
BME-MIT

DSP development
technologies

Introduction to DSP development systems

Bence Ország, György Orosz

2023

2

Preparation of the DSP board and the development environment
• Connect the DSP card to the PC. Attention! Plug the power cord first, then the USB JTAG cable.

Stick to this order if you need to reset the DSP card.

• Wait until the „USB monitor” LED lights up! It means that the card has successfully connected to

the computer.

• Start the development environment on the PC: CrossCore Embedded Studio

Power

JTAG

USB monitor

LED

Line-out Line-in

3

• Choose a directory for your workspace where your projects will reside.

o If the chosen directory doesn’t exist, then it will be created.

o All of your settings will be saved here, so feel free to change them.

o Don’t use special characters in the name and make sure your group is easily identifiable.

• Close the welcome screen.

4

• Download the sample project from the webpage of the laboratory course.

Unzip the file into your workspace. Take care to unzip it into a subfolder with the name of the

project! This is necessary because the IDE has a one project per folder policy.

• Connect the jack – BNC cables to the Line-in and Line-out connectors of the DSP card.

o Attention:

▪ Take care of the labels on the input and output connectors (Line-in/Line-out)! Do

not connect the Line out to the output of the signal generator!

▪ The maximum input on the line in channel is 3 Vpp. Make sure the output of the

function generator is less so the input won’t be overdriven! On Hameg generators

the -20 dB button should be pressed! (Hameg function generator: max. 20 Vpp)

o Connect the „Line out” output to the oscilloscope (both channels).

o Connect the „Line in” input to the signal generator (the channel does not matter). Set a

sine wave output signal on the generator.

Opening a project
• Open the BlackFin_Frame project in the previously unzipped folder! To open a project: File →

Open Projects from File System…, and here the project folder has to be selected!

5

• Now you can see the Process_data.c file in the project window under the BlackFin_Frame project

among other source files. The Process_data.c file contains the following signal processing method:

o void Process_Data(void) runs if a new sample is available from the ADC.

o The iChannel0RightIn and iChannel0LeftIn variables contain the sample of

the left and right channels.

o iChannel0RightOut and iChannel0LeftOut contain the data sent to the DAC.

o The UART peripheral signals the availability of a new character through the

uart_rx_flag. It must be cleared to receive the next one! Use uart_getch() to

read it and uart_putch() or uart_print() to write to the serial port.

• Compile the project! Compiling options:

o F7 key or

o Project menu → Build project or

o click on the button.

• If you want to rebuild the project (and clean all previous files):

o Project menu → Clean…

6

• Start a debug session and upload the project!

o Check that the DSP board is indeed connected!

o For the first time you need to select a debug configuration: Run → Debug Configurations…

Then select Application with CrossCore Debugger → BlackFin_Frame Debug and click on

Debug!

o F5 or

o Run → Debug or

o click on the button.

7

• Run the project! (After uploading the program, it will be automatically halted at the first

instruction). You should be in the debug perspective for this. To run the program:

o F5 or

o Run menu → Resume or

o click on the button. (If this button is greyed out you need to click on the Debug

window next to the Project explorer tab.)

To stop the program:

o Shift + F5 or

o Run menu → Suspend or

o click on the button.

• The project simply forwards the signal of the right (left) input channel to the right (left) outputs.

8

Debug functions of the IDE
• For this part open the BlackFin_FIR_asm project. The program copies the right input to the left

output channel while the right channel outputs the filtered right input.

Reading and writing variables in the memory.

• In order to access the memory of the DSP you need to open the Memory Browser: Window menu

→ Show view → Memory Browser

• To select variables to monitor click on . On the newly opened window search for the variable

to monitor.

• By right-clicking on a memory region and selecting „Select Format” you can choose the format of

the data representation. For example, choose „Signed Fractional 16 bit” for fractional numbers.

• By double clicking on a variable its value can be modified. After entering the new value, confirm

it by hitting the Enter key. Then it will be updated in the memory of the DSP.

• These features can be used only if the DSP is in „Halt” state, so the running program must be

halted first.

• To study some variables in the program, insert Breakpoints by double clicking next to the selected

line of the code on the grey bar on the left. When the program arrives to the selected line, its

state will change automatically from running to halted.

9

Plotting data arrays.

• Select Window menu → Show view → Plot. This opens a new window.

• Click on to open the plot configuration. Here you can add new datasets to the plot.

• After clicking on the button New the Edit Data Set window opens. Here you can specify the name,

length and data type of the array you want to plot. Click the button Add after specifying these

parameters. The array can be selected with the Browse button. First select the input variable.

