Artificial general intelligence introduction

Antal Péter, Bolgár Bence


Számítógépes orvosbiológiai munkacsoport

Mesterséges Intelligencia kutatócsoport

BME, VIK, Méréstechnika és információs rendszerek tanszék

Course info

- Course site
 - https://portal.vik.bme.hu/kepzes/targyak/VIMIAV22/
 - http://www.mit.bme.hu/oktatas/targyak/VIMIAV22/
- Lecturer
 - Bence Bolgár, bolgar@mit.bme.hu
 - <u>Péter Antal</u>, <u>antal@mit.bme.hu</u>
- Schedule
 - Wednesday, 12.30-14.00, QBF09
- Contact hour
 - Tuesday, 10.00-11.00, IE.423 (building I, wing E, 2nd floor)
- Books
 - Russell, S.J. and Norvig, P., 2002. Artificial intelligence: a modern approach (AIMA)
 - Magyar fordítás: MI Almanach
 - <u>http://project.mit.bme.hu/mi_almanach/</u>
- Slides
 - At course site

Academic calendar

- Last day of classes: 13 December (Friday)
- Repeat week (resits and late submission of home assignments): 16-20 December (Monday-Friday)
- Exams begin: 2 January (Thursday)
- Duration of examination period 20 working days
- Last day of examination period: 29 January (Wednesday)

Requirements

- Grading:
 - Two homeworks 50-50%.
 - Review, essay, programming..

Goal of the course: nature of intelligence (from physics through computation to society and beyond)

- History of Al
- History of cognitive science
- Computational models
- Computational linguistics
- Bayesian Al
- Logic: truth and proof
- Machine learning, machine teaching
- Heuristics, creativity, scientific discovery
- Neuroscience-inspired AI (neurobiology, deep neural networks)
- Explainable AI, Provably beneficial AI, existential threat of AI

Personal research interest in AGI

- 1992<: neural nets, human learning (teaching)
- 1993: visual/diagrammatic reasoning
- 1995: non-symbolic(analogic)-vs-symbolic reasoning
- 1996: cellular automatons+emergence
- 1997<, causality
- 1997<, neural-causal hybrid systems, decision support systems,..
- Why I.: belief systems, causality research, biases in human beliefs
- Why II.: reward-system/ reward deficit syndromes in human
 - 2009< depression research
- Why III.: hormonal-neural circuitry of teaching
 - ~2010: genetic variations/evolution of oxytocin, dogs

Overview of today lecture

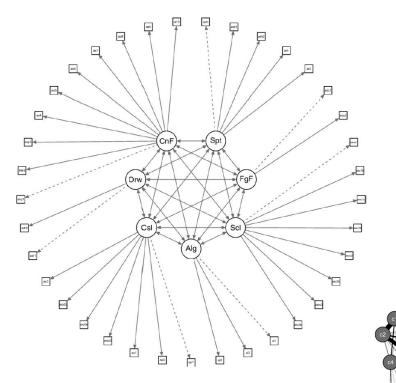
- What is artificial intelligence?
- What is intelligence?
 - Myths, misconceptions, analogies, models..
- Factors of intelligence: data, computing power, efficient learning
- Moore's law
- The knowledge era
- The data age
- Examples of intelligent solutions

The Hitchhiker's Guide to the Galaxy: Phases of civilizations

- 1. 'How can we eat?'
- 2. 'Why do we eat?'
- 3. 'Where shall we have lunch?"

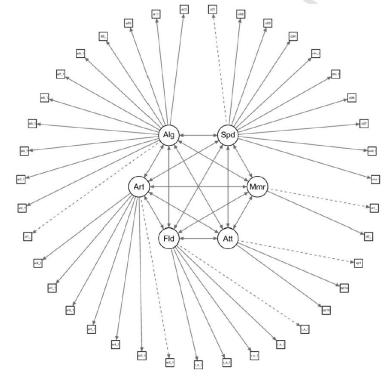
- 1. 'How can we define intelligence?'
- 2. 'Why do we need intelligence?'
- 3. 'Where shall we have intelligent solutions?"

What is intelligence?


- What is X?
 - X= fire, light, life, intelligence, creativity, consciousness, ethics
- What is intelligence?
 - Animal intelligence
 - There are smart people ;-)
 - Computation: complexity theories (there are hard problems)
- Application areas
 - Expert systems
 - Data mining (text-mining)
 - Game playing
 - Self-driving car, advanced driver assistance..

• ...

Animal intelligence


- A Pigeon Solves the Classic Box-and-Banana Problem
 - https://www.youtube.com/watch?v=mDntbGRPeEU
- Are Crows the Ultimate Problem Solvers? | Inside the Animal Mind
 - https://www.youtube.com/watch?v=cbSu2PXOTOc
- Causal understanding of water displacement by a crow
 - https://www.youtube.com/watch?v=ZerUbHmuY04

Dimensions of human intelligence

Spt = spatial ability; FgF = figural fluency; Scl = social reasoning; Alg = algebraic reasoning;

CsI = causal reasoning; Drw = drawing ability; CnF = conceptual fluency.

Spd = speed; Mmr = memory; Att = attention; Fld = fluid reasoning; Art = arithmetic reasoning; Alg = algebraic reasoning.

