Artificial general intelligence Uncertainty in artificial intelligence:

from rational beliefs to inference

Antal Péter

ComBine Lab

Artificial Intelligence group

Department of Measurement and Information Systems

Agenda

- Interpretations of probability
- Axiomatic derivations of probability theory
- Axiomatic derivations of Bayesian (decision) theory
- Axioms of structural properties of joint probability distributions

Interpretations of probability

Uncertainty

Interpretations of probability

- Sources of uncertainty
 - inherent uncertainty in the physical process;
 - inherent uncertainty at macroscopic level;
 - ignorance;
 - practical omissions;
- Interpretations of probabilities:
 - combinatoric;
 - physical propensities;
 - frequentist;
 - personal/subjectivist;
 - instrumentalist;

$$\lim_{N \to \infty} \frac{N_A}{N} = \lim_{N \to \infty} \hat{p}_N(A) = p(A)? p(A \mid \xi)$$

Physicalist view of probabilitites

• .A.Einstein: "God does not play dice.."

https://arxiv.org/ftp/arxiv/papers/1301/1301.1656.pdf

- Einstein-Podolski-Rosen paradox / Bell Test
- S. Hawking: "Does god play dice?"

http://www.hawking.org.uk/does-god-play-dice.html

- The BIG Bell Test (Nov30, 2016)
 - <u>http://bist.eu/100000-people-participated-big-bell-test-unique-worldwide-quantum-physics-experiment/</u>

A chronology of uncertain inference

- [1713] Ars Conjectandi (The Art of Conjecture), Jacob Bernoulli
 - Subjectivist interpretation of probabilities
- [1718] The Doctrine of Chances, Abraham de Moivre
 - the first textbook on probability theory
 - Forward predictions
 - "given a specified number of white and black balls in an urn, what is the probability of drawing a black ball?"
- [1764, posthumous] Essay Towards Solving a Problem in the Doctrine of Chances, Thomas Bayes
 - **Backward questions**: "given that one or more balls has been drawn, what can be said about the number of white and black balls in the urn"
- [1812], Théorie analytique des probabilités, Pierre-Simon Laplace
 - General Bayes rule
- [1933]: A. Kolmogorov: Foundations of the Theory of Probability

Axiomatic derivations of probability theory

Other AI approaches to uncertain reasoning

- Certainty factors
- Fuzzy logic
 - <u>https://en.wikipedia.org/wiki/Fuzzy_logic</u>
- Dempster-Schafer theory (imprecise probability theories)
 - <u>https://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory</u>

Cheeseman, P.C., 1985, August. In Defense of Probability. In *IJCAI* (Vol. 2, pp. 1002-1009). Heckerman, D.E. and Shortliffe, E.H., 1992. From certainty factors to belief networks. *Artificial Intelligence in Medicine*, *4*(1), pp.35-52.

Axioms of probability

- For any propositions A, B
- •
- $0 \leq P(A) \leq 1$
- P(*true*) = 1 and P(*false*) = 0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

Normative derivations of probability theory

- Cox's theorem
 - https://en.wikipedia.org/wiki/Cox%27s_theorem
 - Goal:
 - Divisibility and comparability The plausibility of a proposition is a real number and is dependent on information we have related to the proposition.
 - Common sense Plausibilities should vary sensibly with the assessment of plausibilities in the model.
 - Consistency If the plausibility of a proposition can be derived in many ways, all the results must be equal.
 - Associativity: AB/X=g(A/X,B/AX)
 - Monotonicity (isomorphism with multiplication): w(*AB*/*X*)=w(*A*/*X*)w(*B*/*AX*)
 - Boundary conditions: w(*Certainty*/*X*)=1, w(*Impossibility*/*X*)=0
 - Negation function f: *f(not X)=1-f(X)* (+isomorphism with multiplication)

Cox-Jaynes axioms

https://en.wikipedia.org/wiki/Cox%27s_theorem

➔ finite additivity
Sigma-additivity: Kolmogorov's measure-theoretic formulation

Basic concepts of probability theory

- Joint distribution
- Conditional probability
- Bayes' rule
- Chain rule
- Marginalization
- General inference
- Independence
 - Conditional independence
 - Contextual independence

