomiate clustering of the
data. The labeled data specify the categories to which aanios belongs, while the
pairwise constraints specify whether two instances shbelih the same cluster (must-
link) or in different clusters (cannot-link). Constrain&sed semi-supervised clustering has
been done using several techniques, e.g., modifying th&etlng objective function so
that it includes a term for satisfying specified constra{temiriz, Bennett, & Embrechts,
1999), doing clustering using side-information from cdiwahial distributions in an auxiliary
space (Sinkkonen & Kaski, 2000), enforcing constraintseacétisfied during the cluster
assignment in the clustering process (Wagstaff et al., 2@ initializing clusters and in-
ferring clustering constraints based on neighborhoodsetkfrom labeled examples (Basu
et al., 2002). Constraint-based clustering techniques haen an active topic of research,
where recent techniques include variational techniquesdastrained clustering using a
graphical model (Hiu, Law, Topchy, & Jain, 2005), and fe#isjbstudies for clustering

under different types of constraints (Davidson & Ravi, 2005

Distance-based methods

In distance-based approaches, an existing clusteringithigpthat uses a distance mea-
sure is employed; however, the distance measure is firstetiaio satisfy the labels or

constraints in the supervised data. Several distance mesalsave been used for distance-



based semi-supervised clustering, including string-@idiance trained using EM (Bilenko
& Mooney, 2003), Jensen-Shannon divergence trained usadjent descent (Cohn, Caru-
ana, & McCallum, 2003), Euclidean distance modified by atslstipath algorithm (Klein
etal., 2002), or Mahalanobis distances trained using cooptmization (Bar-Hillel, Hertz,
Shental, & Weinshall, 2003; Xing et al., 2003). Severaltdtag algorithms using trained
distance measures have been employed for semi-supenlisgdring, including single-
link (Bilenko & Mooney, 2003) and complete-link (Klein et a2002) agglomerative clus-
tering, EM (Cohn et al., 2003; Bar-Hillel et al., 2003), anifig&ans (Bar-Hillel et al., 2003;
Xing et al., 2003). Recent techniques in distance-metieniag for clustering include
learning a margin-based clustering distortion measumgusbosting (Hertz, Bar-Hillel, &
Weinshall, 2004), and learning a distance metric transétion that is globally linear but

locally non-linear (Chang & Yeung, 2004).

1.4 Thesis contributions

The goal of this research is studying probabilistic modetssemi-supervised clustering,
deriving algorithms based on these models and subsequegrfigrming detailed experi-
ments to show the effectiveness of these algorithms orrdiffalomains. The contributions

of this thesis are outlined below:

¢ We show how supervision in the form of labeled data pointsbeaimcorporated into

partitional clustering using a well-defined EM frameworkQhapter 3.



e We develop a probabilistic generative Hidden Markov Ranéoeid (HMRF) model
for semi-supervised clustering with constraints, whiciik to perform semi-supervised
clustering with a broad class of clustering distance measuramely Bregman diver-
gences (e.g., squared Euclidean distance, KL divergemzkpmectional distances
(e.g., cosine distance, Pearson’s correlation). The HMRBehand the algorithm

HMRF-KMEANS that we derive from this model is described in detail in Cbhagt

e We propose an active learning algorithm for selecting imi@tive constraints in the
pairwise constrained semi-supervised clustering modelour knowledge it is the
first active learning algorithm for constraint acquisitiona semi-supervised cluster-

ing setting, and it is described in detail in Chapter 5.

e We empirically evaluate the effectiveness of our semi-suped clustering algo-
rithms by detailed experiments on different domains, both-tlimensional (e.g.,
handwritten character recognition data sets) and higtedgional (e.g., text docu-
ments). Our experiments conclusively demonstrate thagusither labeled supervi-
sion or pairwise constraints substantially improve thetgting accuracy on different
domains, and that our active learning algorithm is able tpae informative con-

straints very effectively.

e We discuss other interesting problems of semi-supervisestering in Chapter 7,
namely (1) integration of both constraint-based and digtdrased semi-supervised

clustering methods using the HMRF model, (2) semi-supedvigraph-based clus-



tering using kernels, (3) using prior knowledge to improvertapping clustering of
data, and (4) model selection techniques that use the bleagapervision to auto-
matically select the right number of clusters. Finally, Gtes 8 discusses possible
extensions of the research presented in this thesis anidesifpromising areas of

future work in semi-supervised clustering.

Apart from the chapters mentioned above, the thesis alswies related research in the
field of semi-supervised clustering in Chapter 6, and fin@apter 9 concludes the thesis.

We begin the thesis by giving some relevant background astatlimg in Chapter 2.



Chapter 2

Background

This chapter gives a brief review of clustering algorithnmswehich our proposed semi-
supervised clustering techniques will be applied. It alssctibes the clustering evaluation
measures we will be using in our experiments, and gives arvieve of the pre-processing

steps we use for text document clustering.

2.1 Notation

A brief review on the notation that we will use in this chapserd the rest of the thesis:
RY denotes thel-dimensional real vector spacp;denotes a probability density function;
X = {x;}i_, denotes the set efdata points, where thé" data point is a vector represented
by x; whosejt" component i%j; Y denotes the set ofcluster labels, wherg is the cluster

label of theith data pointx;; other lowercase letters are scalars, &glenotes the number

10



of clusters.

2.2 Overview of clustering algorithms

As explained in Chapter 1, clustering algorithms can bestiag into two models — gen-
erative or discriminative. There are other categorizatiohclustering, e.g., hierarchical or
partitional (Jain, Murty, & Flynn, 1999), depending on wimat the algorithm clusters the

data into a hierarchical structure or generates a flat jpenitity of the data.

2.2.1 Hierarchical clustering

In hierarchical clustering, the data is not partitioned ialusters in a single step. Instead,
a series of partitions are created, which may run from a siolgister containing all objects
to n clusters each containing a single object. This gives rise hig@rarchy of clusterings,

also known as the cluster dendrogram. Hierarchical clugtenethods can be further sub-

divided into:

¢ Divisive methods: Create the cluster dendrogram in a taprddivisive fashion,
starting with every data point in one cluster and splittitgsters successively ac-
cording to some measure till a convergence criterion ishegce.g., Cobweb (Fisher,
1987), recursive cluster-splitting using a statisticahformation (Dubnov, El-Yaniv,
Gdalyahu, Schneidman, Tishby, & Yona, 2002), and PDDP orcgal direction di-

visive partitioning (Boley, 1998);

11



e Agglomerative methods: Create the cluster dendrogram iat@rn-up agglomer-
ative fashion, starting with each data point in its own @usaind merging clus-
ters successively according to a similarity measure tilloavergence criterion is
reached, e.g., hierarchical agglomerative clusteringiffdan & Rousseeuw, 1990),

Birch (Zhang, Ramakrishnan, & Livny, 1996), etc.

To illustrate hierarchical clustering, let us considerraiehical agglomerative clustering

(HAC) in more detalil.

Hierarchical agglomerative clustering

Hierarchical agglomerative clustering (HAC) is a bottom-hierarchical clustering algo-
rithm. In HAC, points are initially allocated to singletoitusters, and at each step the
“closest” pair of clusters are merged, where closenessfisatkaccording to a similarity
measure between clusters. The algorithm generally tetesnahen a specifiedonver-
gence criterionis reached. Different cluster-level similarity measures ased to deter-
mine the closeness between clusters to be merged — singlesthmplete-link, or group-
average (Manning & Schiitze, 1999).

Various HAC schemes have been recently shown to have wiietbunderlying
generative models — single-link HAC corresponds to the aibdistic model of a mixture of
branching random walks, complete-link HAC correspondsrifoum equal-radius hyper-
spheres, whereas group-average HAC corresponds to egpiahee configurations (Kam-

var, Klein, & Manning, 2002). The pseudo-code for HAC is give Fig. 2.1.
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Algorithm: HIERARCHICAL AGGLOMERATIVE CLUSTERING

Input: Set of data pointX = {x} ;,x € R4

Output: Dendogram representing hierarchical clustering of

Method:

1. Initialize clusters: Each data poixtis placed in its own clustet;. These cluster
form the leaves of the dendogram, and constitute the sairoént clusters

2. Repeat untitonvergence

2a. Merge the twalosestclustersC; andC; from current clusterdo get clusteC

2b. Removeg; andC; from current clustersadd clustec to current clusters

2c. Add parent links fron€; andC;j to C in the cluster dendogram

Figure 2.1: HAC algorithm
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2.2.2 Partitional clustering

LetX = {x},, % € RY, be the set of data points we want to cluster. A partitional cluster-
ing algorithm generateskapartitioning* of the data k given as input to the algorithm) by
grouping the associated data points iktdusters. Partitional algorithms can be classified

into the following categories:

e Graph-theoretic.: These are discriminative clusteringregghes, where an undi-
rected grapl = (V, E) is constructed from the data set, each vertex iV corre-
sponding to a data point and the weight of each edgg € E corresponding to the
similarity between the data poirtsandx; according to a domain-specific similarity
measure. Thk clustering problem becomes equivalent to findingktmincut in this
graph, which is known to be a NP-complete problemKagr 3 (Garey & Johnson,
1979). One class of methods for solving the graph partitigmiroblem take a real
relaxation of the NP-complete discrete partitioning peofs! these include spectral
methods that perform clustering by using the second eigtéoref the graph Lapla-
cian to define a cut (Ng, Jordan, & Weiss, 2001). The othersaldisnethods use
heuristics to find low-cost cuts i@: methods like Rock (Guha, Rastogi, & Shim,
1999) and Chameleon (Karypis, Han, & Kumar, 1999) group st@esed on the idea
of defining neighborhoods using inter-connectivity of nede G, Metis (Karypis

& Kumar, 1998) performs fast multi-level heuristics @at multiple resolutions to

1k disjoint subsets{Xh}E:1 of X, whose union iX
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give good partitions, while Opossum (Strehl & Ghosh, 20G®sua modified cut cri-
terion to ensure that the resulting clusters are well-lzadraccording to a specified

balancing criterion.

Density-based: These methods model clusters as densasegiml use different
heuristics to find arbitrary-shaped high-density regionshe input data space and
group points accordingly. Well-known methods include Deagcwhich tries to an-
alytically model the overall density around a point (Hinngh& Keim, 1998), and
WaveCluster, which uses wavelet-transform to find highsdgmegions (Sheikhole-
sami, Chatterjee, & Zhang, 1998). Density-based methquisaly have difficulty
scaling up to very high dimensional data £0000 dimensions), which are common

in domains like text.

Mixture-model based: In mixture-model based clusteritg, anderlying assump-
tion is that each of tha data points{x; }{_; to be clustered are generated by one of
k probability distributions{ ph}ﬁ:l, where each distributiopy, is the conditional dis-
tribution corresponding to the clust&s. The probability of observing any poirtis
given by:

K
P(xi|©) = Ziahph(xi‘eh)

1=
where® = (ay,...,0k,01,...,6k) is the parameter vectam, are the prior probabil-
ities of the clustersxﬁzlah = 1), andpy, is the probability distribution of cluster

Xy parameterized b9y,. The data generation process is assumed to be as follows —

15



first, one of thek components is chosen following their prior probabilitytdsution
{O(h}ik:l; then, a data point is sampled following the distributipfof the chosen

component.

Since the cluster assignment of the points are not known sanae the existence of
a random variabl¥ that encodes the cluster assignmgrfor each data point; and
takes values igh}K_,. The goal of clustering in this model is to find the estimates o
the parameter vect@® and the cluster assignment variablesuch that the complete

log-likelihood of the data:
n
L(X,Y|®) = Y logP(x,i[©)
1=I

is maximized, where the i.i.d. (identically and indeperttedistributed) assump-
tion over the data points iK leads to the factoring of the likelihood over the whole
data seX into individual probabilities over each data poit SinceY is unknown,
the log-likelihood cannot be maximized directly. So, ttmdial approaches itera-
tively maximize theexpectedog-likelihood in the Expectation Maximization (EM)
framework (Dempster et al., 1977). Starting from an ingéstimate o, the EM al-
gorithm iteratively improves the estimates@fandp(Y|X, ©) such that the expected
value of the complete-data log-likelihood is maximized,enhthe expectation is
computed w.r.t. the posterior class distributipfY |X,©). It can be shown that the

EM algorithm converges to a local maximum of the expectedliladihood distri-
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bution (Dempster et al., 1977), and the final estimates otdmelitional distribution
p(Y|X,©), on convergence of the algorithm, are used to find the clastggnments

of the points inX.

Most of the work in this area has assumed that the individugture density com-
ponentspy, are Gaussian, and in this case the parameters of the indivi@aussians
are estimated by the EM procedure. The popular KMeans cingtalgorithm (Mac-
Queen, 1967) can be shown to be an EM algorithm on a mixtukéafussians under
certain assumptions: details of this derivation are shaw®ec. 2.3.1. Another inter-
esting model for Gaussian mixture model-based clustesamguioClass (P. Cheese-
man & Freeman, 1988), which also has a Bayesian model swlectimponent for

choosing the optimal number of clusters.

2.3 Representative clustering algorithm: KMeans

In our thesis, we have chosen KMeans as our representatititgoal clustering algorithm
on which the proposed semi-supervised schemes will beeabplihe following sections
give brief descriptions of KMeans and COP-KMeans algorittime latter being a recently

proposed semi-supervised KMeans algorithm that we will gama our algorithms to.
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2.3.1 KMeans

KMeans is a partitional clustering algorithm that perforitesative relocation to partition a
data set intk clusters, locally minimizing the overall distortion meesibetween the data
points and the cluster means (a.k.a. centroids). For a siettafpointX = {x }I,,x € RY,

the KMeans algorithm createsepartitioning {X»}§_, of X so that if{pn }{_, represent the

k partition centroids, then the following objective functio

k
Jkmeans— Z Z(h lIXi — Uh”2 (2.1)
h=1x¢€

is locally minimized. Lowering this objective function s to getting tighter clusters,
where each point gets closer to its cluster centroid. Naté finding the global optima
for the KMeans objective function is an NP-complete prob{&arey, Johnson, & Witsen-
hausen, 1982). Consideriygis the cluster assignment of the poitwherey; € {h}ﬁzl,
an equivalent form of the KMeans clustering objective fiorgt which we will be using

interchangeably, is:

Fimeans= Y [1% — Wy |? (2.2)
means X‘; Hy,

The pseudocode for KMeans is given in Fig. 2.2. Note that ucdetain assumptions,
KMeans can be considered as fitting a mixture of Gaussianddtesset, which is described
in more detail in Sec. 3.3.1.

If we have the additional constraint that the centrofgig}f_, are restricted to be
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Algorithm: KMEANS

Input: Set of data pointX = {x}"_,,x € RY, number of clusterk

Output: Disjointk partitioning {X,}{_, of X such that KMeans objective
function is optimized

Method:

1. Initialize clusters: Initial centroidf@uﬁ,o)}';,:l are selected at random

2. Repeat untitonvergence

2a. assign _cluster : Assign each data poimtto the clusteh* (i.e. set)(éf*l)),

for h* = arghmirﬂx— H(P &

. t+1
2b. estimate _means: 'Y ‘(t—lm X

2c. t+ (t+1)

Figure 2.2: KMeans algorithm
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selected fronX, then the resulting problem is called KMedian clusterindviddian clus-
tering corresponds to an integer programming problem, foickv many approximation

algorithms have been proposed (Jain & Vazirani, 2001; M&tRlaxton, 2000).

2.3.2 SP-KMeans

In certain high dimensional data, e.g. text, Euclidearadist is not a good measure of sim-
ilarity. Certain high dimensional spaces like text havedydoectional properties, which
has made directional similarity measures likenormalized dot product (cosine similar-
ity) between the vector representations of text data a popukasure of similarity in the
information retrieval community (Baeza-Yates & Ribeiretd, 1999). Note that other sim-
ilarity measures, e.g., probabilistic document overlapl@&zmidt & Sahami, 1998), have
also been used successfully for text clustering, but webeilfocusing on cosine similarity
in our work.