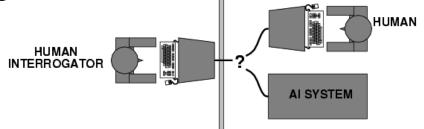
Golino, H.F. and Demetriou, A., 2017. Estimating the dimensionality of intelligence like data using Exploratory Graph Analysis. *Intelligence*.

Each cluster represents a dimension: cluster 1 = arithmeticreasoning; cluster 2 = concepts n.1; cluster 3 = concepts n.2; cluster 4 = sentence completion; cluster 5 = concepts n.3

Genetic factors and traits of intelligence

rsID	Annotation	Alzheimer's disease	–0.36 ⊢ –
rs2490272	FOXO3 intronic	Depressive symptoms Attention deficit/hyperactivity disorder	–0.27 H
		Ever-smoker	-0.27
rs9320913	Intergenic	Schizophrenia	-0.20 H
rs10236197	PDE1C intronic	Anxiety	–0.19 ⊢ –
rs2251499	Intergenic	Neuroticism Weiet te hin retie	-0.19
	0	Waist-to-hip ratio Cigarettes per day	–0.18 н ш _ –0.14 ⊢н
rs36093924	CYP2D7 ncRNA_intr	Coronary artery disease	-0.14
rs7646501	Intergenic	Insomnia	-0.14 H
rs4728302	EXOC4 intronic	Major depressive disorder	–0.11 ⊢ <u>–</u>
		Body mass index, adulthood Waist circumference	-0.11
rs10191758	ARHGAP15 intronic	Obesity, childhood	–0.10 н∎ –0.10 н∎
rs12744310	Intergenic	Body mass index, childhood	-0.05
rs66495454	NEGR1 upstream	Type 2 diabetes	–0.03 ⊢ <mark>+</mark>
		Asthma	-0.01 H
rs113315451	CSE1L intronic	Parkinson's disease	–0.01 년 –0.01 년
rs12928404	ATXN2L intronic	Subjective well-being Bipolar disorder	-0.01 H
rs41352752	MEF2C intronic	Hip circumference	-0.01
		Birth length	⊢ 0.05
rs13010010	LINC01104 ncRNA_intr	Anorexia nervosa	□ 0.08
rs16954078	SKAP1 intronic	Height Birth weight	● 0.10 → 0.15
rs11138902	APBA1 intronic	Autism spectrum disorder	
		Longevity	□ ⊢ 1 0.22
rs6746731	ZNF638 intronic	Head circumference in infancy	— → 0.28
rs6779302	Intergenic	Intracranial volume	0.29
	<u> </u>	Smoking cessation Educational attainment	⊢ 0.32

Sniekers, Suzanne, et al. "Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence." *Nature Genetics* (2017).


What is Al?

Al approaches can be grouped as follows:

Thinking humanly	Thinking rationally
Acting humanly	Acting rationally

Acting humanly: Turing Test

- Turing (1950) "Computing machinery and intelligence":
- "Can machines think?" \rightarrow "Can machines behave intelligently?"
- Operational test for intelligent haboutant the Instation Come

- Predicted that by 2000, a machine might have a 30% chance of fooling a lay person for 5 minutes
- Anticipated all major arguments against AI in following 50 years
- Suggested major components of AI: knowledge, reasoning, language understanding, learning

Thinking humanly: cognitive modeling

- 1960s "cognitive revolution": information-processing psychology
- Requires scientific theories of internal activities of the brain
- -- How to validate? Requires
 - 1) Predicting and testing behavior of human subjects (top-down) or 2) Direct identification from neurological data (bottom-up)
- Both approaches (roughly, Cognitive Science and Cognitive Neuroscience) are now distinct from AI, but →
- Hassabis, Demis, et al. "Neuroscience-inspired artificial intelligence." Neuron 95.2 (2017): 245-258.

Thinking rationally: "laws of thought"

- Aristotle: what are correct arguments/thought processes?
- •
- Several Greek schools developed various forms of *logic*: *notation* and *rules of derivation* for thoughts; may or may not have proceeded to the idea of mechanization
- Direct line through mathematics and philosophy to modern AI
- •
- Problems:
 - 1. Not all intelligent behavior is mediated by logical deliberation
 - 2. What is the purpose of thinking? What thoughts should I have?
 - → (Symbolic) reasoning is mainly for collaborative thinking!

Acting rationally: rational agent

- Rational behavior: doing the right thing
- •
- The right thing: that which is expected to maximize goal achievement, given the available information
- •
- Doesn't necessarily involve thinking e.g., blinking reflex but thinking should be in the service of rational action

