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Agenda

e Homeworks

* Cognitive science

e Cognitive architectures
 Criticisms (symbol??7?)

* The connectionist approach

e Connectionism/artificial neural networks
* ANN ,winter” 1.0

* Parallel distributed processing
* ANN ,winter” 2.0

* Deep learning
* Neuroinspired-Al

* Next: the neurobiological substrate



Requirements

* Grading:
* Two homeworks 50-50%.
* Review, essay, programming..
 MI Almanach
e http://project.mit.bme.hu/mi_almanach/
* http://project.mit.bme.hu/mi _almanach/books/kieg/aima/ch01s01
* AGI topic lists

e Suggestions are welcome
* Email
* Subject: [AGI:hw] NAME NEPTUNCODE keyword(s)
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Introduction



AGI podcasts

* [?] Josh Tenenbaum Computational Cognitive Science
e 47. Peter Norvig. Artificial Intelligence: A Modern Approach

» 48. Gary Marcus. Hybrid of Deep Learning and Symbolic Al

* Gary Marcus is a professor emeritus at NYU, founder of Robust.Al and
Geometric Intelligence, the latter is a machine learning company acquired by
Uber in 2016. He is the author of several books on natural and artificial
intelligence, including his new book Rebooting Al: Building Machines We Can
Trust. Gary has been a critical voice highlighting the limits of deep learning
and discussing the challenges before the Al community that must be solved in
order to achieve artificial general intelligence.

Marcus, G., 2018. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631.

Davis, Ernest, and Gary Marcus. "Commonsense reasoning and commonsense knowledge in artificial
intelligence." Commun. ACM 58.9 (2015): 92-103.

Marcus, G., 2017. Am | human?. Scientific American, 316(3), pp.58-63.

Marcus, G., Rossi, F. and Veloso, M., 2016. Beyond the turing test. Ai Magazine, 37(1), pp.3-4.



Huma n-compatible Al Stuart Russell

https://spectrum.i / ting/software/ t HUMAN
psS.//spectrum.ieee.org/computing/sortware/ many-experts-
say-we-shouldnt-worry-about-superintelligent-ai-theyre-wrong COMPATIBLE
* The ,gorilla”, ,,paper clip”,... problems
* The value-alignment problem |
* Counterarguments

e Switch off o

* Too far Al and the Problem of Control

. . . . » and the Problem of Contro
 Human(-level!?) intelligence is multifaceted (,human”?)
* Not possible

* Artificial intelligence and life in 2030. One Hundred Year Study on Artificial Intelligence:
Report of the 2015-2016 Study Panel

Standard rules for safety and goal specification
Expected utility is +++..

Bostrom, N., 2016. Superintelligence: Paths, Dangers, Strategies, Reprint ed.
Davis, E., 2015. Ethical guidelines for a superintelligence. Artificial Intelligence, 220, pp.121-124.


https://spectrum.ieee.org/computing/software/many-experts-say-we-shouldnt-worry-about-superintelligent-ai-theyre-wrong

Computer models of mind/cognition



Books

* Boden, M., 1980. Artificial intelligence and natural man.
* Hofstadter, Douglas R. Godel, Escher, Bach. Penguin Books, 1980.

* Boden, Margaret A. Computer models of mind. Cambridge University
Press, 1988.

* Mér6, Laszlb. Eszjdrdsok: a raciondlis gondolkodds korldtai és a
mesterséges intelligencia. Akadémiai Kiado, 1989.

* Tibor, Vamos. Computer epistemology. Vol. 25. World Scientific, 1991.

* Pléh, Csaba. A megismeréstudomany alapjai: az embertél a gépig és
vissza. Typotex, 2013.



A MEGISMERESTUDOMANY (KOGNITIV TUDOMANY) HELYE
A KOGNITIV KUTATAS KLASSZIKUS SZEMLELETE

A SZIMBOLUMFELDOLGOZO GONDOLKODAS NEHANY RESZLETE
A SZIMBOLUMFELDOLGOZO FELFOGAS INHERENS BIRALATA
A REPREZENTACIO FOGALMA A KOGNITIV TUDOMANYBAN
A REPREZENTACIO , SZIGORUBB” FOGALMA
GONDOLKODNAK-E A GEPEK?