Spherical KMeans (SP-KMeans) is a version of KMeans thas assine similar-
ity as its underlying similarity metric. In the SP-KMeangaidithm, standard KMeans is
applied to data vectorgx;}!! ; that have been normalized to have unitnorm, so that
the data points lie on a unit sphere (Dhillon & Modha, 2001 )ptéNthat in SP-KMeans,
the centroid vectors{ph}ﬁ:1 are also constrained to lie on the unit sphere. Assuming

%]l = [lMn]] = 1, ¥i,hin Egn. (2.1), we getixi — in||> = 2— 2x" . Then, the clustering
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problem can be equivalently formulated as that of maxingizhre objective function:

k
Jsp-kmeans= X' by (2.3)
Sp-Kmeans— thXiEZ(h

The centroidy, of the ht" cluster is the mean of all the points in that cluster, norzeali
to have unitL, norm. The SP-KMeans algorithm gives a local maximum of thigctive
function. The SP-KMeans algorithm is computationally éfit for sparse high dimen-
sional data vectors, which are very common in domains likedi@stering. For this reason,

we have used SP-KMeans in our experiments with text dataSeee2.5).

2.3.3 COP-KMeans

In this thesis, we will be comparing some of our proposed samervised KMeans al-
gorithms to another recently proposed semi-supervisedntaof KMeans, called COP-
KMeans (Wagstaff et al., 2001). In COP-KMeans, initial bgrckund knowledge, provided
in the form of constraints between instances in the datéssgted in the clustering process.
It uses two types of constraintsjust-link (two instances have to be together in the same
cluster) anccannot-link(two instances have to be in different clusters).

In the initialization step, COP-KMeans chooses clustetarsnrandomly; but as
each one is chosen, any must-link constraints that it ppaties in are enforced, i.e., all
items that the chosen instance must link to are assignedetodtv cluster, so that they

cannot later be chosen as the center of another clusterr déster initialization, COP-
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KMeans iterates between the following 2 steps till the peérebd convergence criterion is

reached:

e assign _cluster : Assign each data point to the closest cluster such that re-fmbk
or cannot-link constraint is violated by the assignmenhafsuch assignment exists,

the algorithmaborts;

e estimate _means: Update each cluster centroid to be the average of all thetgoi

assigned to that cluster.

Note that the COP-KMeans algorithm is not robust to incdasises in potentially
noisy constraints, since in that case the algorithm doefimba consistent assignment and

aborts in the cluster assignment step.

2.4 Clustering evaluation measures

Evaluation of the quality of output of clustering algorithms a difficult problem in general,
since there is no “gold-standard” solution in clusteringheTcommonly used clustering
validation measures can be categorizethsnal or external Internal validation measures,
e.g., the ratio of the average inter-cluster to intra-eludtstance (the lower the better), need
only the data and the clustering for their measurement. reatevalidation measures, on
the other hand, match the clustering solution to some knomor gnowledge, e.g., an
underlying class labeling of the data. Many data sets inrsigal learning have class

information: we can evaluate a clustering algorithm by giogj it to such a data set (with
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the class label information removed), and then using thesdibels of the data as the gold
standard against which we can compare the quality of thedliagéering obtained.

In our experiments, we have used three metrics for clustduation: normalized
mutual information(NMI), pairwise F-measureandobjective function Of these, normal-
ized mutual information and pairwise F-measure are extetnatering validation metrics
that estimate the quality of the clustering with respect tivan underlying class labeling
of the data.

For clustering algorithms which optimize a particular aijee function, we can
report the value of the objective function when the alganitbonverges. For KMeans
and SP-KMeans, the objective function values reportedfaseansfrom Egn. (2.1) and
Jsp-kmeansfrom Eqn. (2.3). For the semi-supervised versions of KMearesreport their
corresponding objective function values, €.@mrf-kmeansfrom Eqgn. (4.10) for HMRF-
KMEANS. Since all the semi-supervised clustering algorithms wpase are iterative
methods that locally minimize the corresponding clusteobjective functions, looking at
the objective function value after convergence would gisen idea of whether the semi-
supervised algorithm under consideration generated a glostering that converged to a
good local optimum of the objective function.

One external clustering evaluation measure is normalizgdahinformation (NMI),
which determines the amount of statistical informatiorretidy the random variables rep-
resenting the cluster assignments and the pre-labelesl @tsignments of the data points.

We compute NMI following the methodology of Strehl et al.ré$il, Ghosh, & Mooney,
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2000). NMI measures how closely the clustering algorithm@oeconstruct the underlying
label distribution in the data. @ is the random variable denoting the cluster assignments of
the points, and is the random variable denoting the underlying class latelhe points

then the NMI measure is defined as:

(2.4)

wherel (X;Y) = H(X) — H(X]|Y) is the mutual information between the random variables
andY, H(X) is the Shannon entropy &f, andH (X|Y) is the conditional entropy of given

Y (Cover & Thomas, 1991). For a discrete random variaglél (X) = _er< p(x) log p(x)
andH (X[Y) = _er< p(X[Y)logp(x|Y), wherep(x) and p(x|Y) are respectively the proba-
bility of X and the conditional probability of givenY. The normalization by the average
entropy ofC andK makes the value of NMI stay between 0 and 1.

Pairwise F-measure is defined as the harmonic mean of paipregision and re-
call, where the traditional information retrieval measuaee adapted for evaluating cluster-
ing by considering pairs of points. For any pair of pointg tiecision to cluster this pair
into same or different clusters is considered to be corféctriatches with the underlying
class labeling available for the points (Bilenko & Moone902). Pairwise F-measure is

defined as:
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Number of pairs correctly predicted in same cluster

Precision= . . .
Total number of pairs predicted in same cluster

Recall— Number of pairs correctly predicted in same cluster
~ Total number of pairs actually in same cluster

2 x Precisionx Recall
F-measure- — (2.5)
Precision + Recall

Pairwise F-measure is related to measures like Rand Indiein(kt al., 2002; Wagstaff
et al., 2001; Xing et al., 2003) that have been used in otheri-sepervised clustering
research. NMI has also become a popular clustering evafuaietric (Banerjee, Dhillon,
Ghosh, & Sra, 2003; Dom, 2001; Fern & Brodley, 2003). Regemtlsymmetric cluster
evaluation metric based on mutual information has beengsexgh which has some useful
properties, e.g., it is a true metric in the space of clustgri(Meila, 2003). In most of
our experiments, the comparative results of different itigms, using NMI and pairwise
F-measure, were qualitatively similar.

Note that the external cluster validation measures we hagd (e.g., pairwise F-
measure and NMI) are not completely definitive, since theteling can find a group-
ing of the data that is different from the underlying clagsigure. For example, in our
initial experiments on clustering articles from the CMU 2@wgroups data (where the
main Usenet newsgroup to which an article was posted is deresd to be its class la-

bel), we found one cluster that had articles from four uryiegl classes —alt.atheism
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soc.religion.christian , talk.politics.misc , andtalk.politics.guns . Oncloser
observation, we noticed that all the articles in the clustere about the David Koresh
episode; this is a valid cluster, albeit different from thieuping suggested by the underly-
ing class labels.

If we had human judges to evaluate the cluster quality, wédcfind an alternate
external cluster validation measure — we could ask the hyodges to rank data catego-
rizations generated by humans and the clustering algoriému the quality of a clustering
output would be considered to be high if the human judgesdcoat reliably discriminate
between a human categorization of the data and the grougingragted by the clustering
algorithm. Since this is a time- and resource-consuminchatkebdf evaluation in the aca-
demic setting, we have used automatic external clustedatidin methods like pairwise

F-measure and NMI in our experiments.

2.5 Pre-processing of text documents for clustering

In our experiments with text documents we used the vectarespadel, where a text docu-
ment is represented as a sparse high-dimensional vectaighted term counts (Salton &
McGill, 1983). The creation of the vector space model canibiglel into two stages. At
first, the content-bearing terms (which are typically woodshort phrases) are extracted
from the document text and the weight of each term in the dectwmector is set to the

count of the corresponding term in the document. In the skstage, the terms are suitably
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weighted according to information retrieval principlesriorease the weights of important
terms.

Some terms in a document do not describe any important dpréen, common
words like “the”, “is” — these words are called stop-wordshi& processing a document
to count the number of occurrences of each term and createmmecount vector in the
first phase, these stop-words are filtered from the docunmehhat included in the vector.
Note that this vector is often more than 99% sparse, sincdithensionality of the vector
is equal to the number of terms in the whole document cotladbut most documents just
have a small subset of these terms. In our experiments, wiethis&1C toolkit for creating
the document vectors from raw text documents.

In the second phase, the term-frequencies or counts of thes tare multiplied
by the inverse document frequency of a term in the documelfgation. This is done
so that terms that are common to most documents in a docurobecton (e.g., “god”
is a common term in a collection of articles posted to newsggsdike alt.atheism or
soc.religion.christian ) are given lesser weight, since they are not very conteautiing
in the context of the collection. This method of term weiggticalled “Term Frequency and
Inverse Document Frequency” (TFIDF), is a popular methoprefprocessing documents
in the information retrieval community (Baeza-Yates & RibeNeto, 1999).

The TFIDF weighting procedure we use is as follows. fjfis the frequency of

the ™ term in the j'™ document, then the corresponding term frequency (TF)is f;;

2http://www.cs.utexas.edu/users/jfan/dm
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normalized across the entire document corpus:

tf” — f”

The inverse document frequency (IDE); of theit" term is defined as:

id f; = log,(N/d f;)

where N is the total number of documents in the corpus @fids the total number of
documents containing th&' term. The overall TFIDF scorei; of theit" term in the
document is therefore:

Wij :tfijid fi = fijlog,(N/d ;)

After TFIDF processing, terms which have a very low (ocagrin less than 5
documents) and very high frequency (occurring in more the¥ ®f the documents) are
also removed from the documents (Dhillon, Fan, & Guan, 20&ihally, the weights of
the document vectors are re-normalized so that every dattun@s unit length according
to theL, norm. While clustering, similarity between two documerds aow be computed
using the dot product between the document vectors, whichdagive the cosine similarity

between the vector representations of the documents. hiasty of documentslj; and
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dj> are computed as follows:

Vi

sim(di,dip) = § W W,
m( i1 12) i; ij1WVij2

where|V| is the size of the term vocabulary amdirepresents the TFIDF weights after re-
normalization. In practice, this sum calculation can bdgrared very efficiently by using
sparse representations of document vectors and compagngum only over the terms in
the shorter document.

Some other specific pre-processing steps were also pedopased on the types
of the documents, e.g., headers and email signatures waovee for newsgroup articles,

and HTML tags were removed for webpages.
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Chapter 3

Semi-supervised Clustering with

Labels

This chapter describes how supervision in the form of labelata can be incorporated
into clustering (Basu et al., 2002). We use the labeled dateherate seed clusters that
initialize a clustering algorithm, and use constraintsegated from the labeled data to guide
the clustering process. The underlying intuition is thaiper seeding biases clustering
towards a good region of the search space, thereby reduwnghtances of it getting stuck
in poor local optima while simultaneously producing a austy similar to the specified

labels.
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3.1 Problem definition

Given a data seX, as previously mentioned, KMeans clustering of the datgeeé¢rates a
k-partitioning {Xh}ﬁz1 of X so that the KMeans objective is locally minimized. 1S X,
called theseed sethe the subset of data-points on which supervision is peavas follows:
for eachx; € S we have the labéi of the partitionX;, to which it belongs. We assume that
corresponding to each partitiofy, of X, there is at least one seedpame S (we will relax
this assumption for our experiments with incomplete sagpdiMote that we get a disjoint
k-partitioning{Sh}ﬁ:l of the seed séB, so that allx; € S, belongs taXy according to the
supervision. This partitioning of the seed &fiorms theseed clustering The goal is to
guide the KMeans algorithm towards the desired clusterfripowhole data as illustrated

by the seed clustering.

3.2 SEeDED-KMEANSsand CONSTRAINED-KM EANS algorithms

We propose two algorithms for semi-supervised clusterinitty Vabeled data: SEDED-
KMEANS and GONSTRAINED-KM EANS.

In SEEDED-KMEANS, the seed clustering is used to initialize the KMeans algo-
rithm. Thus, rather than initializing KMeans frokrandom means, the centroid of thi@
cluster is initialized with the centroid of tH#" partition S, of the seed set. The seed clus-
tering is only used for initialization, and the seeds areuseid in the following steps of the

algorithm. The algorithm is presented in detail in Fig. 3r1.CONSTRAINED-KM EANS,
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Algorithm: SEEDED-KMEANS

Input: Set of data pointX = {x }{L,,x € RY, number of clusterk, set
S=U_,$ of initial seeds

Output: Disjointk partitioning{xh}ﬁ:1 of X such that KMeans objective
function is optimized

Method:

1. Initialize clustersuﬁo) — ﬁxe x,forh=1,... kt«0

2. Repeat unticonvergence

2a. assign _cluster : Assign each data pointto the clusteh* (i.e. setxfgiﬂ)),

for h* = argmin||x— pf(f)Hz

he{1,...k}

2b. estimate _means: ' « ‘ s

X
t+1)

xex]

2c. t+ (t+1)

Figure 3.1: Seeded-KMeans algorithm

the seed clustering is used to initialize the KMeans alforias described for theeEDED-
KM EANS algorithm. However, in the subsequent steps, the clusterbaeships of the data
points in the seed set are not re-computed iratisgn _cluster  step of the algorithm —the
cluster labels of the seed data are kept unchanged, andrenlgiiels of the non-seed data
are re-estimated. The algorithm is given in detail in Fi@. 3TCONSTRAINED-KM EANS
seeds the KMeans algorithm with the given labeled data aegsk#nat labeling unchanged

throughout the algorithm. InE=DED-KM EANS, the given labeling of the seed data may be
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Algorithm: CONSTRAINED-KM EANS

Input: Set of data pointX = {x }{_ ;,x € RY, number of clusterk, set
S=Uf_,$ of initial seeds

Output: Disjointk partitioning{xh}ﬁz1 of X such that the KMeans objective
function is optimized

Method:

1. Initialize clustersuﬁo) — ﬁ x,forh=1,... kit«0
Xe

2. Repeat untitonvergence

2a. assign _cluster : Forxe S if x € S, assignx to the clusteh (i.e., setxfgt*l)).

Forx ¢ S assignx to the clusteh* (i.e. setngE”)), for h* = argmin||x— pf:)||2
he{L,....k}

(t+1)

2b. estimate _means: M X

1
«— X Z
Xexiiwl)

2c. t+ (t+1)

Figure 3.2: Constrained-KMeans algorithm

changed in the course of the algorithmoCSTRAINED-KM EANS is appropriate when the

initial seed labeling is noise-free, or if the user does natwithe labels of the seed data to

change. On the other handg OED-KM EANS is maore appropriate in the presence of noisy

seeds, since it does not enforce the seed labels to remamanged during the clustering

iterations and can therefore abandon noisy seed labetdfadtanitialization step.
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3.3 Underlying probabilistic motivation

The two proposed semi-supervised KMeans algorithrag & D-KM EANS and CONSTRAINED-
KM EANS, can be motivated by considering KMeans in the EM framewaslshown in the

following section.

3.3.1 Interpretation of KMeans as EM

Both KMeans and SP-KMeans are model-based clusteringitidow, having well-defined
underlying generative models. As mentioned earlier, KMezan be considered as fitting
a mixture of Gaussians to a data set under certain assurapfidre assumptions are that
the prior distribution{a}K_, of the Gaussians is uniform, i.e, = 1/k, h, and that each
Gaussian has identity covariance. Then, the paramet& isethe EM framework consists
of just thek means{uh}ﬁzl. With these assumptions, one can show that (Bilmes, 1997):
K 2 1
EvxologRX,YIO) = 3 3 log(an: 7o

k n
= -5 ZlHXi*Uh||2p(yh|Xia@)+Ca
h=1i=

e Xwl%) piyn/x,©)  (3.2)

wherec is a constant an¢y = h) is denoted byy. Further assuming that

1 if h=argmin||x — u|>,
|

P(Yn|Xi, ©) = (3.2)

0 otherwise,
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and replacing itin Egn. (3.2), we note that the expectagomtcomes out to be the negative
of the well-known KMeans objective function with an additigonstant. Thus, the prob-

lem of maximizing the expected log-likelihood under thessumptions is same as that of
minimizing the KMeans objective function. Keeping in mitetassumption in Eqn. (3.2),

the KMeans objective can be written as

k n
Jkmeans= Z ZlHXI - Uh”z p(yh‘XiaUh)' (3-3)
h=1i=

In a similar fashion, SP-KMeans can be considered as fittmixture of von Mises-Fisher
distributions to a data set under some assumptions (Banetjal., 2003). Note that in
the SP-KMeans framework (Sec. 2.3.2), since every poistdr the unit sphere so that

I = [|Mn]] = 1, the expectation term in Eqn. (3.2) becomes equivalent to

k n
Evixellogp(X,Y[@)] = ¥ leiTUh P(ynlx, ®) +c.
h=1i=

So, maximizing the SP-KMeans objective function is eqaako maximizing the expec-

tation of the complete-data log-likelihood in the E-stephaf EM algorithm.

