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Agenda

• Interpretations of probability

• Axiomatic derivations of probability theory

• Axiomatic derivations of Bayesian (decision) theory

• Axioms of structural properties of joint probability distributions



Interpretations of probability
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Interpretations of probability

• Sources of uncertainty
• inherent uncertainty in the physical process;
• inherent uncertainty at macroscopic level;
• ignorance;
• practical omissions;

• Interpretations of probabilities:
• combinatoric;
• physical propensities;
• frequentist;
• personal/subjectivist;
• instrumentalist;
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Physicalist view of probabilitites

• .A.Einstein: „God does not play dice..”
https://arxiv.org/ftp/arxiv/papers/1301/1301.1656.pdf

• Einstein-Podolski-Rosen paradox / Bell Test

• S. Hawking: „Does god play dice?”
http://www.hawking.org.uk/does-god-play-dice.html

• The BIG Bell Test (Nov30, 2016)
• http://bist.eu/100000-people-participated-big-bell-test-unique-worldwide-quantum-physics-experiment/
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A chronology of uncertain inference
• [1713] Ars Conjectandi (The Art of Conjecture), Jacob Bernoulli

• Subjectivist interpretation of probabilities

• [1718] The Doctrine of Chances, Abraham de Moivre

• the first textbook on probability theory

• Forward predictions

• „given a specified number of white and black balls in an urn, what is the probability of drawing a 

black ball?”

• [1764, posthumous] Essay Towards Solving a Problem in the Doctrine of Chances, Thomas Bayes

• Backward questions: „given that one or more balls has been drawn, what can be said about the 

number of white and black balls in the urn”

• [1812], Théorie analytique des probabilités, Pierre-Simon Laplace

• General Bayes rule

• [1933]: A. Kolmogorov: Foundations of the Theory of Probability



Axiomatic derivations of probability theory



Other AI approaches to uncertain reasoning

• Certainty factors

• Fuzzy logic
• https://en.wikipedia.org/wiki/Fuzzy_logic

• Dempster-Schafer theory (imprecise probability theories)
• https://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory

Cheeseman, P.C., 1985, August. In Defense of Probability. In IJCAI (Vol. 2, pp. 1002-1009).
Heckerman, D.E. and Shortliffe, E.H., 1992. From certainty factors to belief networks. Artificial Intelligence in 
Medicine, 4(1), pp.35-52.

https://en.wikipedia.org/wiki/Fuzzy_logic
https://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory


Axioms of probability

• For any propositions A, B

•
• 0 ≤ P(A) ≤ 1

• P(true) = 1 and P(false) = 0

• P(A  B) = P(A) + P(B) - P(A  B)

AIMA



Normative derivations of probability theory

• Cox's theorem
• https://en.wikipedia.org/wiki/Cox%27s_theorem
• Goal:

• Divisibility and comparability – The plausibility of a proposition is a real number and is dependent 
on information we have related to the proposition.

• Common sense – Plausibilities should vary sensibly with the assessment of plausibilities in the 
model.

• Consistency – If the plausibility of a proposition can be derived in many ways, all the results must 
be equal.

• Associativity: AB|X=g(A|X,B|AX)
• Monotonicity (isomorphism with multiplication): w(AB|X)=w(A|X)w(B|AX)
• Boundary conditions: w(Certainty|X)=1, w(Impossibility|X)=0
• Negation function f: f(not X)=1-f(X) (+isomorphism with multiplication)

https://en.wikipedia.org/wiki/Cox's_theorem
https://en.wikipedia.org/wiki/Proposition


Cox-Jaynes axioms

https://en.wikipedia.org/wiki/Cox%27s_theorem

 finite additivity
Sigma-additivity: Kolmogorov’s measure-theoretic formulation

https://en.wikipedia.org/wiki/Cox's_theorem


• Joint distribution

• Conditional probability

• Bayes’ rule

• Chain rule

• Marginalization

• General inference

• Independence
• Conditional independence

• Contextual independence
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Basic concepts of probability theory



Conditional probability

• Definition of conditional probability:

• P(a | b) = P(a  b) / P(b) if  P(b) > 0

• Product rule gives an alternative formulation:

• P(a  b) = P(a | b) P(b) = P(b | a) P(a)

• Chain rule is derived by successive application of product rule:

• P(X1, …,Xn) = P(X1,...,Xn-1) P(Xn | X1,...,Xn-1)

= P(X1,...,Xn-2) P(Xn-1 | X1,...,Xn-2) P(Xn | X1,...,Xn-1)

= …

= πi= 1^n P(Xi | X1, … ,Xi-1)

AIMA



Bayes rule

)()|()|( ModelpModelDatapDataModelp 




X
XpXYp

XpXYp

Yp

XpXYp
YXp

)()|(

)()|(

)(

)()|(
)|(

An algebraic triviality

A scientific research paradigm

A practical method for inverting causal knowledge to diagnostic tool.
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Conditional independence

IP(X;Y|Z) or (X⫫Y|Z)P denotes that X is independent of Y given Z 
defined as follows

for all x,y and z with P(z)>0:  P(x;y|z)=P(x|z) P(y|z) 

(Almost) alternatively, IP(X;Y|Z) iff

P(X|Z,Y)= P(X|Z) for all z,y with P(z,y)>0.