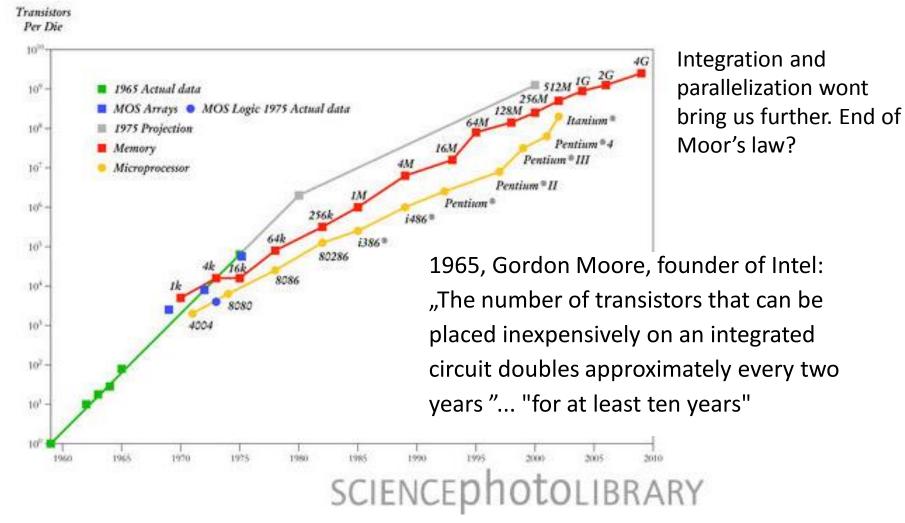
•

Rational agents

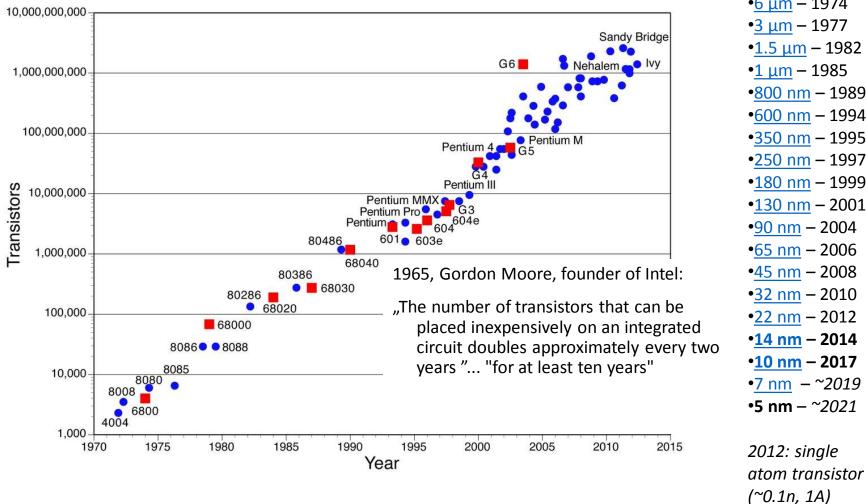
- An agent is an entity that perceives and acts
- •
- This course is about designing rational agents
- Abstractly, an agent is a function from percept histories to actions:

$$[f: \mathcal{P}^{\star} \xrightarrow{\bullet} \mathcal{A}]$$

- For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance
- •
- Caveat: computational limitations make perfect rationality unachievable
 → design best program for given machine resources

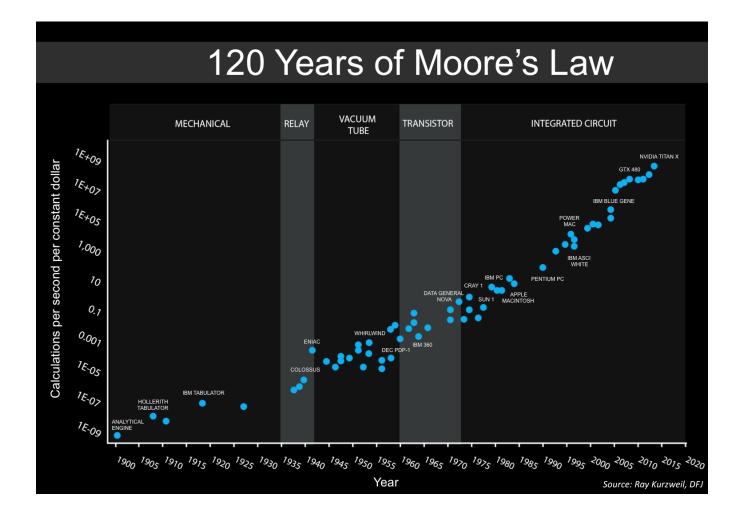

Why do we need AI?

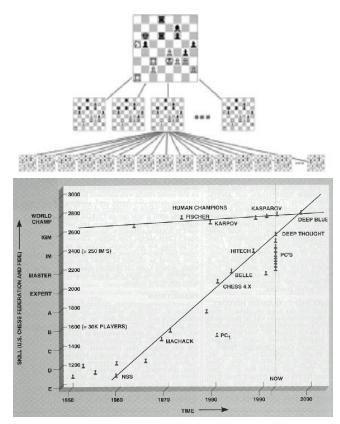
- Understanding human cognition
- Supporting and complementing human expertise
- No choice: data & knowledge exceeded the scope of human cognition
- Instead of human experts, it is
 - slightly cheaper ;-), scalable, multiplicable,..
- Curiosity + optimism!


Factors behind intelligence explosion

- Computation
 - Moore's law
- Data
 - Big data age
- Knowledge
 - Publications, knowledge bases,...
- Technologies
 - Artificial intelligence? Language understanding?
 - Machine learning? Deep learning?