A KONNEKCIONISTA ALTERNATIVA

A MODULOK PARLAMENTJE

10 BIOLOGIAI ALTERNATIVAK

11. A TUDAT KERDESE A KOGNITIV TUDOMANYBAN

©0NOOUAWN R



A(G)l as “symbol manipulation”

* The Logic Theorist, 1955

* =» see lectures on logic
 The Dartmouth conference ("birth of Al”, 1956)
 List processing (Information Processing Language, IPL)

* Means-ends analysis ("reasoning as search")
* =» see lectures on planning

* The General Problem Solver

* Heuristics to limit the search space
 =» see lecture on informed search

* The physical symbol systems hypothesis
* intelligent behavior can be reduced to/emulated by symbol manipulation

* The unified theory of cognition (1990, cognitive architectures: Soar, ACT-R)

* Newel&Simon: Computer science as empirical inquiry: symbols and search, 1975



Constraints on mind

1. Behave as an (almost} arbitrary function of the environment (universality).
2. Operate in real time.
3. Exhibit rational, i.e., effective adoptive behavior.
4. Use vast amounts of knowledge about the environment.
5. Behave robustly in the face of error, the unexpected, and the unknown.
6. Use symbaols (and abstractions).
7. Use (natural) language.
8. Exhibit self-awareness and o sense of self,
?. Learn from its environment.
10. Acguire its capabilities through development.
11. Arise through evolution.
12. Be realizable within the brain as a physical system.
13. Be reclizable as a physical system.

Newell, A., 1980. Physical symbol systems. Cognitive science, 4(2), pp.135-183.



A physical symbol system

MEMORY
(S1,S2,.... Sn)
ASSIGN = DO
WRITE > Active [ 1" CONTINUE-IF
READ (S1,...) = QUOTE
INPUT = BEHAVE
RECEPTORS MOTOR

Figure 2. Structure of S5, a Paradigmatic Symbol System.

Newell, A., 1980. Physical symbol systems. Cognitive science, 4(2), pp.135-183.




The physical symbol system hypothesis

Physical Symbol System Hypoihesis: The necessary and sufficient condition for a physi-
cal system to exhibit general intelligent action is that it be a physical symbol
system.

Necessary means that any physical system that exhibits general intelligence will be an
instance of a physical symbol system.

Sufficient means that any physical symbol system can be organized further to exhibit
general intelligent action.

General intelligent action means the same scope of intelligence seen in human action:
that in real situations behavior appropriate to the ends of the system and adaptive to
the demands of the environment can occur. within some physical limits.

Newell, A., 1980. Physical symbol systems. Cognitive science, 4(2), pp.135-183.



Architectures: cognition

* SOAR

Newell, A., 1980. Physical symbol systems. Cognitive science, 4(2), pp.135-183.

Laird, J.E., Newell, A. and Rosenbloom, P.S., 1987. Soar: An architecture for general intelligence.
Artificial intelligence, 33(1), pp.1-64.

Rosenbloom, P.S., Laird, J. and Newell, A. eds., 1993. The SOAR papers: Research on integrated
intelligence.

* ACT-R (Adaptive Character of Thought, ACT-R)

Anderson, J.R. and Bellezza, F.S., 1993. Rules of the mind. Hillsdale, NJ: L.
Anderson, J.R., 2014. Rules of the mind. Psychology Press.
Anderson, J.R., 1996. ACT: A simple theory of complex cognition. American psychologist, 51(4), p.355.

Lebiere, C. and Anderson, J.R., 1993, June. A connectionist implementation of the ACT-R production
system. In Proceedings of the fifteenth annual conference of the Cognitive Science Society (pp. 635-640).

Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C. and Qin, Y., 2004. An integrated theory
of the mind. Psychological review, 111(4), p.1036.