Other notations: DP(X;Y|Z) =def= ┐IP(X;Y|Z)

Contextual independence: for not all z.

Direct dependence: DP(X;Y|V/{X,Y})



Axiomatic derivations of „Bayesianism”



From ”rational" preferences to probabilities: 
”as if" I.

Bernardo, J.M. and Smith, A.F., 2009. Bayesian theory (Vol. 405). John Wiley & Sons.



From preferences to utilities: 
”as if" II.

Bernardo, J.M. and Smith, A.F., 2009. Bayesian theory (Vol. 405). John Wiley & Sons.



From exchangeability to parameters and ”i.i.d." : 
”as if" III.



Bayesian inference using Beta distribution



Example 

Prior: Beta(3,10)
fix: 0.6



The Bayesian statistical framework



Hierarchical Bayesian modelling

 No theoretical need for „typed” probability of probabilities!



Predictive inference (”Bayesian inference")



Parametric inference (”Bayesian learning")



An example for full Bayesian inference



Principles for induction

• Epicurus' (342? B.C. - 270 B.C.) principle of multiple explanations which states that one should 
keep all hypotheses that are consistent with the data.

• The principle of Occam's razor (1285 - 1349, sometimes spelt Ockham). Occam's razor states that 
when inferring causes entities should not be multiplied beyond necessity. This is widely 
understood to mean: Among all hypotheses consistent with the observations, choose the 
simplest. In terms of a prior distribution over hypotheses, this is the same as giving simpler 
hypotheses higher a priori probability, and more complex ones lower probability.

AIMA



AIMA



Bayesian model averaging

Russel&Norvig: Artificial intelligence, ch.20



Bayesian Model Averaging example

Russel&Norvig: Artificial intelligence



Learning rate for models

Russel&Norvig: Artificial intelligence



Learning rate for model predictions

Russel&Norvig: Artificial intelligence
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Maximum likelood model selection
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Further examples for full Bayesian inference



Universal theory of induction
•Universal distributions

If the infinite binary sequences are distributed according to a computable measure 
μ , then the predictive distribution M(xn+1|x1:n)=M(x1:n+1)/M(x1:n) converges rapidly 
to μ(xn+1|x1:n)=μ(x1:n+1)/μ(x1:n) with probability 1. Hence, M predicts almost as well 
as does the true distribution μ.

M. Li and P. M B. Vitanyi. An introduction to Kolmogorov complexity and its applications. Springer
Solomonoff, R.J., 1964. A formal theory of inductive inference. Part I. Information and control, 7(1), pp.1-22.
Chaitin, G., 1974. Information-theoretic computation complexity. IEEE Transactions on Information Theory, 20(1), pp.10-15.



Universal inference, universal priors, universal AI

• Solomonoff, R.J., 1960, November. A preliminary report on a general theory of inductive inference. United States Air Force, Office of Scientific 
Research.

• Solomonoff, R.J., 1964. A formal theory of inductive inference. Part I. Information and control, 7(1), pp.1-22.

• Chaitin, G., 1974. Information-theoretic computation complexity. IEEE Transactions on Information Theory, 20(1), pp.10-15.

• Chaitin, G.J., 1977. Algorithmic information theory. IBM journal of research and development, 21(4), pp.350-359.

• Solomonoff, R., 1978. Complexity-based induction systems: comparisons and convergence theorems. IEEE transactions on Information Theory, 24(4), 
pp.422-432.

• Cover, T.M., 1985. Kolmogorov complexity, data compression, and inference. In The Impact of Processing Techniques on Communications (pp. 23-33). 
Springer, Dordrecht.

• Li, M. and Vitányi, P., 1993. An introduction to Kolmogorov complexity and its applications. New York: Springer.

• Solomonoff, R.J., 1997. The discovery of algorithmic probability. Journal of Computer and System Sciences, 55(1), pp.73-88.

• Dawid, A.P. and Vovk, V.G., 1999. Prequential probability: Principles and properties. Bernoulli, 5(1), pp.125-162.

• Chater, N. and Vitányi, P.M., 2003. The generalized universal law of generalization. Journal of Mathematical Psychology, 47(3), pp.346-369.

• Hutter, M., 2007. On universal prediction and Bayesian confirmation. Theoretical Computer Science, 384(1), pp.33-48.

• Solomonoff, R.J., 2008. Three kinds of probabilistic induction: Universal distributions and convergence theorems. The Computer Journal, 51(5), 
pp.566-570.

• Gács, P. and Vitányi, P.M., 2011. Raymond J. Solomonoff 1926–2009. IEEE Information Theory Society Newsletter, 61(1), pp.11-16.

• Hutter, M., 2004. Universal artificial intelligence: Sequential decisions based on algorithmic probability. Springer Science & Business Media.