1The assumption in Eqn. (3.2) can also be derived by assuméngavariance of the Gaussians tceband
lettinge — 0T (Kearns, Mansour, & Ng, 1997).
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3.3.2 Discussion oBEEDED-KM EANS and CONSTRAINED-KM EANS

According to the discussion in the previous section, thg tmissing data” for the KMeans
problem are the conditional distributions of the clustdrela given the points and the pa-
rameters, i.e.p(Yn|X, ln). Knowledge of these distributions solves the clusterirapfam,
but normally there is no way to compute it. In the semi-sujsexy clustering framework,
label information is available on some of the data pointsctvepecifies the corresponding
conditional distributions. Thus, semi-supervision byyidong labeled data is equivalent to
providing information about the conditional distribut®p(yn|Xi, Un)-

In standard KMeans without any initial supervision, theneans are chosen ran-
domly in the initial M-step and the data-points are assigtwethe nearest means in the
subsequent E-step. As explained above, every poimt the data set has possible con-
ditional distributions associated with it (each satisfytagn. (3.2)) corresponding to tlke
means to which it can belong. This assignment of data pitet a random cluster in the
first E-step is similar to picking one conditional distrilmrt at random from thé& possible
conditional distributions.

In SEEDED-KM EANS, the initial supervision is equivalent to specifying thendi
tional distributionsp(yn |, Uun) for the seed pointg; € S. The specified conditional distri-
butions of the seed data are just used in the initial M-steth@tlgorithm, ang(yh|X;, 1)
is re-estimated for alf; € X in the following E-steps of the algorithm.

In CONSTRAINED-KM EANS, the initial M-step is same asEEDED-KMEANS.
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The difference is that for the seed data points, the inigibkls, i.e., the conditional distri-
butionsp(yn|Xi, 1), are kept unchanged throughout the algorithm, whereasoigiteonal
distribution for the non-seed points are re-estimated atyelz-step.

It can also be shown that getting good seeding is very essdaticentroid-based
clustering algorithms like KMeans. As shown in Sec. 2.3rilar certain generative model-
based assumptions, one can connect the mixture of Gaussated to the KMeans model.
A direct calculation using Chernoff bounds shows that if dipalar cluster (with an under-
lying Gaussian model) with true centrgids seeded witlm points (drawn independently at

random from the corresponding Gaussian distribution) hadstimated centroid j§ then

P(fi— > 8) <e¥m? (3.4)

whered € R+ (Banerjee, 2001). Thus, the probability of deviation oftkatroid estimates
falls exponentially with the number of seeds, and henceisgedsults in good initial cen-

troids.

3.4 Convergence oSEEDED-KM EANS and CONSTRAINED-KM EANS

Theorem: The SEEDED-KM EANS and CONSTRAINED-KM EANS algorithms converge to
a local minima of%means
Proof: The SEEDED-KMEANS and GONSTRAINED-KM EANS algorithms alternate be-

tween updating the assignment of points to clusters andimgdae cluster centroids. If the
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individual updates of objective functigfimeansin €ach of these two steps is non-increasing,
then after each iteration ofEEDED-KM EANS and GONSTRAINED-KM EANS the objective
function in Egn. (3.3) is guaranteed to be non-increasingt us inspect each step in the
updates to ensure that this is indeed the case.

In SEEDED-KMEANS, the labeled data are used only for cluster initialization —
henceforth, both the cluster assignment and centroidti@a&ion steps are same as nor-
mal KMeans. Since KMeans is guaranteed to converge to a ioicéina of the objective
function Jkmeans(Selim & Ismail, 1984), SEDED-KM EANS also has the same guarantees.

For analyzing © NSTRAINED-KM EANS, let us look at the cluster assignment and
centroid re-estimation steps separately. First, let usiden the cluster assignment step:
according to Sec. 3.3.1, the cluster assignment step isagot to the E-step of the corre-
sponding EM update. Each poixtmoves to a new clustdronly if the following compo-

nent of Jkmeans contributed by the point;, is decreased with the move:

k
> 1% — Hall? P(Yh[%i, ko). (3.5)
h=1

For pointsx; ¢ S the cluster assignment minimizes the above contributibw; ¢o the
objective functionfymeans FOr pointsx; € S, the cluster assignment remains unchanged; as
a result, the contribution of eaghe Sto the objective function remains unchanged. So, the
cluster assignment step ofb®STRAINED-KM EANS either decreases the overall objective

function JkmeansOr keeps it unchanged.
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For analyzing the centroid re-estimation step, let us ctarsan equivalent form of
Eqgn. (3.3):

k
Jkmeans= Y %IIM — Hnll? P(Yh 1, Hn)- (3.6)
h=1x¢

In the centroid re-estimation step, each cluster centigid re-estimated so that Eqgn. (3.6)
is minimized with respect to the centroids. Taking the dene of Egn. (3.6) with respect
to Uy, and setting it to zero, thg, that minimizes Eqn. (3.6), given the cluster assignments,
turns out to be the mean of the points in the partitdgn(which includes both the seed
points already i, and the non-seed points that were assignex, ia the previous cluster
assignment step). This minimizes the componekgéansin Eqn. (3.6) contributed by the
partition X,. So, given the cluster assignmenfgneansWill decrease or remain the same in
this step. Note that the result of the mean of the points ilustet being the choice of the
centroid that minimizes the objective func the objectivedtion in the M-step of EM holds
for both cosine distance (Banerjee et al., 2003) and thergkokass of regular Bregman
divergences (Banerjee, Merugu, Dhillon, & Ghosh, 2004).

Hence the objective function decreases after every clastggnment and centroid
re-estimation step in GNSTRAINED-KM EANS. Now, note that the objective function is
bounded below by zero. @vSTRAINED-KM EANS results in a decreasing sequence of
objective function values, the value sequence must haveeumailation point. The ac-
cumulation point in this case will be a fixed point @fneansSince neither updating the

assignments or the parameters can further decrease tteeofahe objective function. As
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a result, the ©ONSTRAINED-KM EANS algorithm will converge to a fixed point (local min-
imum) of the objective. In practice, convergence can berdeted if subsequent iterations

of CONSTRAINED-KM EANS result in insignificant changes Mmeans B

3.5 Experiments

The experimental results presented in this section demadeshe advantages oESDED-
KM EANS and GNSTRAINED-KM EANS over standard random seeding and COP-KMeans
(Wagstaff et al., 2001), a previously developed semi-suped clustering algorithm de-
scribed in Sec. 2.3.3.

We show results of our experiments on both high-dimensitedl data sets (Ya-
hoo! News K-series and subsets of CMU 20 Newsgroups), asawelh a low-dimensional
data set from the UCI repository (Iris). For each data setrame4 clustering algorithms
— SEEDED-KM EANS, CONSTRAINED-KM EANS, COP-KMeans, and random KMeans. In
random KMeans, th& means were initialized by taking the mean of the entire dath a
randomly perturbing ik times (Fayyad, Reina, & Bradley, 1998). This technique &f in
tialization has given good results in unsupervised KMearngévious work (Dhillon et al.,
2001). We compared the performance of these 4 methods oriftbeent data sets with
varying seeding and noise levels, using 10-fold cross atbd. For the high-dimensional
data sets, SP-KMeans was used as the underlying KMeangtlahgdor all the 4 KMeans

variants, while standard KMeans with squared Euclideatadi® was used on the low-

40



dimensional data sets.

3.5.1 Data sets

Iris is a low-dimensional data set from the UCI repository (Bl&délerz, 1998), where the
task is to categorize a group of 150 4-dimensional vectefgessenting Iris flowers, into 3
species.

Among the high-dimensional data sets, the 20 Newsgroupsséa0-Newsgroups-
1000 is a collection of 20,000 messages, collected from 20 miffe Usenet newsgroups
— 1000 messages from each of the 20 newsgroups were choskttheatiata set was par-
titioned by newsgroup nanfeThe text documents were pre-processed using the method-
ology described in Sec. 2.5, which includes removal of nomtent-bearing stop-words,
TF-IDF weighting, and removal of very high-frequency andfrequency words. For the
20-Newsgroups-10006ata set, the vector space model had a vocabulary of 21,68iswo
The Yahoo! News K-seriesyhoo! Newsdata set is a collection of 2340 Yahoo! news
articles belonging to one of 20 different Yahoo! categoriEise vector space model of the
K1 set from the Yahoo! K-series has 12,229 words, so thatakee-points reside ina 12,229
dimensional space.

We derived subsets from tH0-Newsgroups-1000ollection. From the original

data set, we creat?D-Newsgroups-1QG@ reduced data set having a random subsample of

2http://www.ai.mit.edu/people/jrennie/2ewsgroups
3ftp://ftp.cs.umn.edu/users/boley/PDDPdata
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100 documents from each of the 20 newsgroups in the origiaal. dVe created the other

data subsets by selecting 3 categories from the origi@ailewsgroups-100€ollection:

e 3-News-Similar-100@onsists of 1000 documents each from 3 newsgroups on sim-
ilar topics €omp.graphics , comp.os.ms-windows , comp.windows.x ). This data
subset has 3000 points in a vector space of 5950 words, anthtleglying clusters

are not well separated due to the similarity between thesppi

e 3-News-Related-100€onsists of 1000 postings each from 3 newsgroups on related
topics (alk.politics.misc , talk.politics.guns , andtalk.politics.mideast ),

with overall 3000 documents and 10,091 words;

¢ 3-News-Different-100@onsists of 1000 articles each from 3 newsgroups that cover
different topics élt.atheism , rec.sport.baseball , Sci.space ). It has 3000

points in 7670 dimensions, with the clusters being wellasafed.

The data seBmall-20 Newsgroupwas created to study the effect of data set size on the
clustering performance of the algorithms. We created thgb3ets, having articles from 3
newsgroups, to study the effect of data separability onltj@righms. For each data set, the
clustering algorithms were asked to generate the same mwhbleisters as the number of

underlying classes in the data set.
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3.5.2 Methodology

For all the algorithms, we generated learning curves witfiold cross-validation on each
data set. For studying the effect of seeding, 10% of the detavas set aside as the test
set at any patrticular fold. The training sets at differeninfmoof the learning curve were
obtained from the remaining 90% of the data by varying the $eetion from 0.0to 1.0 in
steps of 0.1, and the results at each point on the learning euere obtained by averaging
over 10 folds. The clustering algorithm was run on the whatadet, but we calculated
the evaluation metrics only on the test set: this was donestimate the generalization
performance of the semi-supervised clustering algoritmnmetances for which no labels
were provided. For these experiments we used the clustekijggtive function and Nor-
malized Mutual Information (NMI), as described in Sec. 24 ,the evaluation measures.
For studying the effects of noise in the seeding, we gengtatening curves by keeping a

fixed fraction of seeding and varying the noise fraction.

3.5.3 Seed and noise generation

In SEEDED-KM EANS and GONSTRAINED-KM EANS, the seeds at any point on the learning
curve were selected from the data set according to the pame#ng seed fraction. In COP-
KMeans, the must-link and the cannot-link constraints aeegated from the specified
seeds. Thé cluster centers are chosen randomly, but as each one isGlarsemust-link
constraints that it participates in are enforced, i.e.itaths that the chosen instance must

link to are assigned to the new cluster, so that they cantert e chosen as the center of
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another cluster (Wagstaff et al., 2001).
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Figure 3.3: Comparison of NMI oBO-Newsgroups-100@ata, noise fraction = 0

In a real-life application, since the semi-supervisionl \wé provided by a human
user, there is a chance that the supervision may be erromesosme cases. We simulate
such labeling noise in our experiments by changing the $abeh fraction of the seed

examples to a random incorrect value.

3.5.4 Results and discussion

NMI with respect to seeding: For the zero-noise case, the semi-supervised algorithms pe
form better than the unsupervised algorithm in terms of thé Measure (Figs. 3.3,3.5,3.7,3.9),

irrespective of the size of the data setDIGTRAINED-KM EANS performs at least as well
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Figure 3.4: Comparison of objective function 8A-Newsgroups-1008ata, noise fraction
=0

as the SEDED-KMEANS, since the former uses the correct user bias introduced éoy th
user-labeled seeds throughout the execution of the algoiit the zero-noise case. In spite
of being a constrained algorithm, COP-KMeans does not sad@s perform as well as
CONSTRAINED-KM EANS, mainly because of its initialization step that does nokessar-
ily use all the available supervision. Though botoMETRAINED-KM EANS and COP-
KMeans treat the seeds as constraints, the fact tbatSTRAINED-KM EANS uses all the
seeds to initialize clusters, as opposed to COP-KMeanshwdues not necessarily do that,
results in the former having better performance in mostcasth zero-noise. In fact, the
effect of seeding seems to be so important that in some dage8(5), SEDED-KM EANS

performs significantly better than COP-KMeans.
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Objective function with respect to seeding:Though the NMI measure increases
with an increase in seed fraction for the semi-supervisgdrithms, the behavior of the
objective function will depend on whether the user bias led by the user-labeled seeds
is consistent with the assumptions of KMeans. If the categtucture created by the user-
labeling of the data set satisfies the KMeans assumptioas thie data partition induced by
seeding will be close to the optimal partition, and KMeanksniswn to converge to a good
local optimum in this case (Fig. 3.6) (Devroye et al., 1998h the other hand, if the user
bias is inconsistent with the KMeans assumptions, thentained seeding will result in
convergence to a sub-optimal solution (Figs. 3.4, 3.8).eNioat since SEDED-KM EANS

does not necessarily maintain the same assignments foe#temints in subsequent it-
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Figure 3.6: Comparison of objective function 2d-Newsgroups-100ata, noise fraction =
0

erations, its objective function does not decrease due nflicoin bias; however, since
CONSTRAINED-KM EANS and COP-KMeans keep the seeds as constraints, their objecti
function decreases with increase in seeding. Since randil®alis never uses the seeds,
its behavior is independent of this conflict.

Data Set separability: Semi-supervision gives substantial improvement over un-
supervised clustering for data sets that are difficult tstely in the sense that the clusters
are not well separated, e.§-News-Similar-1000(Fig. 3.10). For data sets that are easily
separable, e.g3-News-Different-100QFig. 3.11) the improvement over random KMeans
is marginal. If the data set is easily separable, then there@t many bad local minima

and even random KMeans can easily find the cluster strudiioeiever, for data sets with
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Figure 3.7: Comparison of NMI oiMahoo! Newslata, noise fraction =0

clusters that are not well separated, seeding seems to bepantant factor in helping the
algorithm find a good clustering. Even with high seeding, il measure for the sep-
arable data sets are in general much higher than the datthaetre not well separable,
because the latter one is a harder problem to solve.

Performance with incomplete seeding:We also ran initial experiments witin-
completeseeding, where seeds are not specified for every clusteth&se experiments, if
any of the semi-supervised KMeans algorithms are run toictusters and we have seeds
for only L clusters [ < K), then the remainingl — L centroids are initialized by random
perturbations of the global centroid, following the metblodyy of Dhillon et al. (Dhillon

et al., 2001). From Fig. 3.12, it can be seen that the NMI melid not decrease substan-
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Figure 3.8: Comparison of objective function Wahoo! Newslata, noise fraction =0

tially with increase in the number of unseeded categorlesygg that the semi-supervised
clustering algorithms could extend the seed clusters andrgte more clusters in order to
fit the regularity of the data.

Performance with respect to noise:In many practical applications, the labeled
data often has noise due to human labeling errors, inadesrat automated labeling pro-
cesses, or other reasons. In this experiment, we study ibe rdustness of all the different
semi-supervised clustering algorithms, to estimate holhtivey would perform on real-life
domains.

Fig. 3.13 shows that as noise is increased, the performanGORSTRAINED-

KMEANS and COP-KMeans starts to degrade compared #HB0&ED-KM EANS. COP-
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KMeans and ©ONSTRAINED-KM EANS keep using the same noisy seeds in every subse-
guent iteration of the algorithm, wherease®ED-KM EANS can abandon noisy seed labels
in subsequent iterations. SESODED-KM EANS is quite robust against noisy seeding, and
can take full advantage of the seeding if it gives the aloria good initialization.