Anderson, J.R., 2009. How can the human mind occur in the physical universe? (Vol. 3). Oxford
University Press.

http://act-r.psy.cmu.edu/

https://en.wikipedia.org/wiki/ACT-R



http://act-r.psy.cmu.edu/
https://en.wikipedia.org/wiki/ACT-R

ACT-R

* a cognitive architecture

* a theory for simulating and understanding human cognition

ACT-R Theory
Architecture

Language Processin
Analogy and Metaphor
Language Learning )
Lexical and General Language Processing
Parsing
Sentence Memory

Perception and Attention
Attention ) )
Driving and Flying Behawvior
Eyve Movements
Graphical User Interfaces
Multi-Tasking
Psychophysical Judgements
Situational Awareness and Embedded Cognition
Stroop
Subitizing
Task Switching
Time Perception
Visual Search

Problem Seolving and Decision Making
Choice and Strategy Selection
Dynamic Systems
Errors )
Game Playing
Insight and Scientific Discovery
Mathematical Problem Solving
Programming
Reasoning
Spatial Reasoning and Navigation
Tower of Hanoi
Use and Design of Artifacts

http://act-r.psy.cmu.edu/publication/

Learning and Memory

Category Learning

Causal Learning

Cognitive Arithmetic

Declarative Memory

Implicit Learning

Interference

Learning by Exploration and Demonstration
List Memory )

Practice and Retention

Reinforcement Learning

Representation

Skill Acguisition )

Updating Memory and Prospective Memory
Working Memaory

Other

Cognitive Development

Cognitive Workload o _
Communication, Negotiation, and Group Decision Making
Comparative li‘-.| E|‘|ItEEtUIES{

Comparative III‘ItEI -specles)

%ﬂoﬂputa Generated Forces, Video Games, and Agents
Individual Differences

Information Search

Instructional Materials

Intelligent Tutoring Systems

Motivation, Emotion, Cognitive Moderators, & Performance
MNewur Dps»c'imlog»

Tools
Unrelated to ACT-R
User Modeling

Uncategorized



Architectures: vision

e David Marr’s Tri-Level Hypothesis:

e computational level:

» what does the system do (e.g.: what problems does it solve or overcome) and similarly,
why does it do these things

* algorithmic level (sometimes representational level):

* how does the system do what it does, specifically, what representations does it use and
what processes does it employ to build and manipulate the representations

* implementational/physical level:

* how is the system physically realised (in the case of biological vision, what neural
structures and neuronal activities implement the visual system)



Architectures: maps

* Self-organizing map (SOM)
* https://en.wikipedia.org/wiki/Self-organizing map

* Thousand Brains Theory of Intelligence

* https://numenta.com/blog/2019/01/16/the-thousand-brains-theory-of-
intelligence/

* https://www.youtube.com/watch?v=-EVqrDIAgYo

* Hawkins, J., Lewis, M., Klukas, M., Purdy, S. and Ahmad, S., 2018. A framework
for intelligence and cortical function based on grid cells in the neocortex.
Frontiers in neural circuits, 12, p.121.

* Adaptive Resonance Theory (ART)

* Grossberg, S., 2006. Adaptive resonance theory. Encyclopedia of cognitive
science.



https://en.wikipedia.org/wiki/Self-organizing_map
https://numenta.com/blog/2019/01/16/the-thousand-brains-theory-of-intelligence/
https://www.youtube.com/watch?v=-EVqrDlAqYo

Architectures: language (of thought)

* Famous experiments about an inherent (~oldest) language
* N. Chomsky:

* Universal grammar
* Inherent language theory

e J. Fodor

* Innate language module

* Fodor, J.A., 1983. The modularity of mind. MIT press.

* Fodor, J.A. and Pylyshyn, Z.W., 1988. Connectionism and cognitive architecture: A
critical analysis. Cognition, 28(1-2), pp.3-71.

e S. Pinker

* innate capacity for language
* Pinker, S., 2003. The language instinct: How the mind creates language. Penguin UK.



Language of thought

* Properties
* Combinatorial syntax and semantics for mental representations
* Productivity
* Systematicity
* Compositionality
* Inferential coherence

* Intensional logic
e Possible worlds semantics



Birth of a word
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Roy, B.C., Frank, M.C., DeCamp, P., Miller, M. and Roy, D., 2015. Predicting the birth of a spoken

word. Proceedings of the National Academy of Sciences, 112(41), pp.12663-12668.



