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Agenda

* Interpretations of probability

* Axiomatic derivations of probability theory

* Axiomatic derivations of Bayesian (decision) theory

e Axioms of structural properties of joint probability distributions



Interpretations of probability
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Interpretations of probability

* Sources of uncertainty
* inherent uncertainty in the physical process;
* inherent uncertainty at macroscopic level,
* ignorance;
* practical omissions;

* Interpretations of probabilities:
* combinatoric;
* physical propensities;
* frequentist;
* personal/subjectivist;
* instrumentalist;
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Physicalist view of probabilitites

A.Einstein: ,,God does not play dice..”

https://arxiv.org/ftp/arxiv/papers/1301/1301.1656.pdf

Einstein-Podolski-Rosen paradox / Bell Test

S. Hawking: ,Does god play dice?”

http://www.hawking.org.uk/does-god-play-dice.html

The BIG Bell Test (Nov30, 2016)

¢ http://bist.eu/100000-people-participated-big-bell-test-unique-worldwide-quantum-physics-experiment/



https://arxiv.org/ftp/arxiv/papers/1301/1301.1656.pdf
http://www.hawking.org.uk/does-god-play-dice.html
http://bist.eu/100000-people-participated-big-bell-test-unique-worldwide-quantum-physics-experiment/

A chronology of uncertain inference

e [1713] Ars Conjectandi (The Art of Conjecture), Jacob Bernoulli

* Subjectivist interpretation of probabilities

* [1718] The Doctrine of Chances, Abraham de Moivre
* the first textbook on probability theory
* Forward predictions

e ,given a specified number of white and black balls in an urn, what is the probability of drawing a
black ball?”

* [1812], Théorie analytique des probabilités, Pierre-Simon Laplace

* General Bayes rule

e [1933]: A. Kolmogorov: Foundations of the Theory of Probability



Axiomatic derivations of probability theory



Other Al approaches to uncertain reasoning

 Certainty factors
* Fuzzy logic
* https://en.wikipedia.org/wiki/Fuzzy logic

* Dempster-Schafer theory (imprecise probability theories)
* https://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer theory

Cheeseman, P.C., 1985, August. In Defense of Probability. In [JCAI (Vol. 2, pp. 1002-1009).
Heckerman, D.E. and Shortliffe, E.H., 1992. From certainty factors to belief networks. Artificial Intelligence in

Medicine, 4(1), pp.35-52.


https://en.wikipedia.org/wiki/Fuzzy_logic
https://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory

Axioms of probability

* For any propositions A, B

« 0<P(A) <1
e P(true) =1 and P(false) =0

True

« P(A v B) = P(A) + P(B) - P(A A B)

AIMA



Normative derivations of probability theory

e Cox's theorem
* https://en.wikipedia.org/wiki/Cox%27s theorem
e Goal:

* Divisibility and comparability — The plausibility of a proposition is a real number and is dependent
on information we have related to the proposition.

« Common sense — Plausibilities should vary sensibly with the assessment of plausibilities in the
model.

* Consistency — If the plausibility of a proposition can be derived in many ways, all the results must
be equal.

Associativity: AB[X=g(A|X,B|AX)

Monotonicity (isomorphism with multiplication): w(AB[X)=w(A [X)w(B[AX)
e Boundary conditions: w(Certainty[X)=1, w(Impossibility | X)=0

* Negation function f: f(not X)=1-f(X) (+isomorphism with multiplication)



https://en.wikipedia.org/wiki/Cox's_theorem
https://en.wikipedia.org/wiki/Proposition

~ Cox-Jaynes axioms

= finite additivity
Sigma-additivity: Kolmogorov’s measure-theoretic formulation



https://en.wikipedia.org/wiki/Cox's_theorem

Basic concepts of probability theory

Joint distribution
Conditional probability
Bayes’ rule

Chain rule
Marginalization
General inference

Independence
e Conditional independence
e Contextual independence
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Conditional probability

Definition of conditional probability:

P(a | b) =P(a A b)/P(b)if P(b)>0

gives an alternative formulation:

