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Agenda

• Reminder:
• Last lecture: axiomatizations in probability theory

• Now: axiomatic approaches to causal inference (~causality)

• Examples for probabilistic inference

• From associations to direct dependencies

• The ultimate limit of observational learning

• Causal inference

• Learning causal relations and models

• Counterfactual inference



Probabilistic inference



Reminder: Naive Bayesian network

• Definition: conditional independence of „effects” Xi given „cause” Y.

• Properties:
• Number of parameters (~model complexity): linear

• Complexity of inference: linear



Döntési (naív) hálózat



Universal (observational) inference

Any question about observable events in the domain can be answered by the joint distribution.

Typically, we are interested in the posterior joint distribution of the query variables Y given specific values e for the evidence variables E

Let the hidden variables be H = X - Y – E

Then the required summation of joint entries is done by summing out the hidden variables:

P(Y | E = e) = αP(Y,E = e) = αΣhP(Y,E= e, H = h)

• The terms in the summation are joint entries because Y, E and H together exhaust the set of random variables

• Obvious problems:

1. Worst-case time complexity O(dn) where d is the largest arity

2. Space complexity O(dn) to store the joint distribution

3. How to find the numbers for O(dn) entries?

AIMA



Example: Network of grades („érdemjegyháló”)



Example: student attrition (lemorzsolódás)
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Petefészekrák nem-invazív diagnosztikája
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Antal, P. et al. (2000). How might we combine the information we know about a mass better? In Proc. of the 
1st Montecarlo Conference on updates in Gynaecology (MCG) (pp. 1-3).
Timmerman et al. Terms, definitions and measurements to describe the sonographic features of adnexal 
tumors: a consensus opinion from the IOTA group. Utransound Obstet Gynecol, 16:500-505, 2000
Timmerman, D. (2004). The use of mathematical models to evaluate pelvic masses; can they beat an expert 
operator?. Best Practice & Research Clinical Obstetrics & Gynaecology, 18(1), 91-104.

• International Ovarian Tumor Analysis (IOTA)
• 1996-1999: ~300 minta (K.U.Leuven)

• 1998-2004: 68 paraméter, 1066 minta

• Kérdések:
• Predikciós teljesítmény

• Biomarkerek
• Szükségesség, elégségesség, helyettesíthetőség

• költséghatékonyság



Döntési hálózatok

Antal, P., Fannes, G., Timmerman, D., Moreau, Y. and De Moor, B., 2004. Using literature and data to learn 
Bayesian networks as clinical models of ovarian tumors. Artificial Intelligence in medicine, 30(3), pp.257-281.



„Tudásgazdag” neurális hálózatok
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P. Antal, G. Fannes, D. Timmerman, Y. Moreau, B. De Moor: Bayesian Applications of Belief Networks and Multilayer 
Perceptrons for Ovarian Tumor Classification with Rejection, Artificial Intelligence in Medicine, vol. 29, pp 39-60, 2003
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Bizonyíték-alapú, értelmezhető döntési hálózatok
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Változók fogalmi hierarchiája

Változók részletes magyarázata

Döntési hálózat

Antal, P., Mészáros, T., De Moor, B., & Dobrowiecki, T. (2001). Annotated Bayesian Networks: a tool to integrate 
textual and probabilistic medical knowledge. In Proceedings 14th IEEE Symposium on Computer-Based Medical 
Systems. CBMS 2001 (pp. 177-182). IEEE.



Érthető, megmagyarázott döntések
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Bizonyíték-alapú döntési hálózat
Kérdés

Magyarázat

Szakcikkek

Antal, P., De Moor, B., Timmerman, D., Mészáros, T., & Dobrowiecki, T. (2002). Domain knowledge based 
information retrieval language: an application of annotated Bayesian networks in ovarian cancer domain. In 
Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002) (pp. 213-218). IEEE.



