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Agenda

• Interpretations of probability

• Axiomatic derivations of probability theory

• Axiomatic derivations of Bayesian (decision) theory

• Axioms of structural properties of joint probability distributions



Interpretations of probability
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complexity
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Interpretations of probability

• Sources of uncertainty
• inherent uncertainty in the physical process;
• inherent uncertainty at macroscopic level;
• ignorance;
• practical omissions;

• Interpretations of probabilities:
• combinatoric;
• physical propensities;
• frequentist;
• personal/subjectivist;
• instrumentalist;
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Physicalist view of probabilitites

• .A.Einstein: „God does not play dice..”
https://arxiv.org/ftp/arxiv/papers/1301/1301.1656.pdf

• Einstein-Podolski-Rosen paradox / Bell Test

• S. Hawking: „Does god play dice?”
http://www.hawking.org.uk/does-god-play-dice.html

• The BIG Bell Test (Nov30, 2016)
• http://bist.eu/100000-people-participated-big-bell-test-unique-worldwide-quantum-physics-experiment/
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A chronology of uncertain inference
• [1713] Ars Conjectandi (The Art of Conjecture), Jacob Bernoulli

• Subjectivist interpretation of probabilities

• [1718] The Doctrine of Chances, Abraham de Moivre

• the first textbook on probability theory

• Forward predictions

• „given a specified number of white and black balls in an urn, what is the probability of drawing a 

black ball?”

• [1764, posthumous] Essay Towards Solving a Problem in the Doctrine of Chances, Thomas Bayes

• Backward questions: „given that one or more balls has been drawn, what can be said about the 

number of white and black balls in the urn”

• [1812], Théorie analytique des probabilités, Pierre-Simon Laplace

• General Bayes rule

• [1933]: A. Kolmogorov: Foundations of the Theory of Probability



Axiomatic derivations of probability theory



Other AI approaches to uncertain reasoning

• Certainty factors

• Fuzzy logic
• https://en.wikipedia.org/wiki/Fuzzy_logic

• Dempster-Schafer theory (imprecise probability theories)
• https://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory

Cheeseman, P.C., 1985, August. In Defense of Probability. In IJCAI (Vol. 2, pp. 1002-1009).
Heckerman, D.E. and Shortliffe, E.H., 1992. From certainty factors to belief networks. Artificial Intelligence in 
Medicine, 4(1), pp.35-52.

https://en.wikipedia.org/wiki/Fuzzy_logic
https://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory


Axioms of probability

• For any propositions A, B

•
• 0 ≤ P(A) ≤ 1

• P(true) = 1 and P(false) = 0

• P(A  B) = P(A) + P(B) - P(A  B)

AIMA



Normative derivations of probability theory

• Cox's theorem
• https://en.wikipedia.org/wiki/Cox%27s_theorem
• Goal:

• Divisibility and comparability – The plausibility of a proposition is a real number and is dependent 
on information we have related to the proposition.

• Common sense – Plausibilities should vary sensibly with the assessment of plausibilities in the 
model.

• Consistency – If the plausibility of a proposition can be derived in many ways, all the results must 
be equal.

• Associativity: AB|X=g(A|X,B|AX)
• Monotonicity (isomorphism with multiplication): w(AB|X)=w(A|X)w(B|AX)
• Boundary conditions: w(Certainty|X)=1, w(Impossibility|X)=0
• Negation function f: f(not X)=1-f(X) (+isomorphism with multiplication)

https://en.wikipedia.org/wiki/Cox's_theorem
https://en.wikipedia.org/wiki/Proposition


Cox-Jaynes axioms

https://en.wikipedia.org/wiki/Cox%27s_theorem

 finite additivity
Sigma-additivity: Kolmogorov’s measure-theoretic formulation

https://en.wikipedia.org/wiki/Cox's_theorem


• Joint distribution

• Conditional probability

• Bayes’ rule

• Chain rule

• Marginalization

• General inference

• Independence
• Conditional independence

• Contextual independence
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Basic concepts of probability theory



Conditional probability

• Definition of conditional probability:

• P(a | b) = P(a  b) / P(b) if  P(b) > 0

• Product rule gives an alternative formulation:

• P(a  b) = P(a | b) P(b) = P(b | a) P(a)

• Chain rule is derived by successive application of product rule:

• P(X1, …,Xn) = P(X1,...,Xn-1) P(Xn | X1,...,Xn-1)

= P(X1,...,Xn-2) P(Xn-1 | X1,...,Xn-2) P(Xn | X1,...,Xn-1)

= …

= πi= 1^n P(Xi | X1, … ,Xi-1)

AIMA



Bayes rule
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An algebraic triviality

A scientific research paradigm

A practical method for inverting causal knowledge to diagnostic tool.
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Conditional independence

IP(X;Y|Z) or (X⫫Y|Z)P denotes that X is independent of Y given Z 
defined as follows

for all x,y and z with P(z)>0:  P(x;y|z)=P(x|z) P(y|z) 

(Almost) alternatively, IP(X;Y|Z) iff

P(X|Z,Y)= P(X|Z) for all z,y with P(z,y)>0.