Learning rate of words

Word Births

Frequency

Repetition

Intensity

Pitch

Duration

Utterance Length

|
|
|
|
|
|
|

Words Learned per Month

804

40

Word Births

This plot shows rate of the child’s vocabulary growth, measured in new words used per month. Each word's
position on the x-axis indicates the age when the child first used that word. The first words emerge as
single word utterances before 12 months of age, and at this early stage vocabulary grows by only a few
words per month. However, the rate of growth accelerates dramatically, with close to 80 new words learned
at month 20. Although the child’s vocabulary continues to grow, the surprising decrease in growth rate
coincides with the child producing longer, more complex utterances with his now 400+ word vocabulary.
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Intelligence without (symbolic) representation

< History X Feb 3, 12:21 PM X Feb 3, 12:21 PM
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Brooks, R.A., 1991. Intelligence without representation. Artificial intelligence, 47(1-3), pp.139-159.



Beyond symbolic cognition
(After GOFAI*)

*. Good Old Fashioned Al



Challenges for symbolic systems

* Trivialities: sensation, perception, motoric/sensory-motoric capabilities

e Symbols (as atomic concepts) + UTM (as centralized, sequential computation)
=>» artificial neural networks, connectionism, parallel distributed computing

* Non-symbolic heuristics
e Connectionist approaches to heuristics

* Uncertainties

* Probabilistic Graphical Models (PGMs)
e Utilities(~values)

 Utility theory, Decision theory

e Causality
e Causality research



Beyond symbolic cognition:
non-symbolic heuristics



Nature of expertise
(in rule-based production systems)

« Complex symbols (schemata, gestalt, patterns)

 Flexible, multi-aspect, ,grounded” concepts (~symbols)
« =>»Sub-symbolic learning

« Complex rules
* Meta-learning

« Efficient inference: heuristics (sub-thinking the right thing ;-)

* [dictionary]“A rule of thumb, simplification, or educated guess that reduces
or limits the search for solutions in domains that are difficult and poorly
understood.”

* Prioritization of rules: timing, scoring,..



Reminder: main properties of uninformed search

Criterion Breadth- Uniform- Depth-First Depth- Iterative Bidirectional
First cost limited deepening search
Complete? YES* YES* NO YES, YES YES*
ifl>d
Time pd+1 pC*/e pm b pd pd/2
Space pd+1 pC*le bm bl bd /2
Optimal? YES* YES* NO NO YES YES




A heuristic function

 [dictionary]“A rule of thumb, simplification, or educated guess that
reduces or limits the search for solutions in domains that are difficult
and poorly understood.”
* h(n) = estimated cost of the cheapest path from node n to goal node.
* If nis goal then h(n)=0

=» for definition, derivation, effect, etc., see Appendix



Rubik’s Cube

* The cardinality: 10*°

* Any position can be solved in 20 or fewer moves (where a half-twist is
counted as a single move)

e average branching factor is ~13.3

* Invented in 1974 by Erné Rubik.

* Rubik's cube current world records
* http://www.youtube.com/watch?v=0C0B4b4J9Ys

* How can we guide the search process???

Agostinelli, F., McAleer, S., Shmakov, A. and Baldi, P., 2019. Solving the Rubik’s cube with deep reinforcement
learning and search. Nature Machine Intelligence, 1(8), pp.356-363.



http://www.youtube.com/watch?v=oC0B4b4J9Ys

Solving the Rubik’s cube with deep reinforcement
learning and search

The Rubik’s cube is a prototypical combinatorial puzzle that has a large state space
with a single goal state. The goal state is unlikely to be accessed using sequences of
randomly generated moves, posing unique challenges for machine learning. We
solve the Rubik’s cube with DeepCubeA, a deep reinforcement learning approach
that learns how to solve increasingly difficult states in reverse from the goal state
without any specific domain knowledge. DeepCubeA solves 100% of all test
configurations, finding a shortest path to the goal state 60.3% of the time.
DeepCubeA generalizes to other combinatorial puzzles and is able to solve the 15
puzzle, 24 puzzle, 35 puzzle, 48 puzzle, Lights Out and Sokoban, finding a shortest
path in the majority of verifiable cases.

Agostinelli, F., McAleer, S., Shmakov, A. and Baldi, P., 2019. Solving the Rubik’s cube with deep reinforcement
learning and search. Nature Machine Intelligence, 1(8), pp.356-363.