• Rathmanner, S. and Hutter, M., 2011. A philosophical treatise of universal induction. Entropy, 13(6), pp.1076-1136.



Naive Bayesian network

Variables (nodes) 
Flu: present/absent

FeverAbove38C: present/absent
Coughing: present/absent

Flu

Fever Coughing

P(Fever=present|Flu=present)=0.6
P(Fever=absent|Flu=present)=1-0.6
P(Fever=present|Flu=absent)=0.01
P(Fever=absent|Flu=absent)=1-0.01

P(Flu=present)=0.001
P(Flu=absent)=1-P(Flu=present)Model

P(Coughing=present|Flu=present)=0.3
P(Coughing=absent|Flu=present)=1-0.7
P(Coughing=present|Flu=absent)=0.02
P(Coughing=absent|Flu=absent)=1-0.02

Assumptions: 

1, Two types of nodes: a cause and effects.

2, Effects are conditionally independent of each other given their cause.

Domingos, Pedro, and Michael Pazzani. "On the optimality of the simple Bayesian classifier under zero-one loss." Machine learning 29.2-3 (1997): 103-130.
Friedman, Jerome H. "On bias, variance, 0/1—loss, and the curse-of-dimensionality." Data mining and knowledge discovery 1.1 (1997): 55-77.
Hand, David J., and Keming Yu. "Idiot's Bayes—not so stupid after all?." International statistical review 69.3 (2001): 385-398.



Conditional probabilities, odds, odds ratios

Smoking

Lung cancer

S S

LC P(S, LC) P(S, LC) P(LC)

LC P(S, LC) P(S, LC) P(LC)

P(S) P(S)Probability:
P(LC)
Conditional probabilities (e.g., probability of LC given S): 
P(LC| S)= ??? P(LC| S)= ??? P(LC)
Odds:
[0,1] →[0,∞]: Odds(p)=p/(1-p)
O(LC| S)= ??? O(LC| S)
Odds Ratio (OR) Independent of prevalence!
OR(LC,S)=O(LC| S)/O(LC| S)
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Naive Bayesian network (NBN)
Decomposition of the joint:

P(Y,X1,..,Xn) = P(Y)∏iP(Xi,|Y, X1,..,Xi-1) //by the chain rule

= P(Y)∏iP(Xi,|Y) // by the N-BN assumption

2n+1 parameteres!

Diagnostic inference:

P(Y|xi1,..,xik) = P(Y)∏jP(xij,|Y) / P(xi1,..,xik)

If Y is binary, then the odds
P(Y=1|xi1,..,xik) / P(Y=0|xi1,..,xik)  = P(Y=1)/P(Y=0) ∏j P(xij,|Y=1) / P(xij,|Y=0)

Flu

Fever Coughing
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• Structure prior: p(G)
• Specify priors for edges in G

• Penalize deviation from a prior structure G0

• Parameter prior: p(|G)
•  denotes the complete parametrization for G

• Specify p(|G) independently for each variable?

• Specify p(|G) using a „convenient” (~conjugate) prior?

• Inference
• Tractable?
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Full Bayesian naive-BN



• Integration over parameters?
• Analytical solution under parameter independence!

• Hyperparameter update.

• Bayesian model averaging over exponential number of 
structures?

• Analytical solution!

• Existence of equivalent „super”-parametrization!!
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Full Bayesian inference with N-BNs using 
complete data

Dash, Denver, and Gregory F. Cooper. "Exact model averaging with naive Bayesian classifiers." ICML. 2002.



Extensions of N-BNs

• Tree-augmented BNs

• BN-augmented BNs

• Hierarchical BNs

• Multiple parents
• Explaining away

• „Context-sensitive” N-BNs

Langseth, Helge, and Thomas D. Nielsen. "Classification using hierarchical naive bayes models." Machine learning 63.2 
(2006): 135-159.



On the subjectivity of priors and losses

Optimal decision/estimation:



Axioms of structural properties of probability 
distributions



The independence model of a distribution

The independence map (model) M of a distribution P is 
the set of the valid independence triplets:

MP={IP,1(X1;Y1|Z1),..., IP,K(XK;YK|ZK)}

X Y ZIf P(X,Y,Z) is a Markov chain, then 
MP={D(X;Y), D(Y;Z), I(X;Z|Y)}
Normally/almost always: D(X;Z)
Exceptionally: I(X;Z)



The semi-graphoid axioms
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Graphoids

J.Pearl: Probabilistic Reasoning in intelligent systems, 1998

Graphoids: Semi-graphoids+Intersection (holds only in strictly positive distribution)



Summary

• Probability theory is a unified theory for uncertainty

• Normative derivation of uncertain reasoning
• Bayes’ rule as automation of rational inference with uncertainty

• Axiomatic derivations of „Bayesianism”
• „As if” representation of beliefs over models

• Axioms of structural properties of probability distribution
• Independence models

• Next: human biases, causality, the value alignment problem


