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Agenda

* Reminder:
 Last lecture: axiomatizations in probability theory
 Now: axiomatic approaches to causal inference (~causality)

* Examples for probabilistic inference

* From associations to direct dependencies

* The ultimate limit of observational learning
e Causal inference

* Learning causal relations and models

* Counterfactual inference



Probabilistic inference



Reminder: Naive Bayesian network

* Definition: conditional independence of ,effects” X; given ,,cause” Y.

* Properties:
 Number of parameters (“model complexity): linear
* Complexity of inference: linear
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Universal (observational) inference

Any question about observable events in the domain can be answered by the joint distribution.

Typically, we are interested in the posterior joint distribution of the Y given specific values e for the
Let the beH=X-Y-E
Then the required summation of joint entries is done by summing out the hidden variables:

P(Y| E=e)=0aP(Y,E=¢e)=0aX,P(Y,E=e, H=h)

* Theterms in the summation are joint entries because Y, E and H together exhaust the set of random variables

* Obvious problems:
1. Worst-case time complexity O(d") where d is the largest arity
2. Space complexity O(d") to store the joint distribution

3. How to find the numbers for O(d") entries?

AIMA
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Antal, P. et al. (2000). How might we combine the information we know about a mass better? In Proc. of the
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Timmerman et al. Terms, definitions and measurements to describe the sonographic features of adnexal
tumors: a consensus opinion from the IOTA group. Utransound Obstet Gynecol, 16:500-505, 2000
Timmerman, D. (2004). The use of mathematical models to evaluate pelvic masses; can they beat an expert
operator?. Best Practice & Research Clinical Obstetrics & Gynaecology, 18(1), 91-104.
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Independence models



Conditional independence

1,(X;Y|Z) or (XLLY|Z), denotes that X is independent of Y
given Z: P(X;Y|z)=P(Y|z) P(X|z) for all z with P(z)>0.

(Almost) alternatively, I(X;Y|2) iff
P(X|Z,)Y)=P(X]|Z) for all z,y with P(z,y)>0.

Other notations: Dy(X;Y|Z) =def=1,(X;Y|Z)
Contextual independence: for not all z.



The independence model of a distribution

The independence map (model) M of a distribution P is
the set of the valid independence triplets:

Mp={lp ((X3;Y11Z4),..., 1ok (X Yi | Z)}

If P(X,Y,Z) is a Markov chain, then O-O-@
Mp={D(X;Y), D(Y;2), I(X;Z]Y)}
Normally/almost always: D(X;Z)
Exceptionally: I(X;Z)



The semi-graphoid axioms

. Symmetry: The observational probabilistic conditional independence is symmetric.
I,(X;Y|Z)iff I,(Y; X|Z)

. Decomposition: Any part of an irrelevant information is irrelevant.
ILiX;YUWI|Z)= (XY Z2)and I,( X; W |2Z)

. Weak union: Irrelevant information remains irrelevant after learning (other) irrelevant
information.

L(X;YUW|Z)= [,(X;Y|ZUW)

. Contraction: Irrelevant information remains irrelevant after forgetting (other) irrelevant
information.

IX;Y|Z)and I,( X;W|ZUY )= I,(X; Y UW|Z)



Graphoids

Graphoids: Semi-graphoids+Intersection (holds only in strictly positive distribution)

Intersection: Symmetric irrelevance implies joint irrelevance if there are
no dependencies.
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Separation in undirected graphs

15(X;Y|Z) denotes that X is separated from Y by Z in undirected graph
G, i.e. every path between X and Y is blocked by Z (it contains a node
from Z).