The statistical significance of the conclusions in thisisediave been tested across
various data sets. For example, on Bmall-20-Newsgroupata set, the conclusions are
significant for seed fraction-= 0.2 (p < 0.001) for the first three aspects discussed above,
using two-tailed paired-test. For the noise experiments, the conclusion is sigmififor

noise fraction< 0.5 (p < 0.001).
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3.6 Chapter summary

In this chapter, we have shown how initial labeled data camseel to aid and bias the clus-
tering of unlabeled data into partitionseS>ED-KM EANS and GCONSTRAINED-KM EANS
are semi-supervised clustering algorithms that use ldgdéa to form initial clusters and
constrain subsequent cluster assignment. Both methodsecaiewed as instances of an
EM algorithm over a mixture of unit variance Gaussians uméetain conditions, where la-
beled data provides prior information about the conditiaistributions of hidden category
labels. Experimental results demonstrate the advantagg®se methods over standard
random seeding and COP-KMeans (Wagstaff et al., 2001),tamative semi-supervised

KMeans algorithm. In particular, seeding without constisiis a robust semi-supervised
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Figure 3.11: Comparison of NMI o08-News-Different-100@ata, noise fraction =0

method that is less sensitive to noise and imperfectionisamgiven labeled data.

In certain applications, supervision in the form of cladsela may be unavailable,
while pairwise constraints on the data, specifying whetiwerpoints should be in the same
cluster or in different clusters, are easily obtained. Thsates the need for algorithms that
can utilize such supervision — the next chapter describessash algorithm, which can

perform semi-supervised partitional clustering of datagipairwise constraints.
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Chapter 4

Semi-supervised Clustering with

Constraints

This chapter describes a probabilistic framework for seufiervised clustering with pair-
wise constraints, based on the Hidden Markov Random FieitiRR) model. This chapter

outlines the basic HMRF model; a generalization of the mpdesented here, which allows
integration of constraint-based and metric-based sepgssied clustering, is discussed in

Sec. 7.1.

4.1 Motivation of clustering with constraints

As mentioned in the last chapter, pairwise constraints @a Imore natural form of su-

pervision than labels in certain clustering tasks. Pagsigpervision is typically provided
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as must-link and cannot-link constraints on data points: raust-link constraint indicates
that both points in the pair should be placed in the sameeasiustile acannot-linkcon-
straint indicates that two points in the pair should belomglifferent clusters. In certain
applications, supervision in the form of class labels maybavailable, while pairwise
constraints are easily obtained, creating the need for adstthat exploit such supervi-
sion. For example, complete class labels may be unknowreicdhtext of clustering for
speaker identification in a conversation (Bar-Hillel ef a003), or clustering GPS data for
lane-finding (Wagstaff et al., 2001). In some domains, pagwonstraints occur naturally,
e.g., the Database of Interacting Proteins (DIP) data sbtdlogy contains information
about proteins co-occurring in processes, which can beedesas must-link constraints
during clustering. Moreover, in an interactive learninttisg, a user who is not a domain
expert can sometimes provide feedback in the form of maktdind cannot-link constraints
more easily than class labels, since providing constraioés not require the user to have

significant prior knowledge about the categories in the data

4.2 Problem definition

Our semi-supervised clustering model with constraintsioers a sample of data points
X ={x}4, eachx € RY being ad-dimensional vector, withi, representing itst" com-
ponent. The model relies on a distortion meadbresed to compute distance between

points: D : RY x RY — R. Supervision is provided as two sets of pairwise conssaint
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must-link constraint€y. = {(x;,X;)} and cannot-link constraintc. = {(x,X;)}, where
(Xi,Xj) € CuL implies thatx, andx; are labeled as belonging to the same cluster, while
(Xi,Xj) € CcL implies thatx; andx; are labeled as belonging to different clusters. The con-
straints may be accompanied by associated violation ¥dstsherew;; represents the cost
of violating the constraint between poingsandx; if such a constraint exists, that is, either
(Xi,%;j) € Cume or (x;,Xj) € CcL. The task is to partition the data poirXsnto k disjoint clus-
ters {Xh}ﬁz1 so that the total distortion between the points and the sparding cluster
representatives is (locally) minimized according to theegidistortion measurB, while

constraint violations are kept to a minimum.

4.3 The HMRF model

This section describes the Hidden Markov Random Field (H)R&babilistic model (Zhang,
Brady, & Smith, 2001) for semi-supervised constrainedteliisg.

4.3.1 HMRF components

The HMRF model consists of the following components:

¢ An observablesetX = {x;}{ ; of random variables, corresponding to the given data
points X. Note that we overload notation and usdo refer to both the given set of

data points and their corresponding random variables.

¢ An unobservablghidden) sety = {y;}!' ; of random variables, corresponding to
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cluster assignments of points 1 Each hidden variablg encodes the cluster label

of the pointx; and takes values from the set of cluster indife}_; .

¢ An unobservablghidden) set of generative model parame®rsvhich consists of

cluster representativéd = {pn}§_;.

¢ An observableset of constraint variableéS = (C12,C13,...,Cnh—1,n). Eachg; is a ter-
tiary variable taking on a value from the get1,0,1), wherec;; = 1 indicates that
(Xi,%j) € CuL, Gij = —1lindicates thatx,x;j) € CcL, andc;; = 0 corresponds to pairs

(xi,x;) that are not constrained.

Since constraints are fully observed and the described htmds not attempt to
model them generatively, the joint probability Xf Y, and© is conditioned on the con-
straints encoded . Fig. 4.1 shows a simple example of an HMRXFconsists of five data
points with corresponding variablgs,...,xs) that have cluster labelg = (yi,...,Y¥s),
which may each take on valués, 2,3) denoting the three clusters. Three pairwise con-
straints are provided: two must-link constraifitg,X>) and (x1,Xs), and one cannot-link
constraint(xz, x3). Corresponding constraint variables afe= 1, c14 = 1, andcyz = —1;
all other variables i€ are set to zero. The task is to partition the five points intedlclus-
ters. Fig. 4.1 demonstrates one possible clustering coatign which does not violate any
constraints. The must-linked pointg, x, andx, belong to cluster 1; the poing, which is
cannot-linked withx,, is assigned to cluster &;, which is not involved in any constraints,

belongs to cluster 3.
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\ ) &/ (€3=-1)
\Must-lmk (C1a=1) 2
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° °
ya=1

Observed data
Figure 4.1: A Hidden Markov Random Field
4.3.2 Markov Random Field over labels

Each hidden random variabjg € Y, representing the cluster labelxfe X, is associated
with a set of neighbordl;. The set of neighbors is defined as all points to whicls must-
linked or cannot-linked:N; = {y;|(Xi,Xj) € CuL or (X, X;j) € CcL}. The resulting random
field defined over the hidden variabléss a Markov Random Field (MRF) (Geman & Ge-
man, 1984), where the conditional probability distribatiover the hidden variables obeys

the Markov property:

Via Pr(yi |Y_ {yl}vevc) = Pr(yl|{yl Y€ Ni},@,C). (41)
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Thus the conditional probability of; for eachx;, given the model parameters and the set
of constraints, depends only on the cluster labels of therobd variables that are must-
linked or cannot-linked te;. Then, by the Hammersley-Clifford theorem (Hammersley &
Clifford, 1971), the prior probability of a particular labenfigurationY can be expressed

as a Gibbs distribution (Geman & Geman, 1984), so that

Pr(Y|®,C) = %exp(—v(Y)) = %exp(—NszNi Y)), (4.2)

whereN is the set of all neighborhoodg, is the normalizing term, andY) is the overall
label configuration potential function, which can be faetbinto the functionsy, (Y) that
denote the potentials for all neighborhoddsin the label configuratiofy. Since the po-
tentials for all neighborhoods are based on pairwise caimésrinC (and model parameters

©), we can further factor the label configuration as:

1 .
Pr(Y|C) = Zexq_zv(laj))a (43)
N
where each constraint potential functie(i, j) has the following form:

Wij if Gj = 1 andy; ;éyj

v(i, j) = wij if ¢j = —1 andy; =y; (4.4)

0 otherwise
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Figure 4.2: Graphical plate model of variable dependence

&l @

This constraint potential corresponds to the generalizatts Potential function (Boykov,
Veksler, & Zabih, 1998; Kleinberg & Tardos, 1999). Overtiis formulation for observing
the label assignment results in higher probabilities being assigned to confitjoma in

which cluster assignments do not violate the provided caimss.

4.3.3 Joint probability in HMRF

The joint probability ofX, Y, and®, givenC, in the described HMRF model can be factor-

ized as follows:

Pr(X,Y,0|C) = Pr(©|C) Pr(Y|©,C) Pr(X|Y,0,C) (4.5)

The graphical plate model (Buntine, 1994) of the dependé&etereen the random vari-
ables in the HMREF is shown in Fig. 4.2, where the clear nodpsesent the hidden vari-
ables, the shaded nodes are the observed variables, totedifmks show dependencies

between the variables, while the lack of an edge between anahles implies conditional
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independence. The prior over the parame®@ris independent of the constrairts i.e.,
P(O|C) = P(©). The probability of observing the label configurati¥ndepends on the
constraintsC but is independent of the current generative model paramé&eso that
P(Y|0,C) = P(Y|C). Observed data points corresponding to variablese generated us-
ing the model paramete®based on cluster labe¥sand are independent of the constraints
C, so thatP(X]Y,0,C) = P(X|Y,®). The variables( are assumed to be mutually indepen-
dent: eaclx; is generated individually from a conditional probabilifgibution PEx|y, ©).

Then, the conditional probability PX|Y,©,C) can be written as:
n
Pr(X]Y,0,C) = Pr(X|Y,0) = ]_! p(Xilyi, ©), (4.6)
1=

where p(-|yi, ©) is the probability density function for thﬁh cluster, from whichx; is
generated. This probability density is related to the eluisy distortion measurB, as
described in Sec. 4.3.4.

From Eqgns. (4.3), (4.5), and (4.6), and using the indeparelassumptions, it fol-

lows that maximizing the joint probability on the HMRF is é¢plent to maximizing:

PIX.Y.0) - Pr©) (Fem(~ 5 vii) ) ([ptn.0) @7

GjeC

The joint probability in Eqn. (4.7) has 3 factors. The firsttéa describes a prior probability

distribution over the model parameters. The second fasttira conditional probability of
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observing a particular label configuration given the predidonstraints, effectively assign-
ing a higher probability to configurations where the clustesignments do not violate the
constraints. Finally, the third factor is the conditionedlpability of generating the observed
data points given the labels and the parametersaimum likelihoodML) estimation was
performed on the HMRF, the goal would have been to maximizetéinm in isolation.
Overall, maximizing the joint HMRF probability in Eqn. (4.7s equivalent to
jointly maximizing the likelihood of generating data pairftom the model and the proba-

bility of label assignments that respect the constraints.

4.3.4 Semi-supervised clustering objective function on HRF

Egn. (4.7) suggests a general framework for incorporatmgstraints into clustering. A
particular choice of the conditional probabilip(-|y,®) is directly connected to the choice
of the distortion measure appropriate for the clusterisg.ta

When considering the conditional probabilipy-|y, ©) — the probability of generat-
ing a data point from thg" cluster — we restrict our attention to probability densitieom
the exponential family, where the expectation parametaesponding to thé!" cluster is
K, the mean of the points of that cluster. Using this assumgiad the bijection between
regular exponential distributions and regular Bregmarrgdjgnce (Banerjee et al., 2004),
the conditional density for observed data can be repredeste

p(x[y1,©) = %exp(Dm,uh)), 4.8)
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whereD(x, ) is the Bregman divergence betwegnand p,, corresponding to the ex-
ponential densityp, andZg is the normalizer. Different clustering models fall intasth

exponential form:

e If x; and, are vectors in Euclidean space, ddds the square of the, distance
(D(%, Hn) = [Ix — uhHZ), then the cluster conditional probability is a Gaussiarhwit

unit covariance (Kearns et al., 1997);

e If X, and, are probability distributions anb is the KL-divergence(D(xi,ph) =
zﬂ,zlximlog %}) then the cluster conditional probability is a multinomikstribu-

tion (Dhillon & Guan, 2003).

The relation in Eqgn. (4.8) holds evenlif is not a Bregman divergence but a di-
rectional distance measure like cosine distance. For eeanip and u, are vectors of
unit length andD is one minus the dot-product of the vectc@ts(xi,uh) =1- W)
then the cluster conditional probability is a von-Misesheis(vMF) distribution with unit
concentration parameter (Banerjee et al., 2003), whickserially the spherical analog of
a Gaussian.

Putting Egn. (4.8) into Eqn. (4.7) and taking logarithmsegithe following cluster

objective function, minimizing which is equivalent to manzing the joint probability over

the HMRF in Egn. (4.7):

Jhmrf-kmeans = Z( D(Xi,llyi) + Z V(ia J) - IOg PI’(O) + IOgZ+ IOgZO (4-9)
X € cjeC
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Thus, the task is to minimizé,mr-kmeansOVver the hidden variables and® (note that given

Y, the mean$/ = {uh}ﬁzl are uniquely determined).

4.4 The HMRF-KMeans algorithm

Since the cluster assignments and the generative modehptes are unknown in a clus-
tering setting, minimizing Eqn. (4.9) is an “incompleteaaroblem”. A popular solution

technique for such problems theExpectation MaximizatiofEM) algorithm (Dempster

et al., 1977). The KMeans algorithm (MacQueen, 1967) is kntwbe equivalent to the
EM algorithm with hard clustering assignments, under @easumptions (Kearns et al.,
1997; Basu et al., 2002; Banerjee et al.,, 2004). This sectastribes a KMeans-type
hard partitional clustering algorithm, HMRF-KBANS, that finds a local minimum of the

semi-supervised clustering objective functif-kmeansin EQn. (4.9).

4.4.1 Approximations

Before describing the details of the clustering algorithitris important to consider the
normalizer components: the MRF normalizer Iognd the distortion function normalizer
logZo in Egn. (4.9). Estimation of the MRF normalizer cannot befqraned in closed
form, and approximate inference methods must be employetbfaputing it (Wainwright
& Jordan, 2003). Estimation of the distortion normalizeg4g depends on the distortion

measureD used by the model. This chapter considers three distortieasores: squared
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Euclidean distance, cosine distance, and Kullback-Lei{&) divergence. For Euclidean
distanceZo can be estimated in closed form, and this estimation is pagd while min-
imizing the clustering objective functiofhmrt-kmeansin EQqn. (4.9). For the other distortion
measures, estimating the distortion normalizgicannot be performed in closed form, and
approximate inference must be again used.

Since approximation methods can be very expensive conigugdlly, two simpli-
fying assumptions can be made: the MRF normalizer may beidenesl to be constant
in the clustering process, and the distortion normalizey iv& assumed constant for all
distortion measures that do not provide its closed-forrmede. With these assumptions,
the objective functionfhmr-kmeansin Eqn. (4.9) no longer exactly corresponds to a joint
probability on a HMRF. However, minimizing this simplifiedjective has been shown to
work well empirically (Bilenko, Basu, & Mooney, 2004; Bafilenko, & Mooney, 2004).
However, if in some application it is important to preserfre semantics of the underlying
joint probability model, then the normalizefsandZo must be estimated by approximation
methods.

The prior term log Ri©), which was present in Egn. (4.9) and the subsequent equa-

tions, can be expressed as follows:

log P(®) = log(Pr(M)).

The prior P(M) over the cluster centroids is assumed to be uniform, andisaeim can
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be dropped fromfhmri-kmeans With these approximations, the semi-supervised clusjeri

objective function can be expressed as:

Jhmrt-kmeans = Z( D(Xi, ;) + z Wij + z Wij . (4.10)
Xe (%% )€CmL (%, )€CeL
st. Yi#Y; st. yi=Yj

4.4.2 EM framework

Jhmri-kmeans€@n be (locally) minimized by a KMeans-type iterative altion that we call
HMRF-KMEANS. The outline of the algorithm is presented in Fig. 4.3. Theibalea of
HMRF-KMEANS is as follows: the constraints are used to get good initiilim of the
clustering. Then in the E-step, given the current clustpregentatives, every data point is
re-assigned to the cluster which minimizes its contributio %mr-kmeans 1N the M-step,
the cluster representativéd are re-estimated from the cluster assignments to minimize
Jhmrf-kmeansfOr the current assignment.

Effectively, the E-step minimizeg mrt.kmeansOVer cluster assignments, and the
M-step minimizeshmr-kmeansOVer cluster representativéé. The E-step and the M-step
are repeated till a specified convergence criterion is mhciThe specific details of the

E-step and M-step are discussed in the following sections.