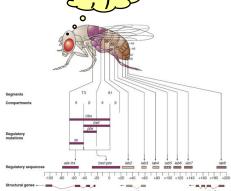
Computing power: Moore's Law


Computing power: Moore's Law


•10 µm – 1971 •6 um – 1974 •3 µm – 1977 •1.5 µm – 1982 •1 µm – 1985 •800 nm – 1989 •600 nm - 1994 •350 nm – 1995 •250 nm – 1997 •180 nm - 1999 •130 nm - 2001 •90 nm - 2004 •65 nm – 2006 •45 nm – 2008 •32 nm – 2010 •22 nm – 2012 •14 nm – 2014 •10 nm – 2017 •7 nm – ~2019 •5 nm - ~2021 2012: single

9/11/2019

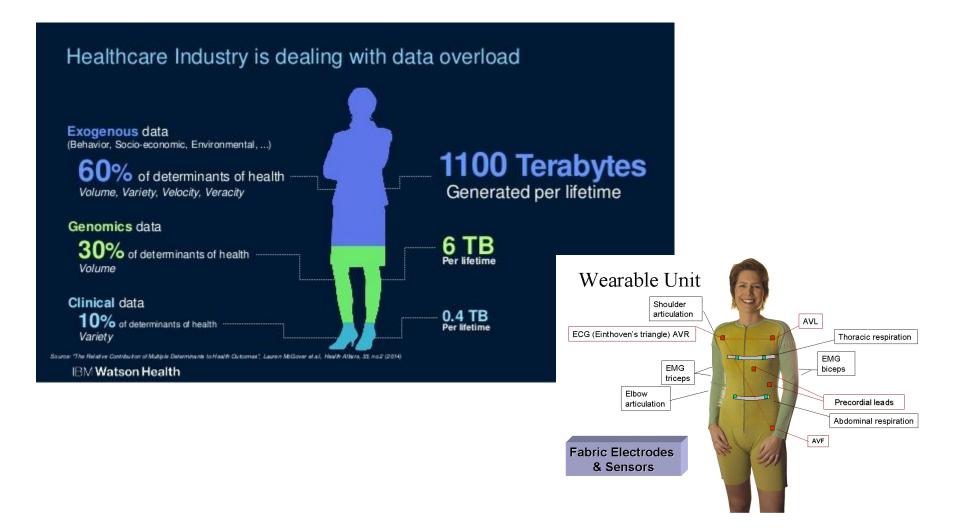
Moore's law: calculation/\$



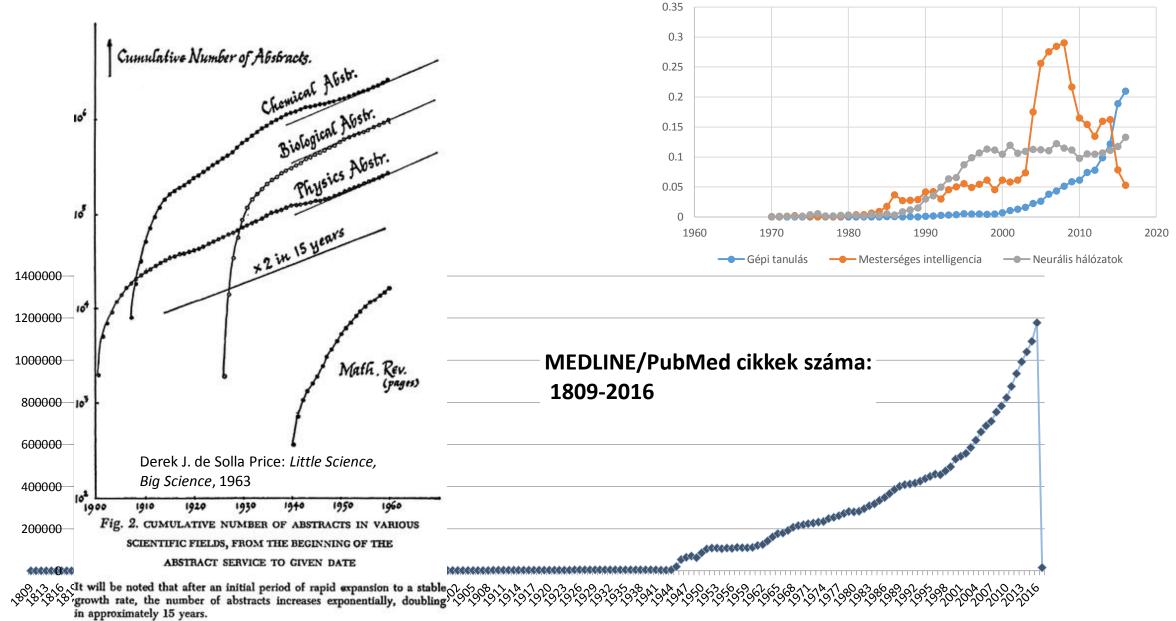
Computing power and search: performance in chess

#	Név	Élőpont
1	SugaR XPrO 1.2 64-bit 4CPU	3415
2 3	Komodo 11.2 64-bit 4CPU Houdini 5.01 64-bit 4CPU IBM Deep Blue (1997)	3402 3382 -