Conditional probability

- Definition of conditional probability:
- P(a | b) = P(a ∧ b) / P(b) if P(b) > 0
- Product rule gives an alternative formulation:
- P(a ∧ b) = P(a | b) P(b) = P(b | a) P(a)
- Chain rule is derived by successive application of product rule:
- $\mathbf{P}(X_1, ..., X_n)$ = $\mathbf{P}(X_1, ..., X_{n-1}) \mathbf{P}(X_n \mid X_1, ..., X_{n-1})$ = $\mathbf{P}(X_1, ..., X_{n-2}) \mathbf{P}(X_{n-1} \mid X_1, ..., X_{n-2}) \mathbf{P}(X_n \mid X_1, ..., X_{n-1})$ = ... = $\pi_{i=1} \wedge n \mathbf{P}(X_i \mid X_1, ..., X_{i-1})$

Bayes rule

An algebraic triviality

$$p(X | Y) = \frac{p(Y | X)p(X)}{p(Y)} = \frac{p(Y | X)p(X)}{\sum_{X} p(Y | X)p(X)}$$

A scientific research paradigm

 $p(Model | Data) \propto p(Data | Model) p(Model)$

A practical method for inverting causal knowledge to diagnostic tool.

 $p(Cause | Effect) \propto p(Effect | Cause) \times p(Cause)$

Conditional independence

I_P(X;Y|Z) or (X⊥Y|Z)_P denotes that X is independent of Y given Z defined as follows
 for all x,y and z with P(z)>0: P(x;y|z)=P(x|z) P(y|z)

(Almost) alternatively, $I_P(X;Y|Z)$ iff P(X|Z,Y) = P(X|Z) for all z,y with P(z,y)>0. Other notations: $D_P(X;Y|Z) = def = {}_{T}I_P(X;Y|Z)$ Contextual independence: for not all z. Direct dependence: $D_P(X;Y|V/{X,Y})$

Axiomatic derivations of "Bayesianism"

From "rational" preferences to probabilities: "as if" I.

1. Definition. A decision problem is defined by the elements $\mathcal{E}, \mathcal{C}, \mathcal{A}, \leq$, where:

- (i) \mathcal{E} is an algebra of events, E_j ;
- (ii) C is a set of possible consequences, c_j ;
- *(iii) A* is a set of possible acts, which are mapping of partitions of the events to consequences;
- (iv) \leq is a binary preference relation between some of the elements of A.

With further "rational" assumptions on comparability, transitivity, consistency and quantification the following suggestive result can be derived.

1. Proposition. Given an uncertainty relation \leq , there exists a unique real number P(E) for each event E (defined as the probability of E) that they are compatible with \leq (i.e. $E \leq F$; $iff; P(E) \leq P(F)$) and they form a finitely additive probability measure.

Consequently, $P(A|\xi)$ denotes the subjective/personal beliefs in a given space-time-information context ξ vs. the "frequentist" interpretation that $P(A) \triangleq \lim_{N \to \infty} N_A/N$.

Bernardo, J.M. and Smith, A.F., 2009. *Bayesian theory* (Vol. 405). John Wiley & Sons.

From preferences to utilities: "as if" II.

The parallel result for the existence and uniqueness of utilities (or losses) is stated only for decision problems with bounded consequences.

2. Proposition. For any decision problem $\mathcal{E}, \mathcal{C}, \mathcal{A}, \leq$ with bounded consequences $c_* < c^*$,

(i) for all c, $u(c|c_*, c^*)$ exists and unique;

(ii) the value of $u(c|c_*, c^*)$ is unaffected by the assumed occurrence of an event G;

(iii) $0 = u(c_*|c_*, c^*) \le u(c|c_*, c^*) \le u(c^*|c_*, c^*) = 1.$

(iv) the so-called maximum expected utility principle is satisfied, i.e.

$$a_1 \leq_G a_2 \Leftrightarrow \sum_j u(c_{a_1(E_j)})P(E_j|G) \leq \sum_j u(c_{a_2(E_j)})P(E_j|G)$$
 (1)

Bernardo, J.M. and Smith, A.F., 2009. Bayesian theory (Vol. 405). John Wiley & Sons.