4.4.3 Initialization

Good initial centroids are essential for the success oftjgaral clustering algorithms such

as KMeans. For HMRF-KMANS, a two stage initialization process is used to get good
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Algorithm: HMRF-KMEANS

Input: Set of data pointX = {x;}{,, number of clusterk, set of constraints
C, constraint violation cost/, distortion measur®.

Output: Disjoint k—partitioning{xh}ﬁ:1 of X such that objective functiofhmrt-kmeans
in Egn. (4.10) is locally minimized.

Method:

1. Initialize thek clusters centroid$p1(10)}ﬁ:1 usingC, set t« 0.

2. Repeat untitonvergence

2a. E-step : Given centroidsvlV) = {pﬁf)}'ﬁzl, re-assign cluster labels

YD = gyt n_, onX to Minimize fhmri-kmeans
2b. M-step : Given cluster label¥ (1), re-calculate centroidsl (+1)

to minimize Jhmri-kmeans

2c. t+ (t+1)

Figure 4.3: HMRF-KMeans algorithm
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centroids from both the constraints and the unlabeled data.

Neighborhood inference: At first, the transitive closure of the must-link con-
straints is taken to get connected components consistipgiofs connected by must-links.
Let there bex connected components, which are used to createighborhoods. These
correspond to the must-link neighborhoods in the MRF overhildden cluster variables.

Cluster selection: The A neighborhood sets produced in the first stage are used
to initialize the HMRF-MeANS algorithm. IfA =k, A cluster centers are initialized with
the centroids of all thé neighborhood sets. K < k, A clusters are initialized from the
neighborhoods, and the remainikg- A clusters are initialized with points obtained by
random perturbations of the global centroidXaffollowing the methodology of Dhillon et
al. (Dhillon et al., 2001). 1A > k, a weighted variant of farthest-first traversal (Hochbaum &
Shmoys, 1985) is applied to the centroids of Aheeighborhoods, where the weight of each
centroid is proportional to the size of the correspondinigm@orhood. Weighted farthest-
first traversal selects neighborhoods that are relatialapart as well as large in size, and
the chosen neighborhoods are set asktimitial cluster centroids for HMRF-KMANS.

Overall, this two-stage initialization procedure is aletéake into account both
unlabeled data and constraints to obtain cluster repratsesg that provide a good initial

partitioning of the data set.
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444 E-step

In the E-step, assignments of data points to clusters arategdising the current estimates
of the cluster representatives. In the general unsuperiddeans algorithm, there is no
interaction between the cluster labels, and the E-stepiis@eassignment of every point to
the cluster representative that is nearest to it accorditiget clustering distortion measure.
In contrast, the HMRF model incorporates interaction betwihe cluster labels defined by
the random field over the hidden variables. As a result, cdimgpthe assignment of data
points to cluster representatives to find the global mininudithe objective function, given
the cluster centroids, is computationally intractableng aon-trivial HMRF model (Segal,
Wang, & Koller, 2003a).

There exist several techniques for computing cluster agségts that approximate
the optimal solution in this framework. In this section wéldw the iterated conditional
modes (ICM) approach (Besag, 1986; Zhang et al., 2001),hwikia greedy strategy to se-
guentially update the cluster assignment of each pointadgieping the assignments for the
other points fixed. Global methods of collective inferentthie E-step include loopy belief
propagation (Pearl, 1988; Segal et al., 2003a) and linaagramming relaxation (Klein-
berg & Tardos, 1999), which are described in Appendix A.1 Artirespectively. As will
be shown by experiments in Sec. 4.5.4, the inexpensive gi€ad algorithm gives a clus-
tering accuracy that is comparable to the expensive glgi@boaimation techniques and it

is computationally more efficient.
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ICM performs sequential cluster assignment for all the fsaimrandom order. Each
point x; is assigned to the cluster representajiye¢hat minimizes the point’s contribution

to the objective functiohmrf-kmeanéXi, Hn):

Jnmrf-kmeandXi, bh) = D(Xi, bn) + z - Wi + z - Wij, (4.11)
(%%} )ECL (%i,%])€Ce.
st. YiZY; St Yi=Yj

whereCl,, andC, are the subsets @i andCc, respectively in which appears in the
constraints.

The optimal assignment for every point minimizes the digiarbetween the point
and its cluster representative (first term Bfnri-kmeang @long with incurring a minimal
penalty for constraint violations caused by this assigrin®@econd term Offmrf-kmeans-
After all points are assigned, they are randomly re-ordemed the assignment process is
repeated. This process proceeds until no point changelsifiecassignment between two
successive iterations.

Overall, the assignment of points to clusters incorporgtasnise supervision by
discouraging constraint violations while minimizing thistdnce between the points and

their corresponding centroids, thereby getting a desrphltitioning of the data.

4.45 M-step

In the M-step, the cluster centroidid are re-estimated from points currently assigned to

them, to decrease the objective functi®pr-kmeansin Eqn. (4.10). For Bregman diver-
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gences and cosine distance, the cluster representatwaatel in the M-step of the EM
algorithm is equivalent to the expectation value over thmtgan that cluster, which is
equal to their arithmetic mean (Banerjee et al., 2003, 2084dlditionally, it has been ex-
perimentally demonstrated that while clustering withritisition-based measures, e.g., KL
divergence dk, ), smoothing cluster representatives by a prior using aaétéstic anneal-
ing schedule leads to considerable improvements (Dhilldaugan, 2003). With smoothing
controlled by a parameter, each cluster representatipgis estimated as follows whetdy

is the distortion measure:

KL 1 xex X 1—)
i —1+a< AR (4.12)

For directional measures like cosine distarmtgd, each cluster representative is the arith-
metic mean projected onto unit sphere (Banerjee et al.,)2@&ntroids are estimated as

follows whendqqs is the distortion measure:

(coy :

WS I Exex, %l

4.4.6 Convergence oHMRF-KMEANS

Theorem: TheHMRF-KMEANS algorithm converges to a local minima @fnrt-kmeans
Proof: The HMRF-KMEANS algorithm alternates between updating the assignment of

points to clusters and updating the cluster centroids. eSalicupdates ensure a decrease
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in the objective function, each iteration of HRMF-KMNs monotonically decreases the
objective function (or it remains the same). Let us inspachestep in the update to ensure
that this is indeed the case.

For analyzing the cluster assignment step, let us consiger &.10). Each point
X moves to a new clustdronly if the following component, contributed by the poitis

decreased with the move:

DOGHa)+ > Wi+ Y wy.
(%:%)) €CuL (%) €Cc,
st. Vi St. Yi=yj

Given a set of centroids, the new cluster assignment of pewit decreaselmr-kmeansOr
keep it unchanged.

For analyzing the centroid re-estimation step, let us ctmmsin equivalent form of

Eqgn. (4.10):
k
JIhmrf-kmeans= Z Z(,, D(Xi, Hn) + Z Wij + z Wij . (4.14)
h=1x¢ (%%} ) €Ci. (%% )€Ce,
SLYiAY] SLYi=Y;

Each cluster centroifl, is re-estimated by taking the mean of the points in the fpamti;,,
which minimizes the componert, cx, D(Xi,h) Of Jhmrf-kmeansin EQn. (4.14) contributed
by the partitionX,, for any Bregman divergende (Banerjee et al., 2004). The constraint
potential and the prior term in the objective function do take a part in centroid re-

estimation, because they are not functions of the cent8udgiven the cluster assignments,

72



Inmrf-kmeanswill decrease or remain the same in this step.

Hence the objective function decreases (or remains the)saftee every cluster as-
signment and centroid re-estimation step. Now, note tlebtjective function is bounded
below by a constant. Being the negative log-likelihood ofrababilistic model with the
normalizer terms,jhmri-kmeansiS bounded below by zero. Even without the normalizers,
the objective function is bounded below by zero, since tlstodion and potential terms
are non-negative. SiNC®mr-kmeansiS bounded below, and HMRF-KFEANS results in a
decreasing sequence of objective function values, thewdguence must have an accumu-
lation point. The accumulation point in this case will be aéfi¥point of Jhmrf.kmeansSince
neither updating the assignments or the centroids canefudibcrease the value of the ob-
jective function. As a result, the HMRF-K®ANS algorithm will converge to a fixed point
(local minimum) of the objective. In practice, convergeneae be determined if subsequent

iterations of HMRF-KMEANS result in insignificant changes Mmrf-kmeans B

4.5 Experiments

This section describes the experiments we performed to deinade the effectiveness of

HMRF-KMEANS.
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4.5.1 Data sets

Experiments were conducted on 3 data sets from the UCI riepp$Blake & Merz, 1998):
Iris, and randomly sampled subsets fromiigits andLettershandwritten character recog-
nition data setslris is the same data set that was described in Sec. 3.5.1Digits and
Letters we chose two sets of 3 classes eadhl, L } from Lettersand{3, 8, 9 from Dig-
its, sampling 10% of the data points from the original data sstslomly. These classes
were chosen since they represent difficult visual discratiim problems.Digits has 317
data points in 16 dimensions, ahdttershas 227 points in 16 dimensions.

When clustering sparse high-dimensional data, e.g., dments represented us-
ing the vector space model, it is particularly difficult tasler small data sets. This is due
to the fact that clustering algorithms can easily get stadbcal optima on such data sets,
which leads to poor clustering quality. In previous studigh SP-KMeans algorithm ap-
plied to document collections whose size is small compaoetthé dimensionality of the
word space, it has been observed that there is little rétocaf documents between clus-
ters for most initializations, which leads to poor clustgrguality after convergence of the
algorithm (Dhillon & Guan, 2003).

This scenario is likely in many realistic applications. Esample, when clustering
the search results in a web-search engine like Vivisirypically the number of webpages

that are being clustered is in the order of hundreds. Howthedimensionality of the

Lhttp://www.vivisimo.com
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feature space, corresponding to the number of unique wardh the webpages, is in the
order of thousands. Moreover, each webpage is sparse jistocgains only a small number
of all the possible words. Supervision in the form of paievionstraints (e.g., must-link
constraints derived from co-occurrence statistics in agbl can be beneficial in such cases
and may significantly improve clustering quality.

To demonstrate the effectiveness of our semi-supervigesiering framework, we
consider 3 data subseBsNews-Different-1003-News-Related-10a8nd 3-News-Similar-
100derived from the20-Newsgroupsata set. The only difference of the 3-newsgroup data
subsets from the ones described in Sec. 3.5.1 is that thbsetsuvere derived from the
reduced data s&mall-20-Newsgroupsvhile the data subsets explained in Sec. 3.5.1 were
derived from the originaR0-Newsgroupsata set.

These 3 data subsets we use in these experiments have thetehatics of being
sparse, high-dimensional, as well as having a small numiggoints compared to the di-
mensionality of the space. The vector-space modé&ews-Similar-10thas 300 points
in 1864 dimensions3-News-Related-100as 300 points in 3225 dimensions, @wllews-
Different-100had 300 points in 3251 dimensions. The cluster3-Mews-Different-10@re

more well-separated than those3fNews-Similar-10@nd3-News-Related-100

4.5.2 Methodology

We generated learning curves using 20 runs of 2-fold cratidation for each data set for

studying the effect of constraints in clustering: we sa&ldcb0% of the data set to be set
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aside as the test set at any particular fold, so that on sra@lsts the improvements are sta-
tistically significant. The different points along the leng curve correspond to constraints
that are given as input to the semi-supervised clusteriggrithm. These constraints are
obtained from the training set corresponding to the remgibi0% of the data by randomly
selecting pairs of points from the training set, and crgatimust-link or cannot-link con-
straints depending on whether the underlying classes aiih@oints are same or different.
Unit constraint cost8V were used for all constraints, original and inferred, sitieedata
sets did not provide individual weights for the constraifitke clustering results were eval-
uated using the NMI measure, which was described in Sec.Thd.clustering algorithm
was run on the whole data set, but NMI was calculated only erteéht set. The learning
curve results were averaged over the 20 runs.

In our experiments, we compared the proposed HMRFg&Ms algorithm with
its ablations. In these ablation studies, each compongdtMR F-KMEANS was knocked-
off to study the impact of that component of the algorithm.eTbllowing variants were

compared:

¢ HMRF-KMEANS-I-C is the complete HMRF-KMANS algorithm that includes
use of supervised data in initialization (), as describe&éc. 4.4.3, and incorpo-

rates constraints in cluster assignments (C) as describ®dd. 4.4.4;

¢ HMRF-KMEANS-I is an ablation of HMRF-KMEANS that uses pairwise supervi-

sion for initialization only, but does not perform constradl assignment;

76



e KMEANS is the unsupervised K-Means algorithm.

4 5.3 Results and discussion
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Figure 4.4: Clustering results fok,c on Iris data set

Figs. 4.4-4.6 show the results of the ablation experimemtsduared Euclidean
distancedq o, Figs. 4.7-4.9 demonstrate the results for experimentsevt@sine similarity
dcos Was used as the distortion measure, while Figs. 4.10-4.6& #e results with KL-
divergencealk, .

As the results demonstrate, the full HMRF-KMNS algorithm outperforms the
ablated versions of HMRF-KMANS for deye deos as well agdy . On the low-dimensional
data sets, the HMRF-KMANS-1-C outperforms individual seeding (HMRF-KBANS-1)

and unsupervised clustering (KBMNS). Superiority of semi-supervised over unsupervised
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Figure 4.5: Clustering results fog,c on Digits-389data set

clustering illustrates that providing pairwise consttgiis beneficial to clustering quality.
For the high-dimensional data, the relative clusterindgarances of HMRF-KMANS-1-

C and HMRF-KMeANS-1 indicate that using supervision for initializing clustepresenta-
tives is highly beneficial, while the constraint-sensitbhgster assignment step does not lead
to significant additional improvements fdges For dx, HMRF-KMEANS-I-C outper-
forms HMRF-KMEANS-I on 3-News-Different-10Fig. 4.10) and3-News-Similar-100
(Fig. 4.12) which indicates that incorporating constrsiintthe cluster assignment process
is useful for these data sets. This result is reverse@fdews-Related-100-ig. 4.11), im-
plying that in some cases using constraints in the E-stepbeaynnecessary, which agrees
with previous results on other domains (Sec. 3.5). Howeémnegrporating supervised data

in both initialization and cluster assignment always letadsubstantial improvement over
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Figure 4.6: Clustering results fdg,c on Letters-IJLdata set

unsupervised clustering. The improvements of the full HMRI EANS over KMEANS
are statistically significant on all parts of the learningveu(except for O constraints) for a
two-tailed paired-test (p < 0.005).

In realistic application domains, supervision in the forfnconstraints would be
in most cases provided by human experts, in which case it itant that any semi-
supervised clustering algorithm performs well with a smalinber of constraints. HMRF-
KM EANS-I-C starts performing well early on in the learning curvedas therefore a very

appropriate algorithm to use in actual semi-supervised dastering systems.
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4.5.4 Comparison of inference techniques

We empirically compared the greedy ICM inference technigita the two global infer-
ence techniques (loopy belief propagation and linear mogning relaxation) for collec-
tive assignment of instances to clusters, the details ofhvare described in Appendix A.
Fig. 4.13 is the learning curve for tHes data set. As the graph demonstrates, global
inference methods such as loopy belief propagation (BP)iaadr programming (LP) re-
laxation outperform the greedy approaches when a limitedlaun of pairwise constraints

is provided. However, as the number of provided constraimieases, returns from these
computationally expensive methods diminish; after a paldr number of constraints, ICM
performs no worse than the global approximate inferencénogist A note on computa-
tional requirements: in our experiments, we noticed tha lZas about 10-15 times faster

than the BP and LP methods for most data sets.