J.McCarthy: "Chess as the Drosophila of AI. [Artificial Intelligence]", 1990

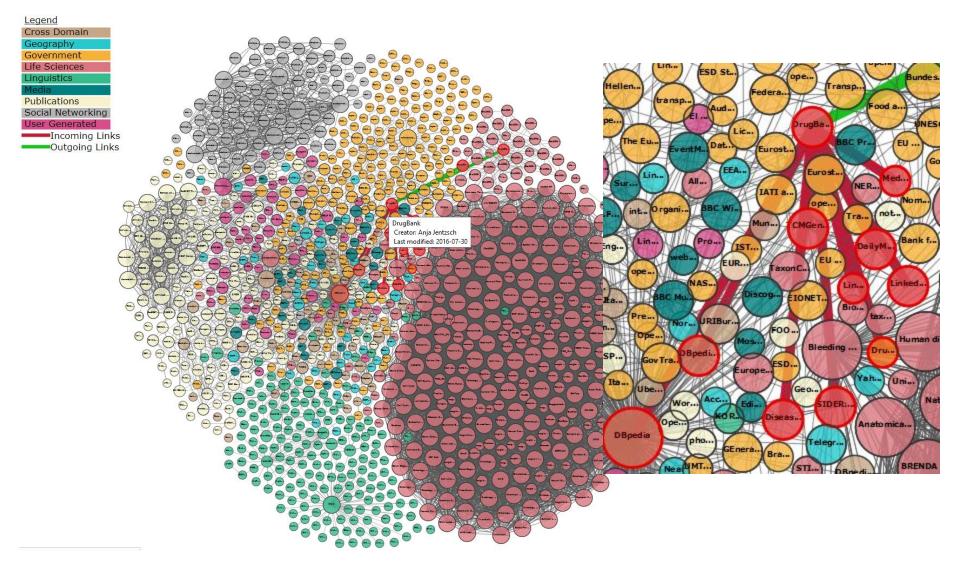

http://www.computerchess.org.uk/ccrl/4040/

Chess as the Drosophila of Al

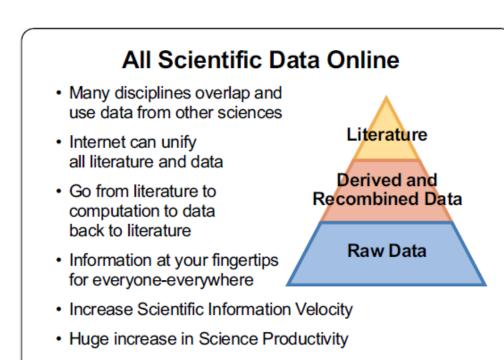

- Chase&Simon: Perception in chess, 1973
- Chi: Knowledge structures and memory development, 1978
- Schneider: Chess expertise and memory for chess positions, 1993
- ...
- Simons: How experts recall chess positions, 2012

- Mérő László: Észjárások, 1990
 - Kezdő, haladó, mesterjelölt, nagymester

Data: Big data in life sciences



Írottan tárolt intelligencia: cikkek


%

Knowledge: Linked open data

Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/

E-science, data-intensive science

The FOURTH PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

TONY HEY, STEWART TANSLEY, AND KRISTIN TOLL

Methods: new learning methods ARTICLE

doi:10.1038/nature16961

Mastering the game of Go with deep neural networks and tree search

David Silver¹*, Aja Huang¹*, Chris J. Maddison¹, Arthur Guez¹, Laurent Sifre¹, George van den Driessche¹, Julian Schrittwieser¹, Ioannis Antonoglou¹, Veda Panneershelvam¹, Marc Lanctot¹, Sander Dieleman¹, Dominik Grewe¹, John Nham², Nal Kalchbrenner¹, Ilya Sutskever², Timothy Lillicrap¹, Madeleine Leach¹, Koray Kavukcuoglu¹, Thore Graepel¹ & Demis Hassabis¹