P(aAb)=P(a| b) P(b)=P(b | a) P(a)

is derived by successive application of product rule:

P(Xy, ... X.) = P(Xyeo X 1) POX | Xppor X )
= P(Xypee X o) P(X g | Xppero X)) POX | Xgpr X )

= T[i= 1An P(XI | Xl’ ’Xi-l)

AIMA



Bayes rule

An algebraic triviality

p(Y | X)p(X)  p(Y | X)p(X)

X1Y)= =
PRI =00 TS e X0p(x)

A scientific research paradigm

p(Model | Data) «c p(Data| Model) p(Model)

A practical method for inverting causal knowledge to diagnostic tool.

p(Cause| Effect) oc p(Effect| Cause) x p(Cause)



Conditional independence

1(X;Y|Z) or (X1LY|Z), denotes that X is independent of Y given Z
defined as follows

for all x,y and z with P(z)>0: P(x;y|z)=P(x|z) P(y|z)

(Almost) alternatively, 15(X;Y|2) iff
P(X|ZY)= P(X|Z) for all z,y with P(z,y)>O0.
Other notations: D,(X;Y|Z) =def=+1,(X;Y|Z)
Contextual independence: for not all z.
Direct dependence: Dy (X;Y|V/{X,Y})



Axiomatic derivations of ,, Bayesianism”



From “rational” preferences to probabilities:
"as if" I.

1. Definition. A decision problem is defined by the elements £,C. A, <, where:
(i) & is an algebra of events, E;;
(i) C Is a set of possible consequences, c;;

(iii) A is a set of possible acts, which are mapping of partitions of the events to
consequences;

(iv) < is a binary preference relation between some of the elements of A.

With further "rational” assumptions on comparability, transitivity, consistency and
quantification the following suggestive result can be derived.

1. Proposition. Given an uncertainty relation <, there exists a unique real number P(E) for
each event E (defined as the probability of E) that they are compatible with < (i.e.
E < Fiff; P(F) < P(F')) and they form a finitely additive probability measure.

Consequently, P(A|¢) denotes the subjective/personal beliefs in a given
space-time-information context £ vs. the "frequentist” interpretation that
P(A) £ limpy_..o Na/N.

Bernardo, J.M. and Smith, A.F., 2009. Bayesian theory (Vol. 405). John Wiley & Sons.



From preferences to utilities:
"as if" Il.

The parallel result for the existence and unigueness of utilities (or losses) is stated only for
decision problems with bounded consequences.

2. Proposition. For any decision problem &£.,C, A, < with bounded consequences c,. < c*,
() forall c, u(c|cy.,c™) exists and unique;
(1) the value of u(c|c..c*) Is unaffected by the assumed occurrence of an event G;
() 0= u(cy|ce,c*) <ulclee,c™) <u(c*|cy,c*) = 1.

(iv) the so-called maximum expected utility principle IS Satisfied, i.e.

a1 <g as & Z u(cq,y (B,)) P(E;|G) < Z u(Cay(E,)) P(E;|G) (1)

] 1

Bernardo, J.M. and Smith, A.F., 2009. Bayesian theory (Vol. 405). John Wiley & Sons.



From exchangeability to parameters and ”i.i.d." :
"as if" lll.

3. Proposition. Ifxz1.x2o.... IS an infinitely exchangeable sequence of 0-1 random
quantities with ,orobabﬂ;ty measure P that is for any n and permutation =(1),...,n(n) the
joint mass function of P p(x1,...,xn) = p(Tx(1),---,: Tx(n)), there exists a distribution
function Q such that p(x1,....x ,,.1) has the form

1 n
p(x1,..., / HH‘"” (1 —60'""1)dQ(h),

where,
Q(f) = lim Plyn/n <46,

n i :_-:x;_l

with y, = x1 + -+ xpn, @and 0 = limy—c yn /n.