Directed separation in directed graphs

15(X;Y|Z) denotes that X is d-separated from Y by Z in directed acyclic
graph G.
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Bayesian networks: three facets

3. Concise representation of joint

distributions
P(M,0,D,S,T)=

PIM)P(O|M)P(D|O,M)P(S|D)P(T|S,M)

\ J 1. Causal model

2. Graphlcal representatlon of
(in)dependencies




Bayesian networks

* A simple, graphical notation for conditional independence assertions and hence
for compact specification of full joint distributions

* Syntax:
* aset of nodes, one per variable
* adirected, acyclic graph (link = "directly influences")
* a conditional distribution for each node given its parents:
P (X, | Parents (X))

* In the simplest case, conditional distribution represented as a
(CPT) giving the distribution over X; for each combination of
parent values



Example

* I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set
off by minor earthquakes. Is there a burglar?

* Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

* Network topology reflects "causal" knowledge:
* A burglar can set the alarm off
e An earthquake can set the alarm off
e The alarm can cause Mary to call
* The alarm can cause John to call



Example contd.
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Constructing Bayesian networks

* 1. Choose an ordering of variables X, ... ,.X,

* 2.Fori=1ton
* add X; to the network

* select parents from X, ..., X;; such that
P (X. [ Parents(X)) =P (X. | X,, ... X ;)

This choice of parents guarantees:
n

P(X,..,X) =m,_,P(X. [ X, .., X)) //(chain rule)
=m,;_,P (X;| Parents(X;)) //(by construction)



Representation of independencies

D-separation provides a sound and complete, computationally efficient algorithm to read off
an (in)dependency model consisting the independencies that are valid in all distributions
Markov relative to G, thatisv¥ X, Y, Z CV

(X UL Y|Z); & (X LY|Z)p in all P Markov relative to G). (10)

For certain distributions exact representation is not possible by Bayesian networks, e.g.:
1. Intransitive Markov chain: X=>Y=>7Z

2. Pure multivariate cause: {X,Z}=>Y
3. Diamond structure:

P(X,Y,Z,V) with M,={D(X;Z), D(X;Y), D(V;X), D(V;2),
(VY {X,2}), XZ[{V,Y}).. }.




An almost always complete calculus for
independencies



Markov conditions

Definition 4 A distribution P( X1, ..., Xy) iS Markov relative to DAG G or factorizes w.rt G, if
P(Xy,..., X,) = || P(X:i|Pa(X;)), (6)
i=1

where FPa(X;) denotes the parents of X; inG.
Definition 5 A distribution P( X1, ..., X,,) obeys the ordersd Markov condition w.r.t. DAG G,

if
Vi= 1. .,m: {X:T(*.I']I AL {Xﬂ'l:ljﬂ s Xﬂ(i—l)}XPﬁ(Xﬂ(?'jMPEI‘I:XWI:?'}))F: (7)
where w () is some ancestral ordering w.r.t. G (i.e. compatible with arrows in G).
Definition 6 A distribution P(X1,..., X, ) obeys the local (or parental) Markov condition w.r.t.
DAG G, if
Yi=1,...,n:(X; 1 Nondescendants(X;)|Pa(X;))s, (8)

where Nondescendants(X; ) denotes the nondescendants of X; in G.



Bayesian network definitions

Theorem 1 Let F(U) a probability distribution and G a DAG, then the conditions above
(repeated below) are equivalent:

F F is Markov relative G or F factorizes w.r.t =,
O F obeys the ordered Markov condition w.r.t. &,
L F obeys the local Markov condition w.r.t. &,

G F obeys the global Markov condition w.r.t. G.

Definition 8 A directed acyclic graph (DAG) G is a Bayesian network of distribution P (L) iff
the variables are represented with nodes in G and (G, FP) satisfies any of the conditions

F. O, L,G& such that G is minimal (i.e. no edge(s) can be omitted without violating a
condition F', O, L, ).



Multimorbidity network

=

large bowel al
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Marx, P., Antal, P., Bolgar, B., Bagdy, G., Deakin, B. and Juhasz, G., 2017. Comorbidities in the diseasome are more
apparent than real: What Bayesian filtering reveals about the comorbidities of depression. PLoS computational
biology, 13(6), p.e1005487. AL -



Relativity of the interpretations

1. The presence of unobserved (hidden) variables as potential confounders.

2. Selection bias can occur if the observation depends on the joint
combination of otherwise independent events, inducing non-causal
dependencies between them.