LETTER

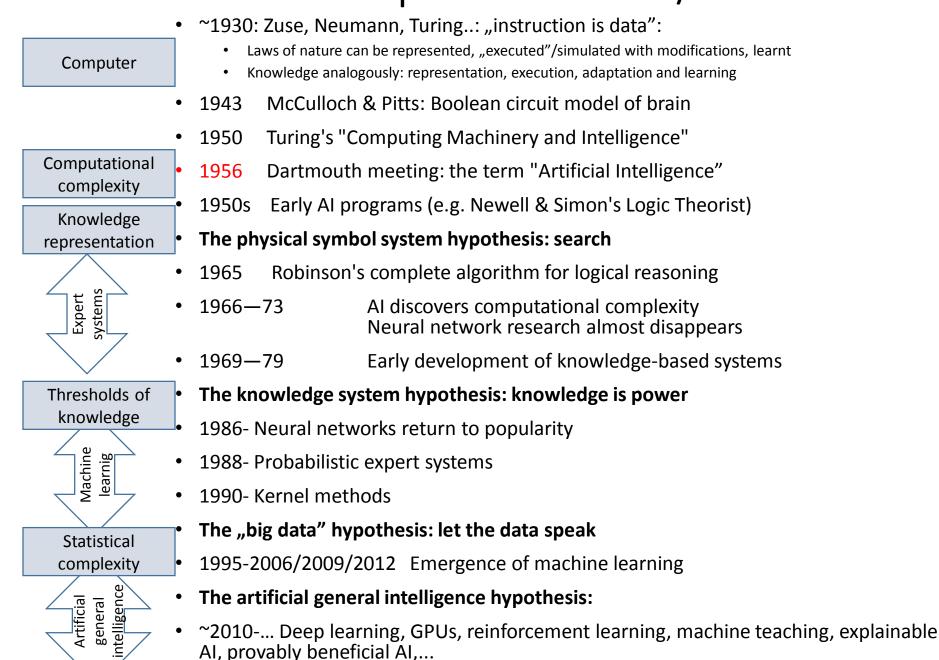
doi:10.1038/nature14236

Human-level control through deep reinforcement learning

Volodymyr Mnih¹*, Koray Kavukcuoglu¹*, David Silver¹*, Andrei A. Rusu¹, Joel Veness¹, Marc G. Bellemare¹, Alex Graves¹, Martin Riedmiller¹, Andreas K. Fidjeland¹, Georg Ostrovski¹, Stig Petersen¹, Charles Beattie¹, Amir Sadik¹, Ioannis Antonoglou¹, Helen King¹, Dharshan Kumaran¹, Daan Wierstra¹, Shane Legg¹ & Demis Hassabis¹

Al prehistory

- Philosophy Logic, methods of reasoning, mind as physical system foundations of learning, language, rationality
- Mathematics Formal representation and proof algorithms, computation, (un)decidability, (in)tractability, probability
- Economics utility, decision theory
- Neuroscience physical substrate for mental activity
- Psychology phenomena of perception and motor control, experimental techniques
- Computer building fast computers engineering
- Control theory design systems that maximize an objective function over time
- Linguistics knowledge representation, grammar


https://en.wikipedia.org/wiki/History_of_artificial_intelligence https://en.wikipedia.org/wiki/Timeline_of_artificial_intelligence

The physical symbol system hypothesis

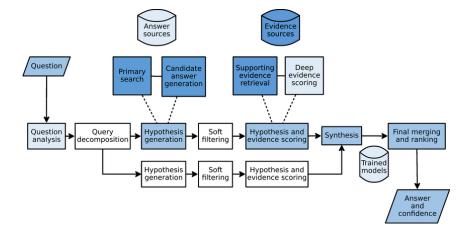
- A.Newel&H.A.Simon (1976): "A physical symbol system (PSS) has
 - the necessary and
 - sufficient
 - means for general intelligent action."
- "GOFAI": good old-fashioned AI
 - PSS + search
 - General Problem Solver (GPS)

Newell, A., Shaw, J.C. and Simon, H.A., 1959, June. Report on a general problem solving program. In *IFIP* congress (Vol. 256, p. 64). Simon, H.A. and Newell, A., 1962. Computer simulation of human thinking and problem solving. *Monographs of the Society for Research in Child Development*, pp.137-150.

Milestones and phases in AI/ML

AIMA

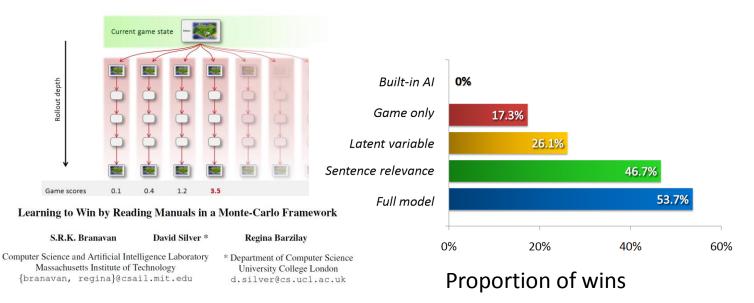
State of the art: 😳


- Deep Blue defeated the reigning world chess champion Garry Kasparov in 1997
- Proved a mathematical conjecture (Robbins conjecture) unsolved for decades
- No hands across America (driving autonomously 98% of the time from Pittsburgh to San Diego)
- During the 1991 Gulf War, US forces deployed an AI logistics planning and scheduling program that involved up to 50,000 vehicles, cargo, and people
- NASA's on-board autonomous planning program controlled the scheduling of operations for a spacecraft
- Proverb solves crossword puzzles better than most humans
- Google search/car/face recognition/...

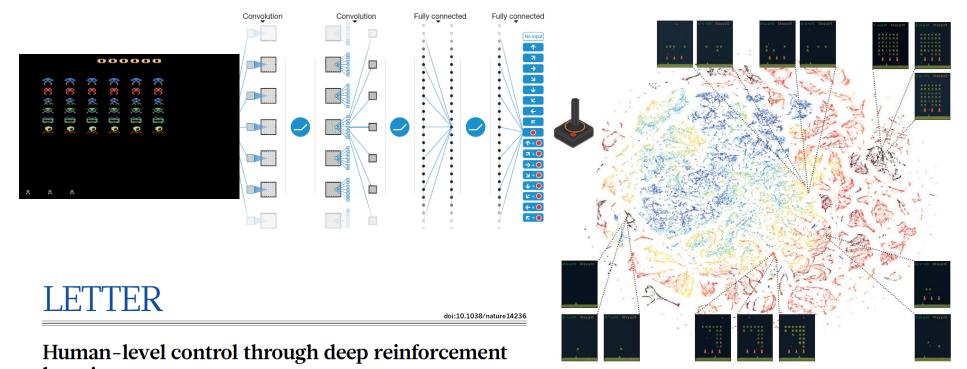
IBM Watson (2011): Jeopardy

• IBM Grand Challenge

- 1997: **Deep Blue** wins human champion G. Kasparov.
- 1999-2006<: Blue Gene, protein prediction
- 2011: Watson
 - Natural language processing
 - inference
 - Game theory


Machines playing Civilization

• Teaching + Learning: learning from manual and from practice

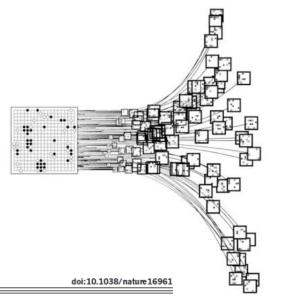


Monte-Carlo Search

Try many candidate actions from current state & see how well they perform.