From exchangeability to parameters and "i.i.d." : "as if" III.

3. Proposition. If $x_1, x_2, ...$ is an infinitely exchangeable sequence of 0-1 random quantities with probability measure *P*, that is for any *n* and permutation $\pi(1), ..., \pi(n)$ the joint mass function of P $p(x_1, ..., x_n) = p(x_{\pi(1)}, ..., x_{\pi(n)})$, there exists a distribution function Q such that $p(x_1, ..., x_n)$ has the form

$$p(x_1,\ldots,x_n) = \int_0^1 \prod_{i=1}^n \theta^{x_i} (1-\theta^{1-x_i}) d\mathcal{Q}(\theta),$$

where,

$$\mathcal{Q}(\theta) = \lim_{n \to \infty} P[y_n/n \le \theta],$$

with $y_n = x_1 + \cdots + x_n$, and $\theta = \lim_{n \to \infty} y_n/n$.

Bayesian inference using Beta distribution

1. Example. Assume that *x* denotes the sum of 1s of *n* independent and identically distributed (i.i.d.) Bernoulli trials, that is we assume a binomial sampling distribution. If the prior is specified using a Beta distribution, the posterior remains a Beta distribution with updated parameters.

$$p(x|\theta) = Bin(x|n,\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x}$$
(13)

$$p(\theta) = Beta(\alpha, \beta) = c\theta^{\alpha - 1} (1 - \theta)^{\beta - 1} where \ c = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}$$
(14)

$$p(\theta|x) = \frac{p(\theta)p(x|\theta)}{p(x)} = c'\theta^{\alpha-1+x}(1-\theta)^{\beta-1+n-x} = Beta(\alpha+x,\beta+n-x)$$

Example

Prior: Beta(3,10) fix: 0.6

The Bayesian statistical framework

- 1. Specify a joint distribution $p(x, \theta)$ over the observable quantity x and parameter θ having equal status by specifying $p(\theta)$ the prior distribution or prior, the $p(x|\theta)$ is the sampling distribution that also defines the likelihood and the likelihood function $\mathcal{L}(\theta; x)$ (the discrete model parameter is denoted with \mathcal{M}_k).
- 2. Perform a prior predictive inference

$$p(x) = \int p(x|\theta)p(\theta)d\theta \text{ or } p(x) = \sum_{k} p(\mathcal{M}_{k}) \int p(x|\mathcal{M}_{k})$$
(2)

or a posterior predictive inference after observing the data set D as

$$p(x|D) = \int p(x|\theta)p(\theta|D)d\theta \text{ or } p(x|D) = \sum_{k} p(x|\mathcal{M}_{k})p(\mathcal{M}_{k}|D)$$
(3)

3. Perform a parametric inference by the Bayes rule

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{\int p(x|\theta)p(\theta)d\theta} \propto p(x|\theta)p(\theta) \text{ or } p(\mathcal{M}_k|x) = \propto p(x|\mathcal{M}_k)p(\mathcal{M}_k) \tag{4}$$

Hierarchical Bayesian modelling

A frequently occuring form in practice, that the specification usually achieved in the structured specification of the relevant model structures S_k or \mathcal{M}_k and parameters θ_k . Correspondingly the a priori belief $p(\theta_k, \mathcal{M}_k)$ in a given model with structure k and parameters θ_k^i is expressed as a product

 $p(\theta_k, \mathcal{M}_k) = p(\mathcal{M}_k) p(\theta_k^i | \mathcal{M}_k)$

→ No theoretical need for "typed" probability of probabilities!