3. The mixture of causal models, if conditionally both X causes Y and vice
versa. A similar problem is the presence of feedback (and indirectly
temporality).

4. Global physical and semantic constraints between the variables.

5. Stability can be also questioned, because of deterministic dependencies,
resulting in the lack of guarantee for the uniqueness and exactness of the
representation.

6. The (in)dependencies are relative to the set of variables and specifically,
also to the values of the variables



Towards causal inference



Principles of causality

* strong association,
e X precedes temporally Y,
 plausible explanation without alternative explanations based on confounding,

* necessity (generally: if cause is removed, effect is decreased or actually: y would not
have been occurred with that much probability if x had not been present),

* sufficiency %enerally: if exposure to cause is increased, effect is increased or actually: y
would have been occurred with larger probability if x had been present).

e Autonomous, transportable mechanism.

* The probabilistic definition of causation formalizes many, but for example not the
counterfactual aspects.



Questions

e Can we represent exactly (in)dependencies by a BN?
* From a causal model? Suff.&nec.?

* Can we interpret
* edges as causal relations
e with no hidden variables?
* in the presence of hidden variables?
* local models as autonomous mechanisms?

e Can we infer the effect of interventions?



Motivation: from observational inference...

* In a Bayesian network, any query can be answered
corresponding to passive observations: p(Q=q|E=e).

 What is the (conditional) probability of Q=g given that E=e.
* Note that Q can preceed temporally E.

@ Specification: p(X), p(Y|X)
Joint distribution: p(X,Y)

@ Inferences: p(X), p(Y), p(Y|X), p(X]Y)



Motivation: to interventional inference...

e Perfect intervention: do(X=x) as set X to x.
 What is the relation of p(Q=q|E=e) and p(Q=q|do(E=e))?

@ Specification: p(X), p(Y|X)
Joint distribution: p(X,Y)

Inferences:
() p(Y | X=x)=p(Y | do(X=x))
p(X]|Y=y)=p(X[do(Y=y))

* What is a formal knowledge representation of a causal model?

e What is the formal inference method?



Motivation: and to counterfactual inference

* Imagery observations and interventions:
* We observed X=x, but imagine that x’ would have been observed: denoted as X’'=x’.
* We set X=x, but imagine that x’ would have been set: denoted as do(X'=x").

What is the relation of
* Observational p(Q=q|E=e, X=x")
* Interventional p(Q=q|E=e, do(X=x"))
» Counterfactual p(Q'=q’|Q=q, E=e, do(X=x), do(X’'=x"))

O: What is the probability that the patient recovers if he takes the drug x’.

I:What is the probability that the patient recovers if we prescribe* the drug x’.

C: Given that the patient had not recovered for the drug x, what would have been the probability
that patient recovers if we had prescribed* the drug x’, instead of x.

*: Assume that the patient is fully compliant.

**7 expected to neither he will.

11/13/2019 A.l
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Challenges in a complex domain

The domain is defined by the joint distribution
P(Xy,..., X,,| Structure,parameters)

1. Representation of parameteres
,small number of parameters”

2. Representation of independencies
,what is relevant for diagnosis”

3. Representation of causal relations
,what is the effect of a treatment”

4. Representation of possible worlds

guantitave

passive

qualitative (observational)

Active
(interventional)
Imagery
(counterfactual)



Observational equivalence of causal models

J.Pearl:

Causal models:

From passive observations:

P(X,,..., X,)
,2D projection”
Mp={lp1(X3;Y11Z1),ee0s T (XisYic | Zi)}

Different causal models can have the same independence map!