Adaptív klinikai laboratóriumi diagnosztika

1. Döntéstámogató rendszer

2. Költséghatékonysági kontroll

3. Orvoskontroll biztosítása

4. Labormérések indításának segítése adott minta esetén

5. Labor kapacitásának automatikus figyelembevétele

Data

Labor Tájékoztatás a keletkező eredményekről és 
javaslatokról
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Independence models



Conditional independence

IP(X;Y|Z) or (X⫫Y|Z)P denotes that X is independent of Y 
given Z: P(X;Y|z)=P(Y|z) P(X|z) for all z with P(z)>0.

(Almost) alternatively, IP(X;Y|Z) iff

P(X|Z,Y)= P(X|Z) for all z,y with P(z,y)>0.

Other notations: DP(X;Y|Z) =def= ┐IP(X;Y|Z)

Contextual independence: for not all z.



The independence model of a distribution

The independence map (model) M of a distribution P is 
the set of the valid independence triplets:

MP={IP,1(X1;Y1|Z1),..., IP,K(XK;YK|ZK)}

X Y ZIf P(X,Y,Z) is a Markov chain, then 
MP={D(X;Y), D(Y;Z), I(X;Z|Y)}
Normally/almost always: D(X;Z)
Exceptionally: I(X;Z)



The semi-graphoid axioms
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Graphoids

J.Pearl: Probabilistic Reasoning in intelligent systems, 1998

Graphoids: Semi-graphoids+Intersection (holds only in strictly positive distribution)



Separation in undirected graphs

IG(X;Y|Z) denotes that X is separated from Y by Z in undirected graph 
G, i.e. every path between X and Y is blocked by Z (it contains a node 
from Z).



Directed separation in directed graphs

IG(X;Y|Z) denotes that X is d-separated from Y by Z in directed acyclic 
graph G.



Bayesian networks: three facets

MP={IP,1(X1;Y1|Z1),...}
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3. Concise representation of joint 
distributions

2. Graphical representation of 
(in)dependencies

1. Causal model



Bayesian networks

• A simple, graphical notation for conditional independence assertions and hence 
for compact specification of full joint distributions

• Syntax:
• a set of nodes, one per variable
•

• a directed, acyclic graph (link ≈ "directly influences")
• a conditional distribution for each node given its parents:

P (Xi | Parents (Xi))

• In the simplest case, conditional distribution represented as a conditional 
probability table (CPT) giving the distribution over Xi for each combination of 
parent values



Example

• I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set 
off by minor earthquakes. Is there a burglar?

• Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

• Network topology reflects "causal" knowledge:

• A burglar can set the alarm off

• An earthquake can set the alarm off

• The alarm can cause Mary to call

• The alarm can cause John to call



Example contd.



Constructing Bayesian networks
• 1. Choose an ordering of variables X1, … ,Xn

• 2. For i = 1 to n

• add Xi to the network

• select parents from X1, … ,Xi-1 such that

P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)

This choice of parents guarantees:

P (X1, … ,Xn) = πi =1 P (Xi | X1, … , Xi-1) //(chain rule)

= πi =1P (Xi | Parents(Xi)) //(by construction)

n

n



Representation of independencies

For certain distributions exact representation is not possible by Bayesian networks, e.g.:
1. Intransitive Markov chain: XYZ
2. Pure multivariate cause: {X,Z}Y
3. Diamond structure:

P(X,Y,Z,V) with MP={D(X;Z), D(X;Y), D(V;X), D(V;Z), 
I(V;Y|{X,Z}), I(X;Z|{V,Y}).. }. X

Y

Z

V



An almost always complete calculus for 
independencies



Markov conditions



Bayesian network definitions
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Multimorbidity network

Marx, P., Antal, P., Bolgar, B., Bagdy, G., Deakin, B. and Juhasz, G., 2017. Comorbidities in the diseasome are more 
apparent than real: What Bayesian filtering reveals about the comorbidities of depression. PLoS computational 
biology, 13(6), p.e1005487.



Relativity of the interpretations

1. The presence of unobserved (hidden) variables as potential confounders.
2. Selection bias can occur if the observation depends on the joint

combination of otherwise independent events, inducing non-causal
dependencies between them.