Other notations: DP(X;Y|Z) =def= ┐IP(X;Y|Z)

Contextual independence: for not all z.

Direct dependence: DP(X;Y|V/{X,Y})



Axiomatic derivations of „Bayesianism”



From ”rational" preferences to probabilities: 
”as if" I.

Bernardo, J.M. and Smith, A.F., 2009. Bayesian theory (Vol. 405). John Wiley & Sons.



From preferences to utilities: 
”as if" II.

Bernardo, J.M. and Smith, A.F., 2009. Bayesian theory (Vol. 405). John Wiley & Sons.



From exchangeability to parameters and ”i.i.d." : 
”as if" III.



Bayesian inference using Beta distribution



Example 

Prior: Beta(3,10)
fix: 0.6



The Bayesian statistical framework



Hierarchical Bayesian modelling

 No theoretical need for „typed” probability of probabilities!



Predictive inference (”Bayesian inference")



Parametric inference (”Bayesian learning")



An example for full Bayesian inference



Principles for induction

• Epicurus' (342? B.C. - 270 B.C.) principle of multiple explanations which states that one should 
keep all hypotheses that are consistent with the data.

• The principle of Occam's razor (1285 - 1349, sometimes spelt Ockham). Occam's razor states that 
when inferring causes entities should not be multiplied beyond necessity. This is widely 
understood to mean: Among all hypotheses consistent with the observations, choose the 
simplest. In terms of a prior distribution over hypotheses, this is the same as giving simpler 
hypotheses higher a priori probability, and more complex ones lower probability.

AIMA



AIMA



Bayesian model averaging

Russel&Norvig: Artificial intelligence, ch.20



Bayesian Model Averaging example

Russel&Norvig: Artificial intelligence



Learning rate for models

Russel&Norvig: Artificial intelligence



Learning rate for model predictions

Russel&Norvig: Artificial intelligence
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Maximum likelood model selection
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Further examples for full Bayesian inference



Universal theory of induction
•Universal distributions

If the infinite binary sequences are distributed according to a computable measure 
μ , then the predictive distribution M(xn+1|x1:n)=M(x1:n+1)/M(x1:n) converges rapidly 
to μ(xn+1|x1:n)=μ(x1:n+1)/μ(x1:n) with probability 1. Hence, M predicts almost as well 
as does the true distribution μ.

M. Li and P. M B. Vitanyi. An introduction to Kolmogorov complexity and its applications. Springer
Solomonoff, R.J., 1964. A formal theory of inductive inference. Part I. Information and control, 7(1), pp.1-22.
Chaitin, G., 1974. Information-theoretic computation complexity. IEEE Transactions on Information Theory, 20(1), pp.10-15.



Universal inference, universal priors, universal AI

• Solomonoff, R.J., 1960, November. A preliminary report on a general theory of inductive inference. United States Air Force, Office of Scientific 
Research.

• Solomonoff, R.J., 1964. A formal theory of inductive inference. Part I. Information and control, 7(1), pp.1-22.

• Chaitin, G., 1974. Information-theoretic computation complexity. IEEE Transactions on Information Theory, 20(1), pp.10-15.

• Chaitin, G.J., 1977. Algorithmic information theory. IBM journal of research and development, 21(4), pp.350-359.

• Solomonoff, R., 1978. Complexity-based induction systems: comparisons and convergence theorems. IEEE transactions on Information Theory, 24(4), 
pp.422-432.

• Cover, T.M., 1985. Kolmogorov complexity, data compression, and inference. In The Impact of Processing Techniques on Communications (pp. 23-33). 
Springer, Dordrecht.

• Li, M. and Vitányi, P., 1993. An introduction to Kolmogorov complexity and its applications. New York: Springer.

• Solomonoff, R.J., 1997. The discovery of algorithmic probability. Journal of Computer and System Sciences, 55(1), pp.73-88.

• Dawid, A.P. and Vovk, V.G., 1999. Prequential probability: Principles and properties. Bernoulli, 5(1), pp.125-162.

• Chater, N. and Vitányi, P.M., 2003. The generalized universal law of generalization. Journal of Mathematical Psychology, 47(3), pp.346-369.

• Hutter, M., 2007. On universal prediction and Bayesian confirmation. Theoretical Computer Science, 384(1), pp.33-48.

• Solomonoff, R.J., 2008. Three kinds of probabilistic induction: Universal distributions and convergence theorems. The Computer Journal, 51(5), 
pp.566-570.

• Gács, P. and Vitányi, P.M., 2011. Raymond J. Solomonoff 1926–2009. IEEE Information Theory Society Newsletter, 61(1), pp.11-16.

• Hutter, M., 2004. Universal artificial intelligence: Sequential decisions based on algorithmic probability. Springer Science & Business Media.