Typically causal models cannot be identified from passive observations, they are
observationally equivalent.



Association vs. Causation: Markov chain

Causal models:

PR CPLEECD R EDECPEED D

Markov chain

P(X,,...)
Mp={1(Xi, ;X 11 X))}

Jfirst order Markov property”

Flow of time?



The building block of causality:
v-structure (arrow of time)

p(X),p(Z]X),p(Y|2)

O-O-®

p(X]Z),p(Z]Y),p(Y)

p(X),p(Z|X,Y),p(Y)
“transitive” M # ,intransitive” M . .
p(X|2),p(Z),p(Y|2)

m NV-structure”

M,={D(X;Z), D(Z;Y), D(X,Y), I(X;Y|Z)} M,={D(X;Z), D(Y;Z), I(X;Y), D(X;Y|Z) }

Often: present knowledge renders future states conditionally independent.
(confounding)

Ever(?): present knowledge renders past states conditionally independent.
(backward/atemporal confounding)



Observational equivalence:
total independence

,Causal” model: @
‘t
@
l
"y l
,
One-to-one relation
Dependency map:
P(X,-.., X))

Mp={lp1(X1;X,), ..}



Observational equivalence:
full dependence

,Causal” models (there is a DAG for each ordering, i.e. n! DAGs):

One-to-many relation
Dependency map:

P(X,-.., X))

Mp={Dp (X1 X,), ..}



Observational equivalence of causal models

Definition 11 Two DAGs G, G5 are observationally equivalent , if they imply the same set of
independence relations (i.e. (X 1L Y|Z),,) < (X 1L Y|Z),,)

The implied equivalence classes may contain n! humber of DAGs (e.g. all the full networks
representing no independencies) or just 1.

Theorem 2 Two DAGs 1, G2 are observationally equivalent , iff they have the same skeleton
(i.e. the same edges without directions) and the same set of v-structures (i.e. two converging
arrows without an arrow between their tails).

Definition 12 The essential graph representing observationally equivalent DAGs is a partially
oriented DAG (FPDAG), that represents the identically oriented edges called compelled edges
of the observationally equivalent DAGSs (i.e. in the equivalence class), such a way that in the
common skeleton only the compelled edges are directed (the others are undirected
representing inconclusiveness).



Compelled edges and PDAG

(“can we interpret edges as causal relations?”=»compelled edges)




The Causal Markov Condition

A DAG is called a causal structure over a set of variables, if each node
represents a variable and edges direct influences. A causal model is a
causal structure extended with local probabilistic models.

e A causal structure G and distribution P satisfies the Causal Markov
Condition, if P obeys the local Markov condition w.r.t. G.

* The distribution P is said to stable (or faithful), if there exists a DAG
called perfect map exactly representing its (in)dependencies (i.e.
(XY |Z) © LIXY|Z) VXY,ZE V).

e CMC: of G (there are no extra, acausal dependencies)

 Faithfulness/stability: of G (there are no extra, parametric
independencies)



Interventional inference in causal Bayesian
networks

» (Passive, observational) inference
* P(Query|Observations)

* |Interventionist inference
* P(Query|Observations, Interventions)

e Counterfactual inference
* P(Query| Observations, Counterfactual conditionals)



Interventions and graph surgery

If G is a causal model, then compute p(Y|do(X=x)) by
1. deleting the incoming edges to X
2. setting X=x
3. performing standard Bayesian network inference.

-



Learning causal relations and models



Inductive Causation (asymptotic, no hidden)

1. Skeleton: Construct an undirected graph (skeleton), such that variables
X.Y € V are connected with an edge iff VS(X 1 Y|S),, where
SCV\{X,Y}.

2. v-structures: Orient X — Z + Y iff X, Y are nonadjacent, Z is a common
neighbour and —3S that (X L Y|S),, where SC V\ {X,Y} and Z € S.

3. propagation: Orient undirected edges without creating new v-structures
and directed cycle.