Bayesian inference using Beta distribution

1. Example. Assume that = denotes the sum of 1s of n independent and identically
distributed (i.i.d.) Bernoulli trials, that is we assume a binomial sampling distribution. If the
prior is specified using a Beta distribution, the posterior remains a Beta distribution with
updated parameters.

p(z|0) = Bin(z|n,0) = ('”')958(1 _g)n—= (13)
T
( Na + 3
p(f) = Betala,3) = c&'a_l(l — )P~ where ¢ = (@t ) (14)
F(&)T(ﬁ)
p(Olz) = p()p(z0) — /9T (1 — )Pt — Beta(a 4+ z. 8+ n — x)

p(x)



Example

Sample size: 1

25 I

20 =

] 1 — 1 ]
0.00 0.25 0.50 075 1.00

Prior: Beta(3,10)
fix: 0.6



The Bayesian statistical framework

1. Specify a joint distribution p(x, 8) over the observable quantity = and parameter ¢
having equal status by specifying p(8) the prior distribution or prior, the p(x|#) is the
sampling distribution that also defines the likelihood and the likelihood function £(@; x)
(the discrete model parameter is denoted with M. ).

2. Perform a prior predictive inference

plx) = /-p{;z: 0)p(0)do or p(x) = Z p(My,) /p(;t: M) (2)

k

or a posterior predictive inference after observing the data set D as

plxz|D) = /-p(:r|9)p(9 D)dO or p(xz|D) = Z plx|Mpg)p(Mg| D) (3)
k
3. Perform a parametric inference by the Bayes rule

POPO) o p(al0)p(6) or p(Mulz) = p(elMi)p(My) @

p(Olx) = [ p(x|0)p(6)d6 B




Hierarchical Bayesian modelling

A frequently occuring form in practice, that the specification usually achieved in the
structured specification of the relevant model structures S;, or M. and parameters 6,..

Correspondingly the a priori belief p(8x. M) in a given model with structure £ and
parameters 9}; Is expressed as a product

p(05, My) = p(My)p(6L

M)

=>» No theoretical need for ,typed” probability of probabilities!



Predictive inference (”Bayesian inference")

The specification of the a priori beliefs over relevant models allows us to perform (prior)
predictive inferences over the observable quantity »

p(z) =) P(JW!{)/P(R? Ok ) p(Ok | M) dOy,

The operation of integration and/or summation over models and/or their parameterization
Implements marginalization and termed in this context as Bayesian model averaging . We
can write the posterior predictive distribution conditioned on the data set D as

p(z|D) = Z pL-""«AHD)/p(I Op)p(Or | D, My )dO), ~ p(g’.|D”.-\/[£f‘rAP)

in which MMAP = argmaax,p(My|D) is called the maximum a posteriori (MAP) model.



Parametric inference ("Bayesian learning")

In the discrete case the posterior of the model p( M| D) is given by

o _ p(DIMg)p(My)
p(Mg|D) = (D) 9)

where the marginal model likelihood or evidence for My, is

p(D|My) = / (D0, M) p(0k| My, doy (10)

and the marginal data likelihood
p(D) =Y p(D|My)p(My) (11)
k

The Bayes factor shows the change of the ratio of prior belief to the ratio of the posteriors, i.e.
the ratios of marginal likelihoods of models M; and calM,;

2. Definition.

p(D|M; (M) p(M;| D
Bayesfactor(‘.-\/[z—_J_.\/[j) _ p( | e) _ p( _;) p( 'z,| )
p(D|Mj) — p(Mi) p(M;|D)

(12)



An example for full Bayesian inference



Principles for induction

e Epicurus' (3427 B.C. - 270 B.C.) principle of multiple explanations which states that one should
keep all hypotheses that are consistent with the data.

* The principle of Occam's razor (1285 - 1349, sometimes spelt Ockham). Occam's razor states that
when inferring causes entities should not be multiplied beyond necessity. This is widely
understood to mean: Among all hypotheses consistent with the observations, choose the
simplest. In terms of a prior distribution over hypotheses, this is the same as giving simpler
hypotheses higher a priori probability, and more complex ones lower probability.