Long-term planning, meta-heuristics

e Dota 2
* https://openai.com/blog/dota-2/

e Starcraft

* Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A.S., Yeo, M.,
Makhzani, A., Kuttler, H., Agapiou, J., Schrittwieser, J. and Quan, J., 2017.
Starcraft ii: A new challenge for reinforcement learning. arXiv preprint
arXiv:1708.04782.

* Hierarchical planning

* Wu, B., 2019, July. Hierarchical macro strategy model for moba game ai. In
Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, pp.
1206-1213).


https://openai.com/blog/dota-2/

Beyond symbolic cognition: utilities



Preferences

An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situ-
ations with uncertain prizes

Lottery L = [p. A; (1 —p), B I—p

Notation:

A>B A preferred to B
A~ B indifference between A and B
AZ B B not preferred to A

10/11/2019 AIMA



Rational preferences

|dea: preferences of a rational agent must obey constraints.
Rational preferences =

behavior describable as maximization of expected utility

Constraints:

Orderability
(A-B)V(B>=A)V (A~ B)
Transitivity
(A=B)AN(B>C) = (A>C)
Continuity
A-B>~C = dp [pA; 1 —p,C|~B
Substitutability
A~B = [pA; 1—p,C)~|p,B;1—p,C]

Monotonicity
A-B = (p>q & |p.A; 1 —p, B Z g, A; 1 —q, B])

10/11/2019
AIMA

34



An irrational preference

Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced
to give away all its money

If B = (', then an agent who has _4
(" would pay (say) 1 cent to get BB ) .
If A > B, then an agent who has
B would pay (say) 1 cent to get A f (f

i » |
If " > A, then an agent who has \}_/

A would pay (say) 1 cent to get ('

10/11/2019 35
AIMA



Maximizing expected utility

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944).
Given preferences satisfying the constraints
there exists a real-valued function U such that

UA) >UB) & AXB
[.-’Tii[pl. 51 N ‘WH]J — E:; p.,_;[.-"?i:f)r.,_;J

MEU principle:

Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tictactoe

10/11/2019 AIMA

36



Utilities
Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities:
compare a given state A to a standard lottery L, that has
“best possible prize” u+ with probability p
‘worst possible catastrophe” ., with probability (1 — p)
adjust lottery probability p until A ~ L,

continue as before

pay $30 ~ L

0.000001 instant death

10/11/2019 AIMA 37



Utility scales

Normalized utilities: v+~ = 1.0, u;, = 0.0

Micromorts: one-millionth chance of death
useful for Russian roulette, paying to reduce product risks, etc.

QALY's: quality-adjusted life years
useful for medical decisions involving substantial risk

Note: behavior is invariant w.r.t. +ve linear transformation
Ulx) =kU(xz)+ ks where ky >0

With deterministic prizes only (no lottery choices), only
ordinal utility can be determined, i.e., total order on prizes

AIMA



Money

Money does not behave as a utility function. Given a lottery L with
expected monetary value £V V' (L),
usually U(L) < U(EMV (L)), i.e., people are risk-averse.

Utility curve: for what probability p am | indifferent between a prize
r and a lottery [p, $M; (1 — p). $0] for large N7

Typical empirical data, extrapolated with risk-prone behavior:
+U

A o
o

+$
T T L
-150,000 800,000

AIMA



Beyond symbolic cognition: causality



Principles of causality

* Principles for a causal relation between X=>Y:
* Probabilistic association,
 Temporal asymmetry: X precedes temporally Y,
(Physicallocality]
* Quantitative effect of interventions: dose-effect relation
* necessity (i.e., if the cause is removed, effect is decreased)
 sufficiency (if exposure to cause is increased, effect is increased)
* Counterfactuals:

* Y would not have been occurred with that much probability if Y hadn’t been
present

* Y would have been occurred with larger probability if X had been present
* Bounded context-sensitivity (~context-free): relevant on average
* Plausible explanation (no alternative based on confounding).

* Duality principle: rules/mechanisms vs. observations/interventions.