4.6 Chapter summary

In this chapter, we have shown how constraints can be usedpimve the performance of
clustering. We have a probabilistic formulation based odddn Markov Random Fields
(HMRFs) that leads to a semi-supervised clustering objedtinction derived from the
joint probability of observed data points, their clustesigesments, and generative model
parameters. We propose an EM-style clustering algorithtdRfF-KMEANS, that finds

a local minimum of this objective function. HMRF-KBANS can be used to perform
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semi-supervised clustering using a broad class of distoftinctions, namel8Bregman di-
vergencegBanerjee et al., 2004), which include a wide variety of ukeistances, e.g.,
KL divergence, squared Euclidean distance, and Itakuii@-Sigstance. In a number of
applications, such as text clustering based on a vectaespedel, a directional distance
measure based on the cosine of the angle between vectorsasapmopriate (Baeza-Yates
& Ribeiro-Neto, 1999). Clustering algorithms have beeneligped that utilize distortion
measures appropriate for directional data (Dhillon & Mad?@01; Banerjee et al., 2003),
and the HMRF-KMeANS framework naturally extends them. We also perform experi-
ments on both low-dimensional and high-dimensional dats teeshow the effectiveness

of the HMRF-KMEANS algorithm. Overall, our results show that the HMRF-kNMNS

84



algorithm effectively incorporates constraints and ualaed data in both the initialization
and assignment stages, each of which improves the clugtguality. We have also shown
how ICM, a greedy technique of assigning points to clustethe E-step of the algorithm,
is efficient and comparable in accuracy to more expensiveatjlcollective inference tech-

niques.
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Chapter 5

Active Learning for Constraint

Acquisition

In the semi-supervised setting where training data is neiadly available, getting con-
straints on pairs of data points may be expensive. In thiptehawe present an active
learning scheme for the HMRF model, which can improve chirggeperformance with as
few queries as possible (Basu, Banerjee, & Mooney, 2004qrder to get pairwise con-
straints that are more informative than random in the HMREehove develop a 2-phase
active learning scheme for selecting pairwise constrdgtasking queries an interactive

user-driven semi-supervised clustering framework.
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5.1 Problem definition

Formally, the active learning scheme has access to a (esgebracle — the user. The
algorithm can pose a constant number of pairwise queridsetotacle, wanting to know
the type of constraint on a given pair of instan¢gsx;). The oracle can assign a must-link
or cannot-link to a given pair; the oracle can also givdoa’t-knowresponse to a query,
in which case that response is ignored (the pair is not cersitlas a constraint) and that
qguery is not posed again later. The goal is to ask the minimaiber of queries to get
constraints, which, when used to cluster the data with HMKRWEANS, will give a better
constrained clustering of the data than that obtained usindomly chosen constraints.

The motivation for using our active learning algorithm fetexting good constraints
is as follows. In Sec. 3.3.2, it was observed that initiaigkKMeans with centroids esti-
mated from a set of labeled examples for each cluster giggsfisiant performance im-
provements. Since good initial centroids are very critioalthe success of greedy algo-
rithms such as KMeans, the same principle is followed forghewise case: the goal in
active learning is to get as many points as possible peretlstoportional to the actual
cluster size) by asking pairwise queries, so that HMRFH#Ws is initialized from a very
good set of centroids. A similar argument can be used to @uetithe active learning algo-
rithm for other non-Gaussian exponential distributions.

The proposed active learning scheme has two phasgsLd&RE and GONSOLI-

DATE, which are discussed in detail in the following sections.
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5.2 Exploration

Algorithm: EXPLORE
Input: Set of data pointX = {x;}{;, access to an oracle that answers pairwise
queries, number of clusteks total number of querie®.
Output: A < k disjoint neighborhoodsl = {Np}A:1 corresponding to the true
clustering ofX with at least one point per neighborhood.
Method:
1. Initialize: set all neighborhoods, to null
2. Pick the first poink at random, add tdl, A + 1
3. While queries are allowed and< k
X «+—point farthest from the points in the existing neighborrebd
if, while pairing x with a point from each existing neighborhood and querying,
it is found thatx is cannot-linked to all existing neighborhoods
A < A+ 1, start a new neighborhodd, with x

else

addx to the neighborhood with which it is must-linked

Figure 5.1: Explore algorithm

The ExPLORE (Fig. 5.1) phase explores the given data using farthestufargersal
to getk pairwise disjoint non-null neighborhoods as fast as péssikith each neighbor-

hood belonging to a different cluster in the underlying tdusg of the data. Note that even
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if there is only one point per neighborhood, this neighborhstructure defines a correct
skeleton of the underlying clustering.

The basic idea of farthest-first traversal of a set of pomte findk points such that
they are far from each other. In farthest-first traversaliagtiag point is first selected at
random. Then, the next point farthest from it is chosen anigddo the traversed set. After
that, the next point farthest from the traversed set (udiregstandard notion of distance
from a set:d(x,S) = minycsd(x,X)) is selected, and so on. Farthest-first traversal gives
an efficient approximation of thiecenterproblem (Hochbaum & Shmoys, 1985), and has
also been used to construct hierarchical clusterings wetfopmance guarantees at each
level of the hierarchy (Dasgupta, 2002).

In EXPLORE, while queries are still allowed ardpairwise disjoint neighborhoods
have not yet been found, the pomfarthest from all the existing neighborhoods is chosen
as a candidate for starting a new neighborhood. Queriesaaedpby pairingk with an
arbitrary point from each of the existing neighborhoods.x 1§ cannot-linked to all the
existing neighborhoods, a new neighborhood is startedxvitha must-link is obtained for
a particular neighborhoodt,is added to that neighborhood. This continues till the allyor
runs out of queries dt pairwise disjoint neighborhoods have been found. In thiedagse,

active learning enters the consolidation phase.
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Algorithm: CONSOLIDATE

Input: Set of data pointX = {x;}{.,, access to an oracle that answers pairwise
gueries, number of clustekstotal number of querie®, k disjoint neighborhood
corresponding to true clustering ¥fwith at least one point per neighborhood.

Output: kdisjoint neighborhoods corresponding to the true clusteaf X with
higher number of points per neighborhood.

Method:

1. Estimate centroid§p }i_, of each of the neighborhoods

2. While queries are allowed

2a. randomly pick a point not in the existing neighborhoods

2b. sort the indice with increasing distancelx — p||?

2c. forh=1tok

queryx with each of the neighborhoods in sorted order tithast-link is

obtained, add to that neighborhood

Figure 5.2: Consolidate algorithm
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5.3 Consolidation

If we reach the end of EPLORE without running of out queries, then at least one point has
been obtained per cluster. If there are any remaining quethey are used to consolidate
this structure. The cluster skeleton obtained froRPEORE is used to initializek pairwise
disjoint non-null neighborhoodﬁ\lp}'gzl. Then, given any point not in any of the existing
neighborhoods, we will have to ask at m@st- 1) queries by pairing« up with a member
from each of the disjoint neighborhools to find out the neighborhood to whictbelongs.
This principle forms the second phase of our active learmilggrithm, and we call the
algorithm for this phase GNSOLIDATE. In this phase, we are able to get the correct cluster
label ofx by asking at mostk — 1) queries.

The consolidation phase starts when at least one point lessdigained from each
of thek clusters. The basic idea indBISOLIDATE (Fig. 5.2) is as follows: since there is at
least one labeled point from all of the clusters, the progeghmorhood of any unlabeled
pointx can be determined within a maximum(&— 1) queries. The queries will be formed
by taking a pointy from each of the neighborhoods in turn and asking for thel labehe
pair (x,y) until a must-link is obtained. Either a must-link reply istained in(k — 1)
queries, or if we get cannot-link replies for tfle— 1) queries to th¢k — 1) neighborhoods,
we can infer that the point is must-linked to the remainingghieornood. Note that it is
practical to sort the neighborhoods in increasing ordenefiistance of their centroids from

X so that the correct must-link neighborhood fois encountered sooner in the querying
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process.

5.4 Motivation of EXPLORE VS CONSOLIDATE

Our exploration phase is motivated by a property of the éatfirst traversal, applicable
to all bounded symmetric distance functiah&,y). Considering 2 disjoint balls, defined
in terms of the distance function, of uniform probabilityndéy (see Appendix B.1). The
balls are of unequal size, implying unequal probability sad&the ratio of the probability
mass of the smaller to the larger ball is lower bounde(% Iiyr a positive integef, then the
farthest-first scheme is sure to get one point from each ob#fis in at most traversals
(see Appendix B.3). Motivated by this propertyx®i ORE uses farthest-first traversal for
getting a skeleton structure of the neighborhoods, andinetes when it has run out of
gueries, or, when at least one point from all the clusterskas labeled.

Both ExPLORE and GONSOLIDATE add points to the clusters at a good rate. The
EXPLORE phase gets at least one point from each oktbhaderlying clusters in maximum
k(g) queries, while © NSOLIDATE gets one new point from each cluster in approximately

k?logk queries with high probability (see Appendix B.3).08SOLIDATE therefore adds

_k

points to clusters at a faster rate thanPEORE by a factor ofO(55x

), which is validated
by our experiments in Sec. 5.5. Note that this analysis ib&tenced clusters, but a similar
analysis with unbalanced clusters gives the same impravefaetor.

When the right number of clusteksis not known to the clustering algorithrk,is
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also unknown to the active learning scheme. In this casg, BRPLORE is used while
queries are allowed. XPLORE will keep discovering new clusters as fast as it can. When
it has obtained all the clusters, it will not have any way obwing this. However, from
this point onwards, for every farthest-firsit draws from the data set, it will always find

a neighborhood that is must-linked to it. Hence, after discog all of the clusters, ¥&-
PLORE will essentially consolidate the clusters too. Howevergwk is known, it makes
sense to invoke GNSOLIDATE since (1) it adds points to clusters at a faster rate than E
PLORE, and (2) it picks random samples following the underlyingaddistribution, which

is advantageous for estimating good centroids (e.g., ©ffdoounds on the centroid esti-
mates exist, as shown in Eqn. (3.4)), while samples obtaiisérty farthest-first traversal

may not have such properties.

5.5 Experiments

In this section, we outline the details of our experimentdeoxt and UCI data and analyze
the results.
5.5.1 Data sets

In our experiments with high-dimensional text documents, wged the 3 small subsets
of 20-Newsgroups-1008escribed in Sec. 4.5.1, ara)-Newsgroups-1Q0wvhich was de-

scribed in Sec. 3.5.1. Another data set we used in our expaténs a subset dflas-
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sic3 (Dhillon & Modha, 2001) containing 400 documents — 10@nfield  documents
from aeronautical system papers, 10@8dline documents from medical journals, and
200Cisi documents from information retrieval papers. T@Giassic3-subsedata set was
specifically designed to create clusters of unequal siz&has 400 points in 2897 dimen-
sions. Similarities between data points in the text data wetre computed using cosine
similarity, and all the text data sets were pre-processkalfing the methodology outlined
in Sec. 2.5.

For experiments on low-dimensional data, we selectedrihelata set described in
Sec. 3.5.1. The Euclidean metric was used for computinguisis between points in this

data set. Théris data set was not pre-processed in any way.

5.5.2 Methodology

For all of the algorithms, on each data set, we generateditepcurves with 10-fold cross-
validation, where the x-axis represents the number of psénaonstraints given as input to
the algorithms. For non-active HMRF-KBANS the pairwise constraints are selected at
random, while for active HMRF-KMANS the pairwise constraints are selected using our
active learning scheme. For studying the effect of paine@estraints and active learning,
10% of the data set is set aside as the test set at any partiolda The training sets at
different points of the learning curve are pairwise constsaobtained from the remaining
90% of the data, with increasing number of pairwise constsabeing given as input to the

clustering along the learning curve. The clustering atbariis run on the whole data set,
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and the corresponding objective function is reported. NKU pairwise F-measure (see
Sec. 2.4) are calculated only on the test set, from which mstcaints were supplied. We
also show results for the objective functidin.kmeans The results at each point on the
learning curve are obtained by averaging over 10 folds. Wendt continue the learning
curve beyond 1000 queries (5000 &®-Newsgroups-1Q0since the general nature of the
results was evident in this range. Moreover, in practicéivadearning applications, it is

unrealistic to expect the user to answer even 1000 queries.
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5.5.3 Results and discussion

The results of the experiments are shown in Figs. 5.3-5.iticeShe standard deviations of
NMI, pairwise F-measure and objective function values i plots were small for all the
data sets, they have not been shown in the plots to reducerclut

Choice ofw: We experimented with different values of the constraintghiepa-
rametemw. If wis set to 0, the algorithm is initialized with neighborhoatisived from the
given constraints and then normal KMeans iterations ardilfuwonvergence. This is simi-
lar to the SEDED-KM EANS algorithm outlined in Sec. 3.2, where the labeled data &eed
are used to only initialize the KMeans algorithm and are mseidun the following steps of
the algorithm.

If wis set to a very high value, the algorithm is initialized withighborhoods
derived from the given constraints and the constraints ibecbard constraints, since the
constraint cost violation component of thgnr-kmeansObjective function far supersedes its
distance component. This is similar to th®STRAINED-KM EANS algorithm outlined
in Sec. 3.2. In this algorithm, the seeds are also used faliné& the KMeans algorithm.
However, in the subsequent steps, the cluster labels oétitbdata are kept unchanged and
only the labels of the non-seed data are re-estimated.

If wis set to an intermediate value, the algorithm gives a trifdedween mini-
mizing the total distance between points and cluster cilstrand the cost of violating the

constraints. In the result plots in Figs. 5.3 and 5.4, HMRM+#&NS refers to running the
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algorithm with the intermediate value @f. The parametew can be chosen by the user
according to the degree of confidence in the constraintshasen to be a constant of the
same order as the average similarity (for SP-KMeans) ocawiigt (for Euclidean KMeans)
between pairs of points in the data set. Weveé&b be 0.001 for the text data sets and 1 for
Iris data set.

Thus, thew parameter acts as a tuning knob, giving us the continuum dastw
a SEeEDED-KMEANS-like algorithm on one extreme, where there is no guarantebeo
constraint satisfaction in the clustering, and @NSTRAINED-KM EANS-like algorithm on
the other extreme, where the clustering process is forcegsfect all the given constraints.
Note that we can selectively guarantee that any particalastcaint is satisfied throughout
the clustering iterations, by selecting a very high coroesling cost of constraint violation
for that particular constraint.

The comparative results of active and non-active algostiuintained for different
values ofw were similar for the data sets considered (see Figs. 5.3 &)d Bhis leads
us to conclude that proper initialization, using the caaists obtained by active learning,
gives much more benefit than satisfying the constraintsndutie algorithm. This point
is explained in more detail in the discussion below. In Fi§8-5.17, we only present the
results for the intermediate value wffor clarity of the plots.

Obijective function results: Let us consider a representative objective function plot
for a text data set clustered using SP-KMeans (Fig. 5.8)wfdch the objective function

increases along the learning curve. For Fig. 5.17, the tgefunction is decreasing along
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the learning curve since simple KMeans with Euclidean distavas used for this data set.

Note that for each objective function plot, the active and-aotive schemes have
the same number of must-link and cannot-link constraingsgipoint on the learning curve,
but the actual constraints they have may be different. Ttieee&nd the non-active schemes
are allowed to both choose their own sets of constraints tlemabjective function value
after running HMRF-KMEANS clustering depends on this choice. For active HMRF-
KM EANS, the constraints it chooses give it a better initializat{@rhich is discussed in
detail below), resulting in better value of the objectivadtion after running the clustering
algorithm.

Non-active schemesAs shown in Appendix B.2, if the number of random pairwise
constraints is low, the probability that theneighborhoods chosen for initialization are in
fact fromk different clusters is very low. Until this point on the learg curve, some of the
neighborhoods used to initialize HMRF-KBMNS can actually belong to the same cluster,
so that we may not get representatives from all the clustdnis. gives a poor initialization
of HMRF-KMEANS that may cause the algorithm to converge to bad local minaase-
guently, the clustering produced by HMRF-KMNS can be unstable, resulting in varying
pairwise F-measure and NMI values on the test set. Thigliitier can be observed in all
the Figs. 5.3-5.17. Beyond this point on the learning cunas-active HMRF-KMEANS
will most likely be initialized with points from each clusteSo after the initial jitter, the
performance of non-active HMRF-KBANS improves steadily along the learning curve

with respect to objective function, NMI and pairwise F-maas
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Active schemesiFor the active algorithms, we consistently get significargrove-
ments over the non-active algorithms for all data sets we lsansidered. Firstly, we see
the jitter only in the very early part of the learning curvehi§'is because the ®LORE
phase creates only one neighborhood from each cluster amichwes untilk pairwise dis-
joint neighborhoods are found, creating all the neighbodsowithin a small number of
gueries (see Appendix B.3). The jitter is so early in therd@ay curve that it cannot be
even observed in the plots. In Fig. 5.9, the jitter disappadter about the first 20 queries.
The ExPLORE phase of the active selection algorithm guarantees thapdiravise dis-
joint neighborhoods inferred from the constraints belamgifferent clusters in the actual
underlying clustering, and so these neighborhoods wowle g good initializations for
the clustering algorithm. The @\SOLIDATE phase grows th& pairwise disjoint neigh-
borhoods already created, so that when the active learmingnse runs out of queries,
HMRF-KMEANS is initialized using centroids constructed from good nbmimnoods. The
improvement of the active scheme is more pronounced for iffieutt high-dimensional
text data sets, e.g., Fig. 5.3-5.14.