AIMA



Full Bayesian learning

View learning as Bayesian updating of a probability distribution
over the hypothesis space

[ is the hypothesis variable, values /1, /. ..., prior P(/1) jth ob-
servation d; gives the outcome of random variable 7); training data

d=d,,...,dy

Given the data so far, each hypothesis has a posterior probability:
P(h;|d) = aP(d|h;)P(h;)

where /7(d|/;) is called the likelihood

Predictions use a likelihood-weighted average over the hypotheses:

P(X|d) = 2; P(X|[d, k) P(h;|d) = 2; P(X

hi)P(h;|d)

No need to pick one best-guess hypothesis!

AIMA



Bayesian model averaging

View learning as Bayesian updating of a probability distribution

over the hypothesis space
H is the hypothesis variable, values /1. ho. . .., prior P(H)

Jth observation d; gives the outcome of random variable 1);
training data d=d;. ... . dy

Given the data so far, each hypothesis has a posterior probability:
P(hi|d) = aP(d[h;)P(h;)

where P’(d|/;) is called the likelihood

Predictions use a likelihood-weighted average over the hypotheses:
P(X|d) = 2; P(X|d, h;)P(h;|d) = 2; P(X|h;)P(h;|d)

No need to pick one best-guess hypothesis!

Russel&Norvig: Artificial intelligence, ch.20



Bayesian Model Averaging example

Suppose there are five kinds of bags of candies:
10% are /iy 100% cherry candies
20% are ho: 75% cherry candies + 25% lime candies
40% are hs: 50% cherry candies + 50% lime candies
20% are hy: 25% cherry candies + 75% lime candies
10% are hs: 100% lime candies

PODDD

Then we observe candies drawn from some bag: ® @ oo 000000

What kind of bag is it? What flavour will the next candy be?

Russel&Norvig: Artificial intelligence



Learning rate for models
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Russel&Norvig: Artificial intelligence



Learning rate for model predictions

1 -
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o
3)

o
~

4 6 8 10
Number of samples in d

o
p]

Russel&Norvig: Artificial intelligence



MAP approximation

Summing over the hypothesis space is often intractable
(e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)

Maximum a posteriori (MAP) learning: choose /\jap maximizing

P(h:|d)
l.e., maximize P(d|h;)P(h;) or log P(d|h;) + log P(h;)

Log terms can be viewed as (negative of)
bits to encode data given hypothesis + bits to encode hypothesis
This is the basic idea of minimum description length (MDL) learning

For deterministic hypotheses, /?(d|h;) is 1 if consistent, O otherwise
= MAP = simplest consistent hypothesis (cf. science)

AIMA: Inductive inference




ML approximation

For large data sets, prior becomes irrelevant
Maximum likelihood (ML) learning: choose /1y, maximizing F(d|h;)

|.e., simply get the best fit to the data; identical to MAP for uniform
prior
(which is reasonable if all hypotheses are of the same complexity)

ML is the “standard” (non-Bayesian) statistical learning method

AlIMA: Inductive inference 10




Maximum likelood model selection

November 13, 2019
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Further examples for full Bayesian inference



Universal theory of induction

eUniversal distributions

m(z) = p:E"'%]lLr 2%, —log m(z) = K(z)+ O(1).
M(z) := i
e p:E%;ﬁ 2 —log M(z) = K(z) — O(log £(z))

If the infinite binary sequences are distributed according to a computable measure
W, then the predictive distribution M(x,,,[x;..)=M(x;.,..)/M(x,.,) converges rapidly
to u(x, .,/ x;..)=1(x;...1)/1u(x;.,) with probability 1. Hence, M predicts almost as well

as does the true distribution p.

M. Li and P. M B. Vitanyi. An introduction to Kolmogorov complexity and its applications. Springer
Solomonoff, R.J., 1964. A formal theory of inductive inference. Part |. Information and control, 7(1), pp.1-22.
Chaitin, G., 1974. Information-theoretic computation complexity. IEEE Transactions on Information Theory, 20(1), pp.10-15.