Beyond symbolic cognition:
Artificial neural networks (ANN 1.0)



Birth of artificial neural networks (ANNs)

1943 McCulloch & Pitts: Boolean circuit model of brain To = +1
1949 Hebb: Organization of Behaviour: Hebbian learning fire together-wire together
1958 Frank Rosenblatt: Perceptron (Mark | Perceptron)

1959 Bernard Widrow and Marcian Hoff: (Multiple) ADAptive LINear Elements

1960-79 The physical symbol system hypothesis: search

1969 Marvin Minsky, Seymour Papert: “Perceptrons”

Credit assignment problem in multilayer perceptrons = 1st ANN winter

(1973 Lighthill report "Artificial Intelligence: A General Survey (=?) Al winter
https://en.wikipedia.org/wiki/Lighthill report )

https://en.wikipedia.org/wiki/Artificial neuron

The Credit Assignment Problem

The credit assignment problem concerns determining how the

== success of a system’s overall performance is due to the various
o contributions of the system’s components (Minsky, 1963).
+ - Minsky, M. L. (1963). Steps toward artificial intelligence. In E. A.

Feigenbaum & J. Feldman (Eds.), Computers And Thought (pp.
406-450). New York, NY: McGraw-Hill.

http://www.bcp.psych.ualberta.ca/~mike/Pearl Street/Diction
ary/contents/C/creditassign.html

https://en.wikipedia.org/wiki/Linear separability



https://en.wikipedia.org/wiki/Lighthill_report
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Linear_separability
http://www.bcp.psych.ualberta.ca/~mike/Pearl_Street/Dictionary/contents/C/creditassign.html

Connectionism, parallel distributed processing
ANN 2.0



Development of connectionism:
the message passing paradigm

* 1969 Marvin Minsky, Seymour Papert: “Perceptrons” (= ?) NN winter

e 1974 Paul Werbos solved the backward flow of credit assignment (Freud’s work)

* 1979 Kunihiko Fukushima neocognitron precursor for convolutional neural networks
* 1982 Jon Hopfield recurrent network (Hopfield Net)

* 1985 Ackley, David H; Hinton Geoffrey E; Sejnowski, Terrence J Boltzmann machines

* 1986 Rumelhart, D.E., Hinton, G.E. and McClelland, J.L., 1986. A general framework for parallel distributed processing. Parallel distributed
processing: Explorations in the microstructure of cognition

* Pearl, J., 1988. 88, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

* 1988 Rumelhart, D.E., Hinton, G.E. and Williams, R.J., 1988. Learning representations by back-propagating errors. Cognitive modeling

1989 George Cybenko: universal approximation using sigmoid activation functions

”i(_|-:_l|'||

o () The message passing paradigm
"N AN (the parallel distributed processing paradigm)
| / N . Output
Py _//_ —\ e
AT Rl
X N N Precursors:
’\’r \ ' — A . . . .
AN // /‘ Forward/backward chaining in (Horn) logic
XN ) /] | Propagating uncertainty factors
N AN P
e :9/___\/,,,

\, 1980-90: PDP, inference in PGMs,...

httpS//enWIkIDEdléOrg/WIkI/ArtlfICIa| neural network Now ("’2020) network-based propagation paradigm



https://en.wikipedia.org/wiki/Artificial_neural_network

Connectionism and cognitive architecture: pros-cons

Fodor, J.A. and Pylyshyn, Z.W., 1988. Connectionism and cognitive architecture: A critical analysis.
Cognition, 28(1-2), pp.3-71.

KIASSZIKUS SZEMLELET MEGKERDOJELEZES ES FINOMITAS
egységes modularis
szimbolikus szubszimbolikus
propozicionilis halézatelvii
szekvencialis parhuzamos
atomisztikus procedurilis
explicit implicit
logikus, deduktiv intuitiv, élményelvi
egyéni szocialis
testetlen testre vonatkozo
onmagaban tekintheté evolicios
modellalhato kimerithetetlen
gépies, automatikus emberti, jelentésorientalt
igazsagorientalt vagy iranyitotta
tudasfiiggetlen tudas athatotta

4.2 tdbldazat A klasszikus kognititvizmus és az alternativ irdnyok jellegzetes szembendlldsai

Pléh Csaba, 2013. A megismeréstudomany alapjai: az embertél a gépig és vissza. Typotex.