Predictive inference ("Bayesian inference")

The specification of the a priori beliefs over relevant models allows us to perform (prior) predictive inferences over the observable quantity x

$$p(x) = \sum p(\mathcal{M}_k) \int p(x|\theta_k) p(\theta_k|\mathcal{M}_k) d\theta_k$$

The operation of integration and/or summation over models and/or their parameterization implements marginalization and termed in this context as Bayesian model averaging. We can write the posterior predictive distribution conditioned on the data set D as

$$p(x|D) = \sum p(\mathcal{M}_k|D) \int p(x|\theta_k) p(\theta_k|D, \mathcal{M}_k) d\theta_k \approx p(x|D, \mathcal{M}_k^{MAP})$$

in which $\mathcal{M}_{k}^{MAP} = argmax_{k}p(\mathcal{M}_{k}|D)$ is called the maximum a posteriori (MAP) model.

Parametric inference ("Bayesian learning")

In the discrete case the posterior of the model $p(\mathcal{M}_k|D)$ is given by

$$p(\mathcal{M}_k|D) = \frac{p(D|\mathcal{M}_k)p(\mathcal{M}_k)}{p(D)}$$
(9)

where the marginal model likelihood or evidence for \mathcal{M}_k is

$$p(D|\mathcal{M}_k) = \int p(D|\theta_k, \mathcal{M}_k) p(\theta_k|\mathcal{M}_k) d\theta_k \tag{10}$$

and the marginal data likelihood

$$p(D) = \sum_{k} p(D|\mathcal{M}_{k})p(\mathcal{M}_{k})$$
(11)

The *Bayes factor* shows the change of the ratio of prior belief to the ratio of the posteriors, i.e. the ratios of marginal likelihoods of models M_i and $calM_j$

2. Definition.

$$Bayesfactor(\mathcal{M}_i, \mathcal{M}_j) = \frac{p(D|\mathcal{M}_i)}{p(D|\mathcal{M}_j)} = \frac{p(\mathcal{M}_j)}{p(\mathcal{M}_i)} \frac{p(\mathcal{M}_i|D)}{p(\mathcal{M}_j|D)}$$
(12)

An example for full Bayesian inference

Principles for induction

- Epicurus' (342? B.C. 270 B.C.) principle of multiple explanations which states that one should *keep all hypotheses that are consistent with the data*.
- The principle of Occam's razor (1285 1349, sometimes spelt Ockham). Occam's razor states that when inferring causes *entities should not be multiplied beyond necessity*. This is widely understood to mean: Among all hypotheses consistent with the observations, choose the simplest. In terms of a prior distribution over hypotheses, this is the same as giving simpler hypotheses higher a priori probability, and more complex ones lower probability.

Full Bayesian learning

View learning as Bayesian updating of a probability distribution over the hypothesis space

H is the hypothesis variable, values h_1, h_2, \ldots , prior $\mathbf{P}(H)$ *j*th observation d_j gives the outcome of random variable D_j training data $\mathbf{d} = d_1, \ldots, d_N$

Given the data so far, each hypothesis has a posterior probability:

 $P(h_i|\mathbf{d}) = \alpha P(\mathbf{d}|h_i) P(h_i)$

where $P(\mathbf{d}|h_i)$ is called the likelihood

Predictions use a likelihood-weighted average over the hypotheses:

 $\mathbf{P}(X|\mathbf{d}) = \sum_{i} \mathbf{P}(X|\mathbf{d}, h_i) P(h_i|\mathbf{d}) = \sum_{i} \mathbf{P}(X|h_i) P(h_i|\mathbf{d})$

No need to pick one best-guess hypothesis!

Bayesian model averaging

View learning as Bayesian updating of a probability distribution over the hypothesis space

H is the hypothesis variable, values h_1, h_2, \ldots , prior $\mathbf{P}(H)$

*j*th observation d_j gives the outcome of random variable D_j training data $\mathbf{d} = d_1, \ldots, d_N$

Given the data so far, each hypothesis has a posterior probability:

 $P(h_i|\mathbf{d}) = \alpha P(\mathbf{d}|h_i) P(h_i)$

where $P(\mathbf{d}|h_i)$ is called the likelihood

Predictions use a likelihood-weighted average over the hypotheses:

 $\mathbf{P}(X|\mathbf{d}) = \sum_{i} \mathbf{P}(X|\mathbf{d}, h_{i}) P(h_{i}|\mathbf{d}) = \sum_{i} \mathbf{P}(X|h_{i}) P(h_{i}|\mathbf{d})$

No need to pick one best-guess hypothesis!