Universal inference, universal priors, universal Al

Solomonoff, R.J., 1960, November. A preliminary report on a general theory of inductive inference. United States Air Force, Office of Scientific
Research.

Solomonoff, R.J., 1964. A formal theory of inductive inference. Part I. Information and control, 7(1), pp.1-22.
Chaitin, G., 1974. Information-theoretic computation complexity. IEEE Transactions on Information Theory, 20(1), pp.10-15.
Chaitin, G.J., 1977. Algorithmic information theory. IBM journal of research and development, 21(4), pp.350-359.

Solomonoff, R., 1978. Complexity-based induction systems: comparisons and convergence theorems. IEEE transactions on Information Theory, 24(4),
pp.422-432.

Cover, .M., 1985. Kolmogorov complexity, data compression, and inference. In The Impact of Processing Techniques on Communications (pp. 23-33).
Springer, Dordrecht.

Li, M. and Vitanyi, P., 1993. An introduction to Kolmogorov complexity and its applications. New York: Springer.

Solomonoff, R.J., 1997. The discovery of algorithmic probability. Journal of Computer and System Sciences, 55(1), pp.73-88.

Dawid, A.P. and Vovk, V.G., 1999. Prequential probability: Principles and properties. Bernoulli, 5(1), pp.125-162.

Chater, N. and Vitanyi, P.M., 2003. The generalized universal law of generalization. Journal of Mathematical Psychology, 47(3), pp.346-369.
Hutter, M., 2007. On universal prediction and Bayesian confirmation. Theoretical Computer Science, 384(1), pp.33-48.

Solomonoff, R.J., 2008. Three kinds of probabilistic induction: Universal distributions and convergence theorems. The Computer Journal, 51(5),
pp.566-570.

Gacs, P. and Vitanyi, P.M., 2011. Raymond J. Solomonoff 1926-2009. IEEE Information Theory Society Newsletter, 61(1), pp.11-16.
Hutter, M., 2004. Universal artificial intelligence: Sequential decisions based on algorithmic probability. Springer Science & Business Media.

Rathmanner S. and Hutter M. 2011. A philosophical treatise of universal induction. Entropv. 13(6) pp.1076-1136.



Naive Bayesian network

Assumptions:
1, Two types of nodes: a cause and effects.
2, Effects are conditionally independent of each other given their cause.

Variables (nodes)
Flu: present/absent
FeverAbove38C: present/absent

Coughing: present/absent P(Flu=present)=0.001
P(Flu=absent)=1-P(Flu=present)

Model

P(Coughing=present| Flu=present)=0.3
Coughing=absent|Flu=present)=1-0.7
P(Coughing=present|Flu=absent)=0.02
P(Coughing=absent|Flu=absent)=1-0.02

P(Fever=present|Flu=present)=0.6

P(Fever=absent|Flu=present)=1-0.6
P(Fever=present|Flu=absent)=0.0
P(Fever=absent|Flu=absent)=

Domingos, Pedro, and Michael Pazzani. "On the optimality of the simple Bayesian classifier under zero-one loss." Machine learning 29.2-3 (1997): 103-130.
Friedman, Jerome H. "On bias, variance, 0/1—loss, and the curse-of-dimensionality." Data mining and knowledge discovery 1.1 (1997): 55-77.
Hand, David J., and Keming Yu. "ldiot's Bayes—not so stupid after all?." International statistical review 69.3 (2001): 385-398.



Conditional probabilities, odds, odds ratios

P(—S, —LC) P(S, —LC) P(—LC)
. LC P(=S, LC) P(S, LC) P(LC)
Probability: P(—S) P(S)

P(LC)

Conditional probabilities (e.g., probability of LC given S):
P(LC| —S)= ??? P(LC| S)= ??? P(LC)

Odds:

[0,1] ->[0,°°]: Odds(p)=p/(1-p)

O(LC| —S)= ??? O(LC| S)

Odds Ratio (OR) Independent of prevalence! | |
OR(LC,S)=0(LC| S)/O(LC| —S) 0 05 1

O Fr N W b~ O
1




Naive Bayesian network (NBN)
Decomposition of the joint:
P(Y,X(,...X,)  =PY)PCX,]Y, Xqi,... X 4) /by the chain rule
= P(Y)['iP(X,[Y) Il by the N-BN assumption
2n+1 parameteres!