• Enter the length of the array to the Count field. For the input array this is 401.

• Stride defines the step size. Its value should be 1.

• Select the number format in the Data list. Choose short.

• The DSP must be in Halt state to use these features otherwise it will use the values saved during

the previous halt. Use breakpoint(s) or the Pause debug button to halt the processor.

• The sampling frequency of the ADC and DAC is 48 kHz. Adjust the frequency of the input signal

until the sampling is coherent (an integer number of periods is measured of the input sine) and

plot the result (e.g. measure 7 periods of the signal). Next measure a sine with noncoherent

sampling by changing the signal frequency. Plot the result and explain it (circularity of the buffer).

• Modify some elements of the input array and plot it again.

• Plot and study the filter coefficients (coefs variable), explain the filter characteristics (bandpass

filter = lowpass filter modulated by a sine wave).

10

Runtime-analysis

• Select Window menu → Show view → Profiling and open a new runtime statistics.

• Launch the program and collect data by clicking on . Analyze the the run-time of different

functions. Measure the run-time percentage of the conv_asm function. (Optionally visualize it

with a pie chart by clicking on one of the buttons.)

• Modify the memory section of the input or the coefs variables (from section("L1_data_a")

to section("L1_data_b"), or vice versa). The variables should be in the same memory

section.

• Measure the run-time percentages again. What is the difference? (To delete the previously

measured statistics manually click on while the processor is halted.)

11

FIR filter with assembly routine
• Open the BlackFin_FIR_asm project! This is a FIR filter application: it filters the signal on the right

channel of the input. The filtered signal is forwarded to the left channel of the output. On the

right channel the original signal appears without being filtered.

• Study and understand the code. Notes:

o The iChannel0RightIn >> 8 and out <<8 commands are shifting the data

because the ADC and DAC are of 24 bits, but the DSP works with 16-bit data.

o The filtering is done in the conv_asm function.

• Compile and run the project.

• Measure the cutoff frequencies of the filter using the signal generator and the oscilloscope. What

type of filter is implemented? Compare the filter with the original one designed in Matlab: load

the coefficients with the h = load(‘bp_fract.dat’); command then create a figure of

the transfer function with freqz(h,1,2^16,48000);.

Implementing FIR filter in C
• Open the BlackFin_FIR_fract project.

• Study the implementation of the circular buffer.

• Measure the run-time percentage of the signal processing procedure.

• Select Project menu → Properties. In the new window select C/C++ Build → Settings and then on

the Tool Settings tab select Crosscore Blackfin C/C++ Compiler → Language Settings. From the list

select Never (-no-circbuf).

• Compile the project again and launch run-time statistics. Study the results.

• Enable circular buffer generation option again in the options.

12

Appendix

Using the built in fractional type

• The compiler has a built in fract type, which is a native type like int or char. It is provided by the

compiler (as per Extensions to support embedded processors ISO/IEC Technical Report 18037). It

has variants like int, so the following are valid examples: short fract, unsigned fract, etc. Signed

types are in the [-1,1) range while unsigned types are in the [0, 1) range. The table below

summarizes the fixpoint representations.

• To access the fract type one needs to include stdfix.h!

• Be aware that fractional calculations always saturate! This might cause problems in certain cases

so the accum type can be used to avoid those. It uses more integer bits, the representable

numbers are in the [-256, 256) range.

• For fract constants use the r suffix (i.e. 0.75r), for accum constant use k (i.e. 3.25k).

• There are functions to convert between 16 bit integers and fractional numbers. They are listed

in stdfix.h and in the documentation of the compiler (CrossCore Embedded Studio → Blackfin

Development Tools Documentation → C/C++ Compiler and Library Manual → Compiler → Using

Native Fixed Point Types → Bit-Pattern Conversion Functions):

o bitsr(f) : fract → short

o rbits(s) : short → fract

• Type casting is the recommended method of conversion between fract and float values.

13

Common bugs of the IDE

• After loading the program to the development board the debug toolbars’ icons are greyed out

so the program cannot be started.

o Switch to Debug perspective.

o On the left bring the Debug tab into foreground (instead of the Project Explorer).

• Failed to resolve « MACRO » error. The project can be compiled but the problem tab shows an

error.

o Rebuild the index by clicking on Project menu → C/C++ Index → Rebuild.

• When launching a new debug session there is an error with the text “Error in launch sequence.

Failed to connect to processor. Failed passing SOM test.” This is caused by a previously failed

launch attempt where the development board wasn’t connected or powered on.

o Restart the IDE.