Russel&Norvig: Artificial intelligence, ch.20

Bayesian Model Averaging example

Suppose there are five kinds of bags of candies: 10% are h_1 : 100% cherry candies 20% are h_2 : 75% cherry candies + 25% lime candies 40% are h_3 : 50% cherry candies + 50% lime candies 20% are h_4 : 25% cherry candies + 75% lime candies 10% are h_5 : 100% lime candies

Then we observe candies drawn from some bag: ••••••••••

What kind of bag is it? What flavour will the next candy be?

Russel&Norvig: Artificial intelligence

Learning rate for models

Russel&Norvig: Artificial intelligence

Learning rate for model predictions

Russel&Norvig: Artificial intelligence

MAP approximation

Summing over the hypothesis space is often intractable (e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)

Maximum a posteriori (MAP) learning: choose h_{MAP} maximizing $P(h_i | \mathbf{d})$

I.e., maximize $P(\mathbf{d}|h_i)P(h_i)$ or $\log P(\mathbf{d}|h_i) + \log P(h_i)$

Log terms can be viewed as (negative of)

bits to encode data given hypothesis + bits to encode hypothesis This is the basic idea of minimum description length (MDL) learning

For deterministic hypotheses, $P(\mathbf{d}|h_i)$ is 1 if consistent, 0 otherwise $\rightarrow MAP = \text{simplest consistent hypothesis (cf. science)}$

 \Rightarrow MAP = simplest consistent hypothesis (cf. science)

ML approximation

For large data sets, prior becomes irrelevant

Maximum likelihood (ML) learning: choose h_{ML} maximizing $P(\mathbf{d}|h_i)$

I.e., simply get the best fit to the data; identical to $\ensuremath{\mathsf{MAP}}$ for uniform prior

(which is reasonable if all hypotheses are of the same complexity)

ML is the "standard" (non-Bayesian) statistical learning method

Maximum likelood model selection

Further examples for full Bayesian inference

Universal theory of induction

•Universal distributions

$$\begin{split} m(x) &:= \sum_{p \,:\, U(p) = x} 2^{-\ell(p)} \,, \qquad -\log m(x) \,=\, K(x) + O(1) \,. \\ M(x) &:= \sum_{p \,:\, U(p) = x *} 2^{-\ell(p)} \,, \qquad -\log M(x) = K(x) - O(\log \ell(x)) \end{split}$$

If the infinite binary sequences are distributed according to a computable measure μ , then the predictive distribution $M(x_{n+1}|x_{1:n})=M(x_{1:n+1})/M(x_{1:n})$ converges rapidly to $\mu(x_{n+1}|x_{1:n})=\mu(x_{1:n+1})/\mu(x_{1:n})$ with probability 1. Hence, M predicts almost as well as does the true distribution μ .

M. Li and P. M B. Vitanyi. *An introduction to Kolmogorov complexity and its applications*. Springer Solomonoff, R.J., 1964. A formal theory of inductive inference. Part I. *Information and control*, 7(1), pp.1-22. Chaitin, G., 1974. Information-theoretic computation complexity. *IEEE Transactions on Information Theory*, 20(1), pp.10-15.