Playing computer games

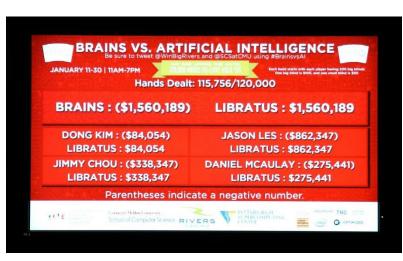
learning


Volodymyr Mnih¹*, Koray Kavukcuoglu¹*, David Silver¹*, Andrei A. Rusu¹, Joel Veness¹, Marc G. Bellemare¹, Alex Graves¹, Martin Riedmiller¹, Andreas K. Fidjeland¹, Georg Ostrovski¹, Stig Petersen¹, Charles Beattie¹, Amir Sadik¹, Ioannis Antonoglou¹, Helen King¹, Dharshan Kumaran¹, Daan Wierstra¹, Shane Legg¹ & Demis Hassabis¹

Go:

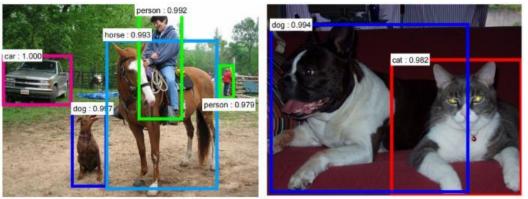
- Google DeepMind
- Monte Carlo tree search
- 2016: 9 dan
- 2017: wins against human champion

ARTICLE



Mastering the game of Go with deep neural networks and tree search

David Silver¹*, Aja Huang¹*, Chris J. Maddison¹, Arthur Guez¹, Laurent Sifre¹, George van den Driessche¹, Julian Schrittwieser¹, Ioannis Antonoglou¹, Veda Panneershelvam¹, Marc Lanctot¹, Sander Dieleman¹, Dominik Grewe¹, John Nham², Nal Kalchbrenner¹, Ilya Sutskever², Timothy Lillicrap¹, Madeleine Leach¹, Koray Kavukcuoglu¹, Thore Graepel¹ & Demis Hassabis¹


Poker: Libratus

- 2017: Carnegie Mellon University MI: Libratius
- Pittsburgh Supercomputing Center:
 - 1.35 petaflops computation
 - 274 Terabytes memory

Vision: YOLO

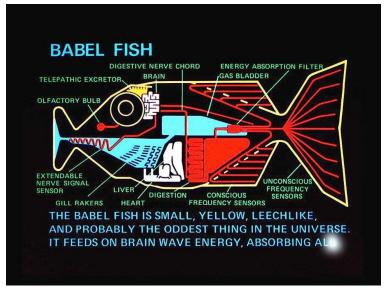
• YOLO (you only look once)

https://www.ted.com/talks/joseph_redmon_how_a_computer_learns_to_recognize_objects_ instantly#t-409586

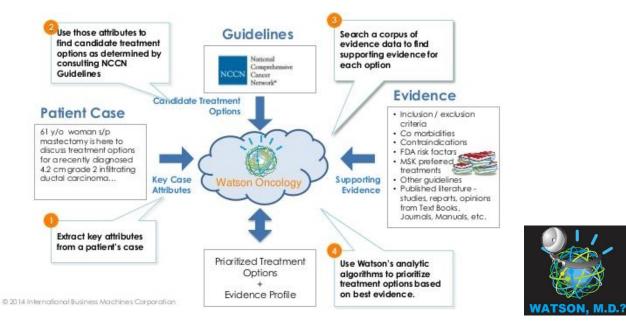
Emotion detection, sentiment analysis excited **Training Procedure Human-label Samples** Input image sequence (Training set) Expression Happiness Sadness percentage calculation ... Neutral Fear ليليل والبانيا happiness EPF A real smile always includes (1) crow's feet wrinkles **Test Video** -(2) pushed up cheeks Expression KLPP+SVM 3) movement from Unpleasant percentage muscle that calculation orbits the eye EPF

https://www.ted.com/talks/rana_el_kaliouby_this_app_knows_how_you_feel_from_t he_look_on_your_face

Walking, movements



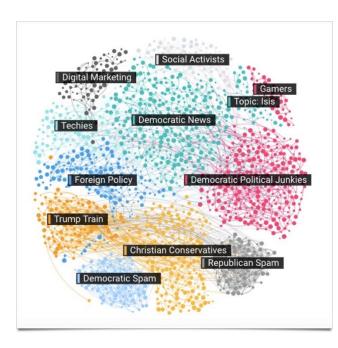
Real-time translation



Pilot Translating Earpiece

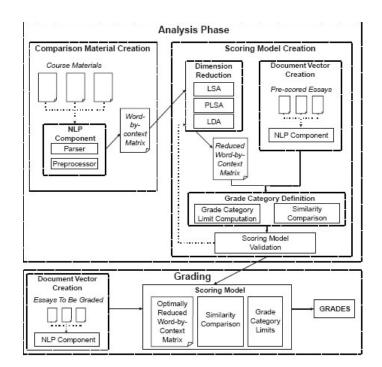
D.Adams: Galaxis útikalauz stopposoknak Hitchhiker's Guide to the Galaxy"