Diagnostic inference:

PCYXig5--Xik) = PP [Y) 1 P(Xig5-5Xik)

If Y is binary, then the odds

PY=1{Xig,..X3) | P(Y=0[Xig,...x3) = P(Y=1)/P(Y=0) [, P(x;|Y=1) / P(x;,| Y=0)

p(Flu = present | Fever=absent, Coughing = present)
o p(Flu = present) p(Fever=absent | Flu = present) p(Coughing = present| Flu = present)



Full Bayesian naive-BN

 Structure prior: p(G)
 Specify priors for edges in G
* Penalize deviation from a prior structure G,

* Parameter prior: p(®|G)

* O denotes the complete parametrization for G

* Specify p(®|G) independently for each variable?

* Specify p(®]|G) using a ,,convenient” (~*conjugate) prior?
* Inference

* Tractable?

November 13, 2019
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Full Bayesian inference with N-BNs using
complete data

* Integration over parameters?
* Analytical solution under parameter independence!
* Hyperparameter update.

* Bayesian model averaging over exponential number of
structures?
* Analytical solution!
» Existence of equivalent ,super”-parametrization!!

Dash, Denver, and Gregory F. Cooper. "Exact model averaging with naive Bayesian classifiers." ICML. 2002.

November 13, 2019
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Extensions of N-BNs

* Tree-augmented BNs
* BN-augmented BNs
* Hierarchical BNs

* Multiple parents
e Explaining away

e Context-sensitive” N-BNs

Langseth, Helge, and Thomas D. Nielsen. "Classification using hierarchical naive bayes models." Machine learning 63.2
(2006): 135-159.



On the subjectivity of priors and losses

Optimal decision/estimation:

T = argming / L(x,z)p(xz|D)dz



Axioms of structural properties of probability
distributions



The independence model of a distribution

The independence map (model) M of a distribution P is
the set of the valid independence triplets:

Mp={lp ((X3;Y11Z4),..., 1ok (X Yi | Z)}

If P(X,Y,Z) is a Markov chain, then O-O-@
Mp={D(X;Y), D(Y;2), I(X;Z]Y)}
Normally/almost always: D(X;Z)
Exceptionally: I(X;Z)



The semi-graphoid axioms

. Symmetry: The observational probabilistic conditional independence is symmetric.
I,(X;Y|Z)iff I,(Y; X|Z)

. Decomposition: Any part of an irrelevant information is irrelevant.
ILiX;YUWI|Z)= (XY Z2)and I,( X; W |2Z)

. Weak union: Irrelevant information remains irrelevant after learning (other) irrelevant
information.

L(X;YUW|Z)= [,(X;Y|ZUW)

. Contraction: Irrelevant information remains irrelevant after forgetting (other) irrelevant
information.

IX;Y|Z)and I,( X;W|ZUY )= I,(X; Y UW|Z)



Graphoids

Graphoids: Semi-graphoids+Intersection (holds only in strictly positive distribution)

Intersection: Symmetric irrelevance implies joint irrelevance if there are
no dependencies.

Decomposition

N
& X YA

G;Ijj
2

NEP%

Weak Union
Y Y
Z) Z ==
Contraction
N N \\\
Z, ! & z: u = ( X ‘z\ :;
NE \ N

Intersection

\Y
DR

J.Pearl: Probabilistic Reasoning in intelligent systems, 1998

NV

'/;“_“’4’4
T/
=
N
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Summary

* Probability theory is a unified theory for uncertainty

* Normative derivation of uncertain reasoning
e Bayes’ rule as automation of rational inference with uncertainty

e Axiomatic derivations of ,, Bayesianism”
» ,As if” representation of beliefs over models

* Axioms of structural properties of probability distribution
* Independence models

* Next: human biases, causality, the value alighment problem