Universal inference, universal priors, universal Al

- Solomonoff, R.J., 1960, November. A preliminary report on a general theory of inductive inference. United States Air Force, Office of Scientific Research.
- Solomonoff, R.J., 1964. A formal theory of inductive inference. Part I. Information and control, 7(1), pp.1-22.
- Chaitin, G., 1974. Information-theoretic computation complexity. *IEEE Transactions on Information Theory*, 20(1), pp.10-15.
- Chaitin, G.J., 1977. Algorithmic information theory. *IBM journal of research and development*, 21(4), pp.350-359.
- Solomonoff, R., 1978. Complexity-based induction systems: comparisons and convergence theorems. *IEEE transactions on Information Theory*, 24(4), pp.422-432.
- Cover, T.M., 1985. Kolmogorov complexity, data compression, and inference. In *The Impact of Processing Techniques on Communications* (pp. 23-33).
 Springer, Dordrecht.
- Li, M. and Vitányi, P., 1993. An introduction to Kolmogorov complexity and its applications. New York: Springer.
- Solomonoff, R.J., 1997. The discovery of algorithmic probability. *Journal of Computer and System Sciences*, 55(1), pp.73-88.
- Dawid, A.P. and Vovk, V.G., 1999. Prequential probability: Principles and properties. *Bernoulli*, 5(1), pp.125-162.
- Chater, N. and Vitányi, P.M., 2003. The generalized universal law of generalization. Journal of Mathematical Psychology, 47(3), pp.346-369.
- Hutter, M., 2007. On universal prediction and Bayesian confirmation. *Theoretical Computer Science*, 384(1), pp.33-48.
- Solomonoff, R.J., 2008. Three kinds of probabilistic induction: Universal distributions and convergence theorems. *The Computer Journal*, *51*(5), pp.566-570.
- Gács, P. and Vitányi, P.M., 2011. Raymond J. Solomonoff 1926–2009. IEEE Information Theory Society Newsletter, 61(1), pp.11-16.
- Hutter, M., 2004. Universal artificial intelligence: Sequential decisions based on algorithmic probability. Springer Science & Business Media.
- Rathmanner, S. and Hutter, M., 2011. A philosophical treatise of universal induction. *Entropy*, 13(6), pp.1076-1136.

Naive Bayesian network

Assumptions:

- 1, Two types of nodes: a cause and effects.
- 2, Effects are conditionally independent of each other given their cause.

Domingos, Pedro, and Michael Pazzani. "On the optimality of the simple Bayesian classifier under zero-one loss." *Machine learning* 29.2-3 (1997): 103-130. Friedman, Jerome H. "On bias, variance, 0/1—loss, and the curse-of-dimensionality." *Data mining and knowledge discovery* 1.1 (1997): 55-77. Hand, David J., and Keming Yu. "Idiot's Bayes—not so stupid after all?." *International statistical review* 69.3 (2001): 385-398.

Conditional probabilities, odds, odds ratios

	−¬S	S	
⊣LC	P(¬S, ¬LC)	P(S, ¬LC)	P(¬LC)
LC	P(¬S, LC)	P(S, LC)	P(LC)
	P(¬S)	P(S)	

Probability:

P(LC)

Conditional probabilities (e.g., probability of LC given S):

```
P(LC| ¬S)= ??? P(LC| S)= ??? P(LC)
```

Odds:

 $[0,1] \rightarrow [0,\infty]$: Odds(p)=p/(1-p) O(LC| ¬S)= ??? O(LC| S)

Odds Ratio (OR) Independent of prevalence!

 $OR(LC,S)=O(LC | S)/O(LC | \neg S)$

Naive Bayesian network (NBN) Decomposition of the joint:

 $\begin{array}{ll} \mathsf{P}(\mathsf{Y},\mathsf{X}_1,..,\mathsf{X}_n) &= \mathsf{P}(\mathsf{Y}) \prod_i \mathsf{P}(\mathsf{X}_i,|\mathsf{Y}, \, \mathsf{X}_1,..,\mathsf{X}_{i-1}) & // \text{by the chain rule} \\ &= \mathsf{P}(\mathsf{Y}) \prod_i \mathsf{P}(\mathsf{X}_i,|\mathsf{Y}) & // \text{by the N-BN assumption} \\ & 2n+1 \text{ parameteres!} \end{array}$

Diagnostic inference:

 $P(Y|x_{i1},..,x_{ik}) = P(Y)\prod_{j}P(x_{ij},|Y) / P(x_{i1},..,x_{ik})$

If Y is binary, then the odds $P(Y=1|x_{i1},..,x_{ik}) / P(Y=0|x_{i1},..,x_{ik}) = P(Y=1)/P(Y=0) \prod_{j} P(x_{ij},|Y=1) / P(x_{ij},|Y=0)$ File Flu Coughing

p(Flu = present | Fever = absent, Coughing = present)