3. The mixture of causal models, if conditionally both X causes Y and vice
versa. A similar problem is the presence of feedback (and indirectly
temporality).

4. Global physical and semantic constraints between the variables.
5. Stability can be also questioned, because of deterministic dependencies,

resulting in the lack of guarantee for the uniqueness and exactness of the
representation.

6. The (in)dependencies are relative to the set of variables and specifically,
also to the values of the variables



Towards causal inference



• strong association,

• X precedes temporally Y,

• plausible explanation without alternative explanations based on confounding,

• necessity (generally: if cause is removed, effect is decreased or actually: y would not 
have been occurred with that much probability if x had not been present),

• sufficiency (generally: if exposure to cause is increased, effect is increased or actually: y 
would have been occurred with larger probability if x had been present).

• Autonomous, transportable mechanism.

• The probabilistic definition of causation formalizes many, but for example not the 
counterfactual aspects.
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Principles of causality



Questions
• Can we represent exactly (in)dependencies by a BN?

• From a causal model? Suff.&nec.? 

• Can we interpret 
• edges as causal relations

• with no hidden variables?

• in the presence of hidden variables?

• local models as autonomous mechanisms?

• Can we infer the effect of interventions?



• In a Bayesian network, any query can be answered 
corresponding to passive observations: p(Q=q|E=e).

• What is the (conditional) probability of Q=q given that E=e.

• Note that Q can preceed temporally E.
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Motivation: from observational inference…

X

Y

 Specification: p(X), p(Y|X)

 Joint distribution: p(X,Y)

 Inferences: p(X), p(Y), p(Y|X), p(X|Y)



• Perfect intervention: do(X=x) as set X to x.

• What is the relation of p(Q=q|E=e) and p(Q=q|do(E=e))?

• What is a formal knowledge representation of a causal model?

• What is the formal inference method?
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Motivation: to interventional inference…

X

Y

 Specification: p(X), p(Y|X)
 Joint distribution: p(X,Y)
 Inferences:

 p(Y|X=x)=p(Y|do(X=x))
 p(X|Y=y)≠p(X|do(Y=y))



• Imagery observations and interventions:
• We observed X=x, but imagine that x’ would have been observed: denoted as X’=x’.

• We set X=x, but imagine that x’ would have been set: denoted as do(X’=x’).

• What is the relation of 
• Observational p(Q=q|E=e, X=x’) 

• Interventional p(Q=q|E=e, do(X=x’))

• Counterfactual p(Q’=q’|Q=q, E=e, do(X=x), do(X’=x’))

• O: What is the probability that the patient recovers if he takes the drug x’.

• I:What is the probability that the patient recovers if we prescribe* the drug x’.

• C: Given that the patient had not recovered for the drug x, what would have been the probability 
that patient recovers if we had prescribed* the drug x’, instead of x.

• *: Assume that the patient is fully compliant.

• **” expected to neither he will.
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Motivation: and to counterfactual inference



Challenges in a complex domain
The domain is defined by the joint distribution

P(X1,..., Xn|Structure,parameters)

1. Representation of parameteres

2. Representation of independencies

3. Representation of causal relations

4. Representation of possible worlds

quantitave

qualitative

passive
(observational)

Active
(interventional)

„small number of parameters”

„what is relevant for diagnosis”

„what is the effect of a treatment”

?

Imagery
(counterfactual)



Observational equivalence of causal models

Causal models:

P(X1,..., Xn) 

From passive observations:

MP={IP,1(X1;Y1|Z1),..., IP,K(XK;YK|ZK)}

Different causal models can have the same independence map!

Typically causal models cannot be identified from passive observations, they are
observationally equivalent.

J.Pearl:
~„3D objects”

„2D projection”



Association vs. Causation: Markov chain

Causal models:

X1 X2 X3 X4 X4X3X2X1

Flow of time?

MP={I(Xi+1;Xi-1|Xi)} 

P(X1,...) 