Clinical decision support systems

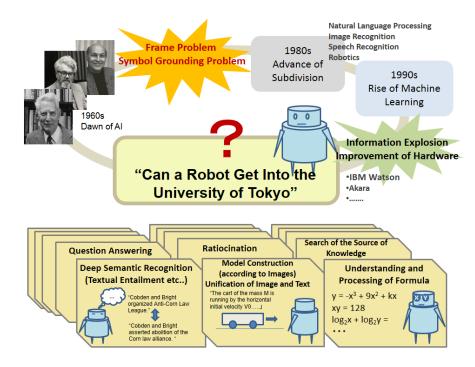


Watson for Oncology – assessment and advice cycle

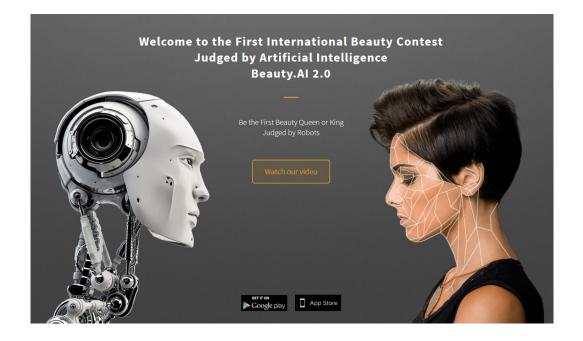
www.avanteoconsulting.com/machine-learning-accelerates-cancer-research-discovery-innovation/


Political analytics: MogIA

 ~"big data failed, AI correctly predicted the upset victory" (correct prediction of election in the US 3 times in a row)


Automated essay scoring (AES)

University entry exam: Todai robot


http://21robot.org/?lang=english

Legal applications of AI

- Juridical decisions:
 - Human experts: <u>66%</u> identical decision.
 - Katz, D.M., Bommarito II, M.J. and Blackman, J., 2017. A general approach for predicting the behavior of the Supreme Court of the United States. *PloS one*, 12(4), p.e0174698.
 - 1816-2015 esetek
 - <u>70%< accuracy</u>
 - COMPAS CORE

Beauty.Al

http://beauty.ai/

- A beauty contest was judged by AI and the robots didn't like dark skin, Guardian
- Another AI Robot Turned Racist, This Time At Beauty Contest, Unilad

Chatbot: Tay

• Turing-test, Loebner-prize

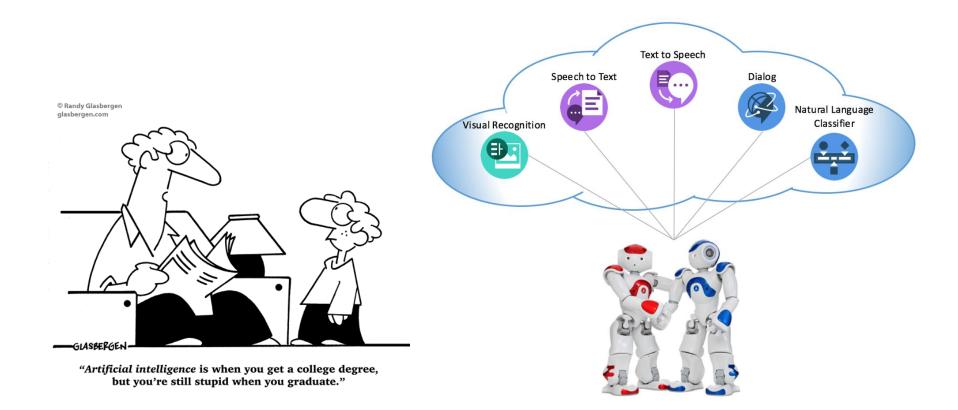
• Tay was an artificial intelligence chatterbot released by <u>Microsoft Corporation</u> on March 23, 2016. Tay caused controversy on <u>Twitter</u> by releasing inflammatory tweets and it was taken offline around 16 hours after its launch.^[1] Tay was accidentally reactivated on March 30, 2016, and then quickly taken offline again.

Reproduction of artistic style

• Gatys, L.A., Ecker, A.S. and Bethge, M., 2015. A neural algorithm of artistic style. *arXiv preprint arXiv:1508.06576*.

Automated scientific discovery

Langley, P. (1978). Bacon: A general discovery system.


■...

...

R.D.King et al.: The Automation of Science, Science, 2009
 Sparkes, Andrew, et al.: Towards Robot Scientists for autonomous scientific discovery, 2010

Humour?

Summary

- Driving forces of AI
 - Logic
 - Computational theories
 - Complexity theories
 - Computational linguistics
 - Computing power
 - Data flood
 - Scalable probabilistic reasoning
 - (Machine) learning theories
 - Causality research
- State of the art of (narrow) AI
- Next lecture: beyond narrow AI: AGI
- Suggested reading:

Russell, S., 2017. Artificial intelligence: The future is superintelligent. Nature, 548(7669), pp.520-522.