 $\propto p(Flu = present)p(Fever = absent | Flu = present)p(Coughing = present | Flu = present)$

Full Bayesian naive-BN

- Structure prior: p(G)
 - Specify priors for edges in G
 - Penalize deviation from a prior structure G₀
- Parameter prior: $p(\Theta | G)$
 - $\boldsymbol{\theta}$ denotes the complete parametrization for G
 - Specify $p(\Theta|G)$ independently for each variable?
 - Specify $p(\Theta|G)$ using a "convenient" (~conjugate) prior?
- Inference
 - Tractable?

Full Bayesian inference with N-BNs using complete data

- Integration over parameters?
 - Analytical solution under parameter independence!
 - Hyperparameter update.
- Bayesian model averaging over exponential number of structures?
 - Analytical solution!
 - Existence of equivalent ",super"-parametrization!!

Dash, Denver, and Gregory F. Cooper. "Exact model averaging with naive Bayesian classifiers." ICML. 2002.

Extensions of N-BNs

- Tree-augmented BNs
- BN-augmented BNs
- Hierarchical BNs
- Multiple parents
 - Explaining away
- "Context-sensitive" N-BNs

Langseth, Helge, and Thomas D. Nielsen. "Classification using hierarchical naive bayes models." *Machine learning* 63.2 (2006): 135-159.

On the subjectivity of priors and losses

Optimal decision/estimation:

$$x^* = argmin_{\hat{x}} \int L(x, \hat{x}) p(x|D) dx$$

Axioms of structural properties of probability distributions

The independence model of a distribution

The independence map (model) M of a distribution P is the set of the valid independence triplets:

 $M_{P} = \{I_{P,1}(X_{1};Y_{1}|Z_{1}),...,I_{P,K}(X_{K};Y_{K}|Z_{K})\}$

If P(X,Y,Z) is a Markov chain, then $M_P = \{D(X;Y), D(Y;Z), I(X;Z|Y)\}$ Normally/almost always: D(X;Z)Exceptionally: I(X;Z)

The semi-graphoid axioms

1. Symmetry: The observational probabilistic conditional independence is symmetric.

 $I_p(\boldsymbol{X}; \boldsymbol{Y} | \boldsymbol{Z}) \ iff \ I_p(\boldsymbol{Y}; \boldsymbol{X} | \boldsymbol{Z})$

2. Decomposition: Any part of an irrelevant information is irrelevant.

 $I_p(X; Y \cup W | Z) \Rightarrow I_p(X; Y | Z) \text{ and } I_p(X; W | Z)$

3. Weak union: Irrelevant information remains irrelevant after learning (other) irrelevant information.

$$I_p(X; Y \cup W | Z) \Rightarrow I_p(X; Y | Z \cup W)$$

4. Contraction: Irrelevant information remains irrelevant after forgetting (other) irrelevant information.

 $I_p(\boldsymbol{X};\boldsymbol{Y}|\boldsymbol{Z}) \text{ and } I_p(\boldsymbol{X};\boldsymbol{W}|\boldsymbol{Z}\cup\boldsymbol{Y}) \Rightarrow \ I_p(\boldsymbol{X};\boldsymbol{Y}\cup\boldsymbol{W}|\boldsymbol{Z})$

Graphoids

Graphoids: Semi-graphoids+Intersection (holds only in strictly positive distribution)

Intersection: Symmetric irrelevance implies joint irrelevance if there are no dependencies.

50

11/13/2019

Summary

- Probability theory is a unified theory for uncertainty
- Normative derivation of uncertain reasoning
 - Bayes' rule as automation of rational inference with uncertainty
- Axiomatic derivations of "Bayesianism"
 - "As if" representation of beliefs over models
- Axioms of structural properties of probability distribution
 - Independence models
- Next: human biases, causality, the value alignment problem