„first order Markov property”

Markov chain



The building block of causality: 
v-structure (arrow of time)

X Z Y

p(X),p(Z|X),p(Y|Z)

X Z Y

p(X|Z),p(Z|Y),p(Y)

X Z Y

p(X|Z),p(Z),p(Y|Z)

“transitive” M ≠ „intransitive” M
X

Z
Y

p(X),p(Z|X,Y),p(Y)

„v-structure”

MP={D(X;Z), D(Y;Z), I(X;Y), D(X;Y|Z) }MP={D(X;Z), D(Z;Y), D(X,Y), I(X;Y|Z)}

Often: present knowledge renders future states conditionally independent.
(confounding)

Ever(?): present knowledge renders past states conditionally independent.
(backward/atemporal confounding)



Observational equivalence: 
total independence

„Causal” model:

P(X1,..., Xn) 

Dependency map:

MP={IP,1(X1;X2),...}

One-to-one relation



Observational equivalence:
full dependence

„Causal” models (there is a DAG for each ordering, i.e. n! DAGs):

P(X1,..., Xn) 

Dependency map:

MP={DP,1(X1;X2),...}

One-to-many relation



Observational equivalence of causal models



Compelled edges and PDAG
(“can we interpret edges as causal relations?”compelled edges)



The Causal Markov Condition
• A DAG is called a causal structure over a set of variables, if each node 

represents a variable and edges direct influences. A causal model is a 
causal structure extended with local probabilistic models.

• A causal structure G and distribution P satisfies the Causal Markov 
Condition, if P obeys the local Markov condition w.r.t. G.

• The distribution P is said to stable (or faithful), if there exists a DAG 
called perfect map exactly representing its (in)dependencies (i.e. 
IG(X;Y|Z)⇔ IP(X;Y|Z) ∀ X,Y,Z ⊆ V ).

• CMC: sufficiency of G (there are no extra, acausal dependencies)

• Faithfulness/stability: necessity of G (there are no extra, parametric 
independencies)



Interventional inference in causal Bayesian 
networks
• (Passive, observational) inference

• P(Query|Observations) 

• Interventionist inference
• P(Query|Observations, Interventions)

• Counterfactual inference
• P(Query| Observations, Counterfactual conditionals) 



Interventions and graph surgery

If G is a causal model, then compute p(Y|do(X=x)) by
1. deleting the incoming edges to X

2. setting X=x

3. performing standard Bayesian network inference.

Mutation

Disease

Subpopulation
Location

?
E

X

Y

*

?



Learning causal relations and models



Inductive Causation (asymptotic, no hidden)



Association vs. Causation

Reichenbach's Common Cause Principle:
a correlation between events X and Y indicates either that X causes Y, or that Y causes X, or that X

and Y have a common cause.

X Y X Y
X

*

Y X

*

Y

*...

...

Causal models:

X causes Y Y causes X

There is a common cause 
(pure confounding)

Causal effect of Y on X
is confounded by many 
factors

X YMP={D(X;Y)} 

P(X,Y) 
From passive observations:

„X and Y are associated”



Local Causal Discovery
“can we interpret edges as causal relations in the presence of hidden variables?”

• Can we learn causal relations from observational data in presence of confounders???

E

X

Y

*

?

???

Smoking

Lung cancer

 Automated, tabula rasa causal inference from (passive) observation is possible, 
i.e. hidden, confounding variables can be excluded

Smoking

Lung cancer

A genetic

polymorphism*

Increased susceptibility

Increased propensity



A deterministic concept of causation
• H.Simon

• Xi=fi(X1,..,Xi-1) for i=1..n

• In the linear case the sytem of equations indicates a natural 
causal ordering (flow of time?)

X

X X

X X X

X X X X

....

The probabilistic conceptualization is its generalization: 

P(Xi,|X1,..,Xi-1) ~ Xi=fi(X1,..,Xi-1)
A posteriori probability of a „causal” ordering…



Towards counterfactual inference











Summary

• Independence models

• Probabilistic graphical models
• Bayesian networks

• Causal interpretation

• Causal inference

• Counterfactual inference