Theorem
The following four rules are necessary and sufficient.

Ry if (a #4c) AN(a—b)AN(b—c), thenb — ¢

Ry if (a—c—Db)A(a—D>b), thena — b

Ry if(a—b)N(a—c—>b)A(a—d— b) A (c#d), thena— b

Ry if (a—b)AN(a—c—d)AN(c—d—=>Db)A(c+#b)AN(a—d), thena— b



Assoclation vs. Causation

Causal models:
X causes Y Y causes X M

There is a common cause Causal effect of Y on X
(pure confounding) is confounded by many
factors

From passive observations:
P(X,Y)

M=pxy)  QO—QD

,Xand Y are associated”

Reichenbach's Common Cause Principle:

a correlation between events X and Y indicates either that X causes Y, or that Y causes X, or that X
and Y have a common cause.



Local Causal Discovery

“can we interpret edges as causal relations in the presence of hidden variables?”

e Can we learn causal relations from observational data in presence of confounders???

Increaseq propensity

od susceptibility

m  Automated, tabula rasa causal inference from (passive) observation is possible,
i.e. hidden, confounding variables can be excluded

3.




A deterministic concept of causation

* H.Simon
« Xi=fi(Xq,.., X)) fori=1..n

* In the linear case the sytem of equations indicates a natural
causal ordering (flow of time?)

X | X | X | X

The probabilistic conceptualization is its generalization:
P(Xiilxli"’xi-l) - Xi:fi(xli"’xi-l)
A posteriori probability of a ,causal” ordering...



Towards counterfactual inference



Functional (causal) Bayesian network

The axiomatic foundation for the graph surgery semantics of the P(.|do(.), .)
notation.

Definition

Let p(V|do(x) denote an interventional distribution corresponding to setting
variable(s) X C V to value x and P. the set of all interventional distributions
(including p(V|do(0)) the observational target distribution without

intervention). A DAG G is said to be a causal Bayesian network compatible
with P iff for each p(V|do(x)) € P« the following three conditions hold

1. p(V|do(x) is Markov relative to G,
2. VXi € X p(xi|do(x) = 1 if value x; and x is compatible,
3. VXi ¢ X p(xi|pa;i, do(x) = p(xi|pa;) if value(s) pa; and x is compatible.



Counterfactuals I.

® Observe X =z and Y =y

¢ What is the probability, that Y would
have attained the value ¥’ if X had
been z'? (here y and ¥’ can be equal but
L)

® Variables A and B can be either
observed or hidden, but the

full model (graph, functions,and P(U)) a:= fa(ua‘)
Is assumed to be known z = f2(a,Ug)
b:= fo(z,up)
® [nterpreting the question: We assume a y = fy(a,z,b uy)

minimal change of mechanism, i.e. we set
X into state z’ without changing anything else, i.e: do(X = )

® Interpreting the question: We assume that the disturbance variables
U\U, = {U,, U, U, } are persistent, i.e. do not change



Counterfactuals II.

e With these specifications, we have a well
defined probability:

PlYy = | X=¢.¥ =75)

Y:(u) = ‘the value of Y, when the
disturbance variables attain the values «
and X is set to equal =

S oo R




Counterfactuals III.

e But, how to calculate
PYy=v9y | X=2Y=y)!

(Pearl| theorem 7.1.7)
Three steps:

I. (‘abduction’): Calculate the
probability distribution over all

disturbances, given the evidence ¢,
.e. P(U | e)

Ii. (‘action’): Change the model by the
intervention do(X = '), i.e. remove all
arrows into X and set its value to 2’

S o= 2

fa(ua}

lii. (‘prediction’) Using the updated model, and the probability

distribution P(U | e), calculate P(Y =1y')




Summary

* Independence models

* Probabilistic graphical models
* Bayesian networks
e Causal interpretation

e Causal inference
 Counterfactual inference