From the above results, we conclude that active selectiqgraimfvise constraints,
using our two-phase active learning algorithm, signififaatitperforms random selection
of constraints.

Explore Vs Consolidate: We also ran some ablation experiments, comparing the
performance of the active HMRF-KEANS scheme with both EPLORE and GONSOLI-

DATE to active HMRF-KMEANS with EXPLORE only. We ran the ablation experiment on
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Figure 5.20: Comparison of Explore and Consolidate phasets wbjective function on
3-News-Different-100

the 3-News-Different-10@ata set. From the NMI result shown in Fig. 5.18, we can sde tha
running EXPLORE only in the active learning phase gives improvement oveslsemchoice

of constraints, but running bothXeLORE and GONSOLIDATE gives even better results.
So, both XPLORE and GONSOLIDATE are useful phases of the active learning algorithm.
However when the number of clusters is not known, just usirRgUBRE (as recommended

in Sec. 5.4) can give pretty good results, as demonstratédigoy.18.

5.6 Chapter summary

In this chapter, we have presented a new theoretically metivated method for actively

selecting good pairwise constraints for semi-supervidadi@ring. Experiments on text
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and UCI data show that our active learning scheme performts gell, giving significantly
steeper learning curves compared to random pairwise gueBeth phases of the active
learning algorithm are efficient and hence suitable forveald clustering applications, as

they can be easily scaled to large and high-dimensionalsgdisa

109



Chapter 6

Related Work

Several semi-supervised classification algorithms haweesshimprovements in classifica-
tion accuracy over purely supervised algorithms, e.gtraming (Blum & Mitchell, 1998),

transductive Support Vector Machines (SVMs) (Joachim®9)9and semi-supervised
EM (Ghahramani & Jordan, 1994; Nigam et al., 2000). In cabfrthis thesis discusses
semi-supervised clustering. The following sections aeticurrent and previous research

related to the work presented in this thesis.

6.1 Semi-supervised clustering with labels

In semi-supervised clustering with labeled data, previsosk has been done on the use of
labeled data to aid clustering by modifying clustering obje functions (Demiriz et al.,

1999), and using conditional distributions in an auxiliapace (Sinkkonen & Kaski, 2000).
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SEEDED-KM EANS and GONSTRAINED-KM EANS in Chapter 3 use the labeled data to ini-
tialize clustering. Previous work on cluster initializati includes comparisons of data-
dependent and data-independent initialization techsigiieila & Heckerman, 1998), and
estimation of the modes of the data distribution for gootidhization (Fayyad et al., 1998).
The importance of good initialization in clustering is wikfiown. In partitional cluster-
ing algorithms like EM (Dempster et al., 1977) or KMeans (IQaeen, 1967; Selim &
selection, taking the mean of the whole data and randombhyxéng to get initial cluster
centers (Dhillon et al., 2001), or runnikgmaller clustering problems recursively to initial-
ize KMeans (Duda et al., 2001). Some other interestingaiigtition methods include the
Buckshot method of doing hierarchical clustering on a sarnpthe data to get an initial set
of cluster centers (Cutting, Karger, Pedersen, & Tukey2198inning repeated KMeans
on multiple data samples and clustering the KMeans solsitiorget initial seeds (Fayyad
et al., 1998), and selecting tlkedensest intervals along each co-ordinate to gekttlas-
ter centers (Bradley, Mangasarian, & Street, 1997). Ouraggh is different from these

because we use labeled data to get good initialization €mteting.

6.2 Semi-supervised clustering with constraints

Previous research in semi-supervised clustering withtcainss focus on either constraint-

based or distance-based semi-supervised clustering. KND#ans is a constraint-based
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clustering algorithm that has a heuristically motivategeotive function (Wagstaff et al.,
2001). On the other hand, the model of semi-supervisederingtpresented in Chapter 4
has an underlying probabilistic model based on Hidden Mafkandom Fields. Bansal et
al. (Bansal, Blum, & Chawla, 2002), Blum et al. (Blum, LatferRwebangira, & Reddy,
2004) and Charikar et al. (Charikar, Guruswami, & Wirth, 2D8lso propose frameworks
for pairwise constrained clustering, but their model perf® clustering using only the con-
straints; in comparison, HMRF-KKEANS uses both constraints and an underlying distor-
tion measure between the points during semi-supervisestecing.

Research on distance-based semi-supervised clustetimgaiiwise constraints in-
cludes the work of Cohn et al. (Cohn et al., 2003), who usedignd descent for weighted
Jensen-Shannon divergence in the context of EM clusteXimgy et al. (Xing et al., 2003)
utilized convex optimization and iterative projectionsléarn a Mahalanobis distance for
K-Means clustering; the Redundant Component Analysis (R@dorithm used only must-
link constraints to learn a Mahalanobis distance usingeoptimization (Bar-Hillel et al.,
2003). Other methods include training a string-edit distansing Expectation Maximiza-
tion (EM) (Bilenko & Mooney, 2003), modification of the sqedrEuclidean distance using
the shortest-path algorithm (Klein et al., 2002), learningnargin-based clustering dis-
tortion measure using boosting (Hertz et al., 2004), anchieg a distance metric trans-
formation that is globally linear but locally non-linearl{@ng & Yeung, 2004). Spectral
learning (Kamvar, Klein, & Manning, 2003) is another methbadt utilizes supervision to

transform the clustering distance measure using spece#iads. All of these distance-
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learning techniques for clustering train the distance mmeafirst using only supervised
data, and then perform clustering on the unsupervised tatantrast the unified HMRF-
based semi-supervised clustering model, discussed birie@hapter 7, integrates distance
learning with the clustering process, and utilizes bothesuped and unsupervised data to
learn the distortion measure.

A model for semi-supervised clustering with constraintss yoaoposed by Segal
et al. (Segal et al., 2003a). This model isarkov networkhat combines a binary Markov
network derived from pairwise protein interaction data ardaive Bayes Markov network
modeling gene expression data. The HMRF framework propstdds thesis generalizes
that formulation by extending it to work with a broad classloftering distortion measures,
including Bregman divergences and cosine distance. In adsgn, the formulation of
Segal et al. considers only a Gaussian cluster conditiomddability distribution, which
corresponds to having Mahalanobis distance as the undgrtjiistering distance measure.

The HMRF-KMEANS algorithm is related to the EM algorithm for HMRF model-
fitting proposed by Zhang et al. (Zhang et al., 2001). Theudision of the HMRF-
EM algorithm was also restricted only to Gaussian conditiaffistributions, which has
been generalized in HMRF-KKERNS. Other recent research on constrained clustering
includes variational techniques for constrained clustgtising a graphical model (Hiu
et al., 2005), model-level constraints to uncover multgastraints in a dataset (Gondek,
Vaithyanathan, & Garg, 2005), and feasibility studies fastering under different types of

constraints (Davidson & Ravi, 2005).
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6.3 Active learning for constraint acquisition

Active learning in the classification framework is a longeied problem, where differ-

ent principles of query selection have been studied, esglation of the version space
size (Freund, Seung, Shamir, & Tishby, 1997), reductionrafentainty in predicted la-

bel (Lewis & Gale, 1994), maximizing the margin on trainingtal (Abe & Mamitsuka,

1998), finding high variance data points by density-weidhpeol-based sampling (Mc-
Callum & Nigam, 1998), etc. However, active learning tecfueis in classification are not
applicable in the clustering framework, since the basicedythg concept of reduction of

classification error and variance over the distributionaraples (Cohn, Ghahramani, &
Jordan, 1996) is not well-defined for clustering. In the yesuised setting, Hofmann et
al. (Hofmann & Buhmann, 1998) consider a model of activerlgy which is different from

ours — they have incomplete pairwise similarities betweaintp, and their active learning
goal is to select new data, using expected value of infoomatstimated from the exist-
ing data, such that the risk of making wrong estimates altwmutrtie underlying clustering
from the existing incomplete data is minimized. In contrastr model assumes that we
have complete similarity information between all pairs ofnts and pairwise constraints
whose violation cost is a component of the objective fum;teind the active learning goal
is to select pairwise constraints which are most inforneagibout the underlying clustering.
Klein et al. (Klein et al., 2002) also consider active leagnin semi-supervised clustering,

but instead of making example-level queries they make elusvel queries, i.e., they ask
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the user whether or not two whole clusters should be mergetwAring example-level
queries rather than cluster-level queries is a much easkrfor a user, making our model

more practical in a real-world active learning setting.
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Chapter 7

Other Results in Semi-supervised

Clustering

In this chapter, we present some interesting problemsektatsemi-supervised clustering
that have not been discussed so far in this thesis and presmet ideas of future research
in some of these areas. Most of the work presented in thigehag@s done in collaboration

with other researchers at the University of Texas at Austin.

7.1 Unified model for constrained semi-supervised clustang

We developed a generalization of HMRF-KMNS that incorporatesoth distortion mea-
sure learning and the use of pairwise constraints in a plied¢imanner (Basu et al., 2004).

This was done by using parameterized distortion measuats#m be adapted to specific
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datasets: in this method, the distortion measure parasnaterupdated in the M-step of
the algorithm during the clustering iterations, in ordeigtd a learned measure that puts
must-linked points closer together and pulls cannot-kihgeints further apart.

Previous distance-based semi-supervised clusteringitlges exclude unlabeled
data from the distortion measure learning step, as well parate distance learning from
the clustering process (see Sec. 1.3.2). Also, existirntgriie-based methods use a single
distance metric for all clusters, forcing them to have samihapes. The unified HMRF-
KM EANS algorithm is able to perform distance learning with eachsteting iteration,
utilizing both unlabeled data and pairwise constraintsallttws violation of constraints
if it leads to a more cohesive clustering, whereas earliesiraint-based methods forced
satisfaction of all constraints, leaving them vulnerabl@aisy supervision. The algorithm
is also able to learn individual distortion measures foteaaster, which permits clusters

of different shapes.

7.2 Semi-supervised graph-based clustering

Since pairwise constraints are a natural form of supemvifio data sets represented in the
form of a graph, an interesting problem in clustering is thelg of how to incorporate
pairwise constraints into a graph clustering (a.k.a. gragutitioning) algorithm, wherein
the nodes of the graph are partitioned into sets based on sbjaetive criterion defined

over the graph edges (Chan, Schlag, & Zien, 1994; Shi & M&lilQ0). We have recently
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proposed a semi-supervised clustering algorithm that cank wn both vector-based and
graph-based data sets (Kulis, Basu, Dhillon, & Mooney, 2008 this work, we use a
recent theoretical connection between ketaheans and several graph clustering objec-
tives, which enables us to perform semi-supervised clngterf data given either as vectors
or as a graph. For vector data, our approach generalizes MRFHKMEANS algorithm
for squared Euclidean distance to work with kernels, whithbdes it to find clusters with
non-linear boundaries in the input data space. For grap) det show that recent work on
spectral learning (Kamvar et al., 2003) may be viewed as @apsase of our formulation.
This result currently shows the connection between sgeaitjactive functions for
graph partitioning and the corresponding vector-basesteling using only squared Eu-
clidean distance as the clustering distortion measurehtowvéctor data. In the future, we
want to extend this and show the equivalence between spelttstering and kernel-based

KMeans clustering for any regular Bregman divergence defoeween the input vectors.

7.3 Semi-supervised overlapping clustering

While the vast majority of clustering algorithms are p#otial, many real world datasets
have inherently overlapping clusters. The recent exptosf@nalysis on biological datasets,
which are frequently overlapping, has led to new clustenmaglels that allow hard assign-
ment of data points to multiple clusters. One particulagpealing model was proposed

by Segal et al. (Segal, Battle, & Koller, 2003b) in the conhtefkprobabilistic relational
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models (PRMs) applied to the analysis of gene microarrag. datrecent work with other
researchers at the University of Texas at Austin, we stavtddthe basic approach of Segal
et al. and proposed an alternative interpretation of theehas a generalization of mix-
ture models, which makes it easily interpretable (BangKeempelman, Basu, Mooney, &
Ghosh, 2005). While the original model maximized likelikdamver constant variance Gaus-
sians, we generalize it to work with any regular exponeriéialily distribution, and cor-
responding Bregman divergences, thereby making the mqqditable for a wide variety
of clustering distance functions, e.g., KL-divergencakifra-Saito distance, I-divergence.
The general model is applicable to several domains, inetutigh-dimensional sparse do-
mains, such as text and recommender systems. We addiiafil several algorithmic
modifications that improve both the performance and appilicaof the model.

An interesting problem to consider in the case of overlapgilustering is how to
handle prior knowledge, e.g., pairwise interactions inBlabase of Interacting Proteins
(DIP) can be used as constraints while performing overtapplustering of gene data sets.
Moreover, the background knowledge in certain domains,(kiglogy) are available from
multiple heterogeneous sources with varying degrees a@rage and noise, which have to
be integrated using a robust algorithm. We want to invetigpath these problems in our

future work.
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7.4 Model selection in semi-supervised clustering

The HMRF model also assumes that the right number of clusdegs/en as an input —
in the future, we want to select the number of clusters autically by incorporating a
model selection criterion into the HMRF objective functi@everal model selection criteria
exist in the literature for selecting the right number ofstérs. Criteria like Minimum
Description Length (Rissanen, 1978), Bayesian Infornmatiterion (Pelleg & Moore,
2000) or Minimum Message Length (Wallace & Lowe, 1999) emctite Occam’s Razor
principle in some form, penalizing models according to thredodel complexity. These
criteria can be directly incorporated into the HMRF-KNS objective function.

Another interesting model selection technique for clustgthat we want to in-
vestigate is the PAC-MDL method (Banerjee & Langford, 2008he PAC-MDL method
defines a prediction accuracy model from a clustering; i tihedes off between the accu-
racy of the clustering prediction on the provided labeledifing) data versus the model
description length of the clustering, with the goal of gajtbetter prediction accuracy on
future unknown (test) data. We have some ideas on how to é&xtenPAC-MDL model
to work with supervision provided in the form of constraiiristead of labeled data, which

can then be naturally applied to the HMRF-KMNS model of constrained clustering.
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Chapter 8

Future Work

In this chapter, we outline potential future work relatedie problems that we discussed

in Chapters 3, 4 and 5 of this thesis.

8.1 Label-based semi-supervised clustering

In semi-supervised classification, all classes are asstonieel known a priori and labeled
training data is provided for all classes. In labeled sempiesvised clustering, when we
consider clustering a dataset that has an underlying @bastig, we would like to consider
incomplete seeding — where labeled data are not provideevimy underlying class. For
such incomplete semi-supervision, we would like to seedflibels on some classes can
help the clustering algorithm discover the unknown claséesexample of class discovery

using incomplete seeding is provided in the Fig. 8.1. Givengoints in Fig. 8.1, if we are
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asked to do a 2-clustering, we can get a clustering as showigir8.1. Now, if we give
as input a pair of points labeled to be in the same clustem{stay the annular points in
Fig. 8.2), we will get a clustering as in Fig. 8.2. In this camesn though we did not provide
any supervision about the top cluster, clustering usingptgided supervision helped us

to discover that cluster.

Figure 8.1: Clustering of a sample data set into 2 clusters

Figure 8.2: Incomplete seeding and class discovery

122



Initial experiments for class discovery under incompleteding were considered
in Sec. 3.5, where seeds were not provided for differentgcaiies and the NMI measure
was calculated on the whole test dataset. In the future, wa tegoerform more detailed
experiments on real domains (e.g., biology) where incota@apervision is present, with
the expectation that in these tasks the semi-supervisateding algorithm will be able to
discover the categories for which no supervision was pexidVe also want to come up
with a theoretically well-motivated model for class diseoyfor semi-supervised clustering

with labels, similar to the work of Miller et al. (Miller & Bravning, 2003).

8.2 Constraint-based semi-supervised clustering

Some aspects of our current clustering model (e.g., iiéiabn in HMRF-KMEANS, EX-
PLORE phase in active learning) assume that the constraints aséstent, i.e., there is no
noise in the constraints. An interesting area of future wwdkld be on incorporating a
noise model into our HMRF framework, so that it is able to Hamisy constraints. This
would involve some changes to the algorithm, e.g., not agthie inferred constraints be-
tween neighborhoods in the initialization step of HMRF-IKMS, selectively rejecting
points using a noise model in thexBLORE stage of the active learning algorithm, etc.
On a different note, using constraints as supervision has laely studied in the

context of both discriminative classification (Kumar & Hehe2003; Yan, Zhang, Yang,

& Hauptmann, 2004) and discriminative clustering (Xu, Nedf Larson, & Schuurmans,
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2005). We want to explore the possibility of training disaimative graphical models for

semi-supervised clustering for getting better clustedaoguracy.