• Rathmanner, S. and Hutter, M., 2011. A philosophical treatise of universal induction. Entropy, 13(6), pp.1076-1136.



Naive Bayesian network

Variables (nodes) 
Flu: present/absent

FeverAbove38C: present/absent
Coughing: present/absent

Flu

Fever Coughing

P(Fever=present|Flu=present)=0.6
P(Fever=absent|Flu=present)=1-0.6
P(Fever=present|Flu=absent)=0.01
P(Fever=absent|Flu=absent)=1-0.01

P(Flu=present)=0.001
P(Flu=absent)=1-P(Flu=present)Model

P(Coughing=present|Flu=present)=0.3
P(Coughing=absent|Flu=present)=1-0.7
P(Coughing=present|Flu=absent)=0.02
P(Coughing=absent|Flu=absent)=1-0.02

Assumptions: 

1, Two types of nodes: a cause and effects.

2, Effects are conditionally independent of each other given their cause.

Domingos, Pedro, and Michael Pazzani. "On the optimality of the simple Bayesian classifier under zero-one loss." Machine learning 29.2-3 (1997): 103-130.
Friedman, Jerome H. "On bias, variance, 0/1—loss, and the curse-of-dimensionality." Data mining and knowledge discovery 1.1 (1997): 55-77.
Hand, David J., and Keming Yu. "Idiot's Bayes—not so stupid after all?." International statistical review 69.3 (2001): 385-398.



Conditional probabilities, odds, odds ratios

Smoking

Lung cancer

S S

LC P(S, LC) P(S, LC) P(LC)

LC P(S, LC) P(S, LC) P(LC)

P(S) P(S)Probability:
P(LC)
Conditional probabilities (e.g., probability of LC given S): 
P(LC| S)= ??? P(LC| S)= ??? P(LC)
Odds:
[0,1] →[0,∞]: Odds(p)=p/(1-p)
O(LC| S)= ??? O(LC| S)
Odds Ratio (OR) Independent of prevalence!
OR(LC,S)=O(LC| S)/O(LC| S)
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Naive Bayesian network (NBN)
Decomposition of the joint:

P(Y,X1,..,Xn) = P(Y)∏iP(Xi,|Y, X1,..,Xi-1) //by the chain rule

= P(Y)∏iP(Xi,|Y) // by the N-BN assumption

2n+1 parameteres!

Diagnostic inference:

P(Y|xi1,..,xik) = P(Y)∏jP(xij,|Y) / P(xi1,..,xik)

If Y is binary, then the odds
P(Y=1|xi1,..,xik) / P(Y=0|xi1,..,xik)  = P(Y=1)/P(Y=0) ∏j P(xij,|Y=1) / P(xij,|Y=0)

Flu

Fever Coughing
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• Structure prior: p(G)
• Specify priors for edges in G

• Penalize deviation from a prior structure G0

• Parameter prior: p(|G)
•  denotes the complete parametrization for G

• Specify p(|G) independently for each variable?

• Specify p(|G) using a „convenient” (~conjugate) prior?

• Inference
• Tractable?
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Full Bayesian naive-BN



• Integration over parameters?
• Analytical solution under parameter independence!

• Hyperparameter update.

• Bayesian model averaging over exponential number of 
structures?

• Analytical solution!

• Existence of equivalent „super”-parametrization!!
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Full Bayesian inference with N-BNs using 
complete data

Dash, Denver, and Gregory F. Cooper. "Exact model averaging with naive Bayesian classifiers." ICML. 2002.



Extensions of N-BNs

• Tree-augmented BNs

• BN-augmented BNs

• Hierarchical BNs

• Multiple parents
• Explaining away

• „Context-sensitive” N-BNs

Langseth, Helge, and Thomas D. Nielsen. "Classification using hierarchical naive bayes models." Machine learning 63.2 
(2006): 135-159.



On the subjectivity of priors and losses

Optimal decision/estimation:



Axioms of structural properties of probability 
distributions



The independence model of a distribution

The independence map (model) M of a distribution P is 
the set of the valid independence triplets:

MP={IP,1(X1;Y1|Z1),..., IP,K(XK;YK|ZK)}

X Y ZIf P(X,Y,Z) is a Markov chain, then 
MP={D(X;Y), D(Y;Z), I(X;Z|Y)}
Normally/almost always: D(X;Z)
Exceptionally: I(X;Z)



The semi-graphoid axioms
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Graphoids

J.Pearl: Probabilistic Reasoning in intelligent systems, 1998

Graphoids: Semi-graphoids+Intersection (holds only in strictly positive distribution)



Summary

• Probability theory is a unified theory for uncertainty

• Normative derivation of uncertain reasoning
• Bayes’ rule as automation of rational inference with uncertainty

• Axiomatic derivations of „Bayesianism”
• „As if” representation of beliefs over models

• Axioms of structural properties of probability distribution
• Independence models

• Next: human biases, causality, the value alignment problem