8.3 Active learning for semi-supervised clustering

The EXPLORE stage of the active learning scheme is currently sensitivautliers in the

data, since the farthest-first traversal can select ostirethe data that do not give much
information about the underlying cluster structure, thgneasting queries during the active
learning process. Outlier sensitivity can be handled bysitgmveighted point selection in
ExPLORE, where we could have a modified farthest-first traversaldbkgcts distant points
from dense regions of the data space (McCallum & Nigam, 19898ch a formulation of

active learning would be more robust to outliers, and candael with more outlier-robust

clustering algorithms, e.g., KMedian (Mirchandani & Frand 990).
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Chapter 9

Conclusions

In this thesis, the focus of our research was on semi-sugmhadlustering, where we study
how prior knowledge, gathered either from automated in&drom sources or human super-
vision, can be incorporated into clustering algorithms. pesented probabilistic models
for semi-supervised clustering, developed algorithmstham these models and empir-
ically validated their performances by extensive expentaen data sets from different
domains, e.g., text analysis, hand-written charactergmition, and bioinformatics.

We proposed a methodology for incorporating supervisiothenform of labeled
data into clustering using a well-defined EM framework. Tiwe proposed algorithms,
SEEDED-KM EANS and GONSTRAINED-KM EANS, use labeled data to form initial clusters
and constrain subsequent cluster assignment. Both metiamdbe viewed as instances
of the EM algorithm, where labeled data provides prior infation about the conditional

distributions of hidden category labels. This interpiietatof the semi-supervised clus-
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tering algorithms enables us to prove convergence guammkboth these iterative al-
gorithms. Experimental results clearly demonstrate theuatdges of these methods over
standard random seeding and COP-KMeans (Wagstaff et @l1)2@n alternative semi-
supervised KMeans algorithm. In particular, experimenith wimulated noise demon-
strated that BEDED-KM EANS is quite robust to noise in the supervised data.

For supervision provided in the form of pairwise must-linkdacannot-link con-
straints, which are more natural in certain clusteringgsasle proposed a generative prob-
abilistic framework for semi-supervised clustering withnstraints. It uses the model of a
Hidden Random Markov Field (HMRF) to utilize both unlabetisda and supervision in the
form of constraints during the clustering process. The &aork is very general and can be
used with a wide variety of clustering distortion (distaneeasures, including Bregman di-
vergences (e.g., squared Euclidean distance, KL diveegjemd directional distances (e.g.,
cosine distance, Pearson’s correlation). We presentetyjaritam, HMRF-KMEANS, for
performing clustering in this framework — it incorporategervision in the form of pair-
wise constraints in both the initialization and clusterigament stages of the clustering
algorithm. In order to demonstrate the effectiveness ofi step of the HMRF-KMANS
algorithm, we performed ablation experiments. Particiatantiations of the algorithm
gave improved performance for different distortion measuisquared Euclidean distance
worked well for clustering low-dimensional UCI data setdjile KL divergence and co-
sine distance outperformed the individual ablations whiilestering high-dimensional di-

rectional text data sets.
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In a real-life interactive query-driven semi-supervisddstering framework, one
challenge is how to acquire pairwise constraints (via @seto the user) that are most
helpful to the underlying clustering process. We preseategw active learning method
for acquiring supervision from a user in the form of effeetpairwise constraints for semi-
supervised clustering, which to our knowledge is the firsivadearning algorithm for
constrained clustering. This algorithm has two phase®LBRE and CONSOLIDATE, and
we empirically demonstrate how both the phases have thidity uih the active learning
process.

For all the problems mentioned above, we empirically evellidhe effectiveness
of our semi-supervised clustering algorithms by detaibgaeements on different domains,
both low-dimensional (e.g., handwritten character reg¢agndata sets) and high-dimensional
(e.g., text documents). Our experiments conclusively detnate that using either labeled
supervision or pairwise constraints substantially imprthe clustering accuracy on differ-
ent domains, and that our active learning algorithm is abéetjuire informative constraints
very effectively.

We also discussed other interesting problems of semi-gigeer clustering that we
studied in collaboration with other researchers, nameélyrntegration of both constraint-
based and distance-based semi-supervised clusteringasatling the HMRF model, (2)
semi-supervised graph-based clustering using kernélgsiidg prior knowledge to improve
overlapping clustering of data, and (4) model selectiomnapes that use the available

supervision to automatically select the right number oftts.
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Overall, the research presented in this thesis has madéagih contributions in
theoretically and empirically characterizing semi-supsad clustering, which has become
a research topic of significant interest lately. In the gahlearning setting, the work in this
thesis plays an important role in investigating the contmubetween completely super-
vised classification and unsupervised clustering. In thedacade, semi-supervised classi-
fication algorithms, which try to improve the performancelaksification algorithms using
unlabeled data, had been getting considerable attentiom finachine learning researchers.
This thesis takes a different viewpoint of the supervisegupervised continuum and looks
at another important aspect of semi-supervised learnammggety how to incorporate limited
supervision into unsupervised clustering.

The work in this thesis shows how prior knowledge availalddadeled data or
constraints, which are naturally available in many clustetasks, can be incorporated into
various clustering algorithms. As shown by both theorétiesults and empirical evidence,
the proposed semi-supervised clustering algorithms giygaved performances for vari-
ous domains, e.g., web search, biometrics, biological datdysis. The research in this
thesis would therefore be useful to a large community oftehirsy practitioners working
in different domains. Looking ahead, the algorithms pregom this thesis and by other
researchers working on semi-supervised clustering woeddime useful tools in the tool-

boxes of machine learning researchers in the years to come.
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Appendix A

Global inference techniques for

E-step of HMRF-KM EANS

In this appendix, we present two global approximate infeeetechniques for collective
assignment of data points to clusters in the E-step of HMRWEKNS: belief propagation

(BP) and linear programming (LP) relaxation (Basu, Bilen&kdviooney, 2003).

A.1 Belief propagation approach

A global joint assignment of the points to clusters that £l minimizes the objective
function Jhmri-kmeansCan be found by performing approximate inference on the HM8&#Rg
belief propagation (Pearl, 1988). This approach is simdahe technique used by Segal et

al. (Segal et al., 2003a).
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To implement the message passing algorithm for approxinmdézence on the
HMRF, we represent the HMRF as a factor graph model (KschrsghFrey, & Loeliger,
2001). The sum-product/max-product algorithm on the fagtaph model has been shown
to be a generalization of several well known inference dligors on graphical models. In-
terpreting the HMRF model as a factor graph enables us tomerbelief propagation on
the HMRF using the max-product message passing algoriththeonorresponding factor
graph.

The factor graph corresponding to the example HMRF in Figuteis shown in
Figure A.1. The factor graph has the following components:

(1) nvariable nodegx; }i ; representing the data points.

(2) n factor nodes{D;}] ; that encode the distance potential components of the
objective function. Each distance factor nddehas an edge connecting it to the corre-
sponding variable nodg, and a table containing different values of the distancermqdl
function. This table has an entry for each possible clustsigament of the variable; the
j!" entry is exgp—d), whered is the distance from thi& point to thejt" cluster.

(3) |Cwm | factor nodes{Mi}E“iL‘ and|Cc_ | factor nodeqC; ch‘ , Which respectively
encode the cost of violating the must-link and cannot-linkstraints. There is one factor
node for each constraint, which is linked by edges to the @bk nodes involved in that
constraint.

The constraint potential table associated with each cainstfactor node maps a

set ofk? value-pairs (corresponding to possible cluster assigtsrterthe pair of points in
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Figure A.1: Factor graph for the HMRF in Figure 4.1

the constraint) to potential values. For the factor nodeodimg the must-link constraint
betweerx; andx;, the potential value for the entry;,y;) in the constraint potential table
is 1ify; =yj, i.e.,x andx; have the same cluster assignmentsy; ¥ y;, the potential
value is exp—w;ij), wherew;; is the weight of the constraint. Similarly, for the canniok!
factor nodes, the potential tables have values of 1 for they ¢w.y;) wherey; # y;, and
exp(—wij) if yi =y;.

Finding the collective assignment of points to minimi%gt-kmeansin the E-step
corresponds to running the max-product message-pasgiodgtaim on the factor graph (Kschis-
chang et al., 2001). Once the message-passing algorithverg@s, the cluster assignment

for each data point is obtained from the value in the cornedjmy variable node.

A.2 Linear programming relaxation approach

The task of finding an assignment of instances to clustersrtimmize the objective function

can be posed as an integer programming problem. Such a fatioruhas been proposed
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by Kleinberg and Tardos in the context of the genemnatric labelingproblem, where they
considered the cost of assigning labels to instances whienpting to satisfy a set of
must-link pairwise constraints (Kleinberg & Tardos, 199%e extend this formulation to
include cannot-link constraints, which allows using it &@signing instances to clusters in
the E-step of HMRF-KMANS.

LetU ={un},i=1,...,n,h=1,... k, be aset of nonnegative binary variables that
encode membership of instances in clusters= 1 signifies that thé" instance belongs
to the hiM cluster. Sets of nonnegative binary variabléd") = {u™ 1%/ andu© =

{ui(C) iEclL‘ encode violations of must-link and cannot-link pairwis@stoaints respectively.

Eachul((M) = 1 signifies that th&!" must-link pairwise constraire, = (X, %, ) iS violated,

while uf(C) = 1 signifies that th&" cannot-link pairwise constraigk = (X, , X«,) is violated.

The objective function to be optimized in the E-step of HMRMEANS then becomes:

Jhmrf-kmeans= Z( Z D(Xi, Hn) Uin + Z WkU|((M) + z WkU|((C)a (A1)
X E€X hel (Xkg Xy ) ECML (Xkq Xiep ) €CL

whereL = {1,...,k}. Assigning each instance to only one cluster imposes thevfilg

linear constraint on variables Wh:

Z uph=1 xeX. (A.2)
hel

Also, consistency of pairwise constraint violation vahhinU ™) andU (©) with the as-
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signment variables i requires satisfaction of the following linear constraints

1
u|((M) = E |Uk1h* Uk2h|,e,( = (Xklaxkz) S CMLa
helL
©_q_1 _ _ A3
Uy 5 > |Ukah — Uighl, 8= (g, %) € Cet (A.3)
hel

These constraints can be expressed in a linear program acirep variabledy M) and
U(© with corresponding sets of auxiliary variablg8") andz(©, Wherez‘((';f') =1 iff the
KM must-link paire, = (X, %, ) is violated and eithexy, or x, is assigned tdi" cluster.
Semantics otf(? are similar:z‘((ﬁ) = 1iff K" cannot-link pairex = (X, X«,) is violated and
bothx,, andx, are assigned to" cluster. Variables ity ™) andU(© can be expressed via

variables inzZM) andz(© as follows:

1
uM =3 M = (Xq, X,) € CuL,
hel
U =525, = (X% € Cet. (A.4)
hel

Consistency of assignment variablesUnwith pairwise constraint violation variables in

ZM) andz(© can then be achieved by introducing the following linearstaints:
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Zi(<|\r<|) = Uk,h — Uish, & = (Xkl,sz) € CuL (A.5)

20 > Uoh — Ugh, & = (X, Xk) € CmL (A.6)
2 < U+ Ugh, & = (X, Xk) € CeL (A7)
Zti? > Ugh+Ugh — 1, &= (Xq, %) € CcL. (A.8)

Minimization of objective function Eqgn. (A.1) under the atraints Eqn. (A.2) and Eqgns. (A.5)-
(A.8) to solve for binary variabled, ZM) andz(© is NP-hard. Kleinberg and Tardos pro-
posed a linear programming relaxation of this integer @ogning problem by allowing

U, ZM) andz(© to be non-negative real numbers, and provided a randomiztdoah for
rounding the real solution to the linear program to intedjtsinberg & Tardos, 1999). We
follow their approach, which allows us to perform colleeti@ssignment of all instances in

X to cluster centroids.
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Appendix B

Active learning for constraint

acquisition

In this appendix, we provide some analysis of the 2-phadeealgarning algorithm pre-

sented in Chapter 5.

B.1 Model assumptions

First of all, we present the formal model of the dataset basedhich the analysis of active
learning will be done. The data is assumed to be coming katisjoint uniform density
balls of unequal size in a metric space. The balls are defime¢erins of the metric. All
data points inside any particular ball are assumed to beeisame cluster, and points from

different balls are assumed to be from different clusterse ®racle is assumed to know
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this model. Letn be the total number of points under consideration. {met}K_, be the
probabilities of drawing a point randomly from thé' ball B,. Without loss of generality,
we assumeny < Tp < --- < T. Further, let ¥I < 1. Letmy, be the number of points in the
dataset fronBy,. Then,m, = my/n andT, O V;, the volume ofBy, Yh. Now, the number

of possiblecannot-linksis ¥ | h;y Mm and the number ofust-linksis 3, (). Let

o =3 thinary MM/ 3 ().

B.2 Analysis of random initialization

We argue that within a small number of random queries, thbabitity of getting even a 3-
point neighborhood from any cluster is very low. Giv@ipairs at random, on average there
will be onemust-linkin every(1+ a) pairs. Hence, there will be a total @/ (1+ a) must-
link pairs in the expected behavior. Then, for tifecluster, there will be, = M,Q/(1+

o) < my must-linkpairs on average. We focus on a particular cluBigon whichry, pairs
have been selected at random. The size of the clustay+sn/k. We will not get a 3-point
neighborhood fronBy, if none of the pointx € By, gets drawn more than once in the random
pair sampling. If the sampling of, pairs is replaced by the sampling of,2ertices without
replacement, the probability of getting a vertex twice isrgased. Hence, the probability

pn of notgetting a 3-point neighborhood is lower bounded by the pgobiba of not getting
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a vertex twice in the vertex sampling setting. So,

2l’h 1 2
vz 3 (e M) ()
o o BB (i
Bi<2vl
— 1.(1_i>.(1_£>...(1_zrh1>
My My My
L (12T g AR A
- M n’(1+a)?

which is close to 1 for small values §f Hence, the probability of getting 3-point neighbor-
hoods is very low. Therefore, the initialization is essalhtidone byk random draws from
a set of approximatel®)/(1+ a) 2-point neighborhoods. In this setting, the probability of

getting exactly one neighborhood from each cluster is

k Kl 21k 1 1
k! |_| T < &= T(1+§k+o(@))

using the AM-GM inequality and the Stirling’s formula. Ciba the probability is quite
low. This results in significant variance in the initialigimeighborhoods and explains the
initial jitter for the non-active algorithms for low values Q.

B.3 Analysis of EXPLORE

Given 2 balls of unequal size, we will now try to see how mamhiest-first traversals will

be required to get atleast one point from each ball.
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In the worst case, if the disjoint balls are placed by an adugr the adversary will
try to place the balls such that getting a point from at leastlmall is very difficult. One can
show that the optimum strategy for the adversary will be tkerthe smaller ball difficult
to reach. Using a packing argument, we show that irrespeofithe placement of the balls,
the farthest first traversal cannot avoid any particulakfoallong. Consider two ballg, B
with probabilitiesty, 1. Letry, rg be the radii of the two balls, and,, Vg be the volumes
of the two balls. Further, let,(B) denote the packing number Bfwith b balls — the
maximum number of disjoinb balls that can be packed inside the Hall Now, if there
are just these two balls in the universe and if farthest-fiestersal starts i, the points
obtained fromB before enterind must have pairwise distances (between their centers) of
at least 2, because otherwise the traversal would have picked thieefstrpoint fromb
and got a distance of at least,2Hence, the traversal cannot stayBifior more thatop(B)
farthest-first jumps because there are exactly these manisposideB that can be at a
distance of at leastrg from each other. Now, the packing numltmg(B) < Vg /Wy, = Tg/ T,
the ratio of their probabilities. So, the farthest first gesal will atmost stay in the larger
ball for atmostrg /T = (1—T14) /T, = 1/, — 1 < £ — 1 jumps before being forced to pick
a point from the smaller ball. So, the farthest-first schesrsiie to get one point from each
of the balls in at most traversals.

We are currently working on extending this argument to theegal case ok balls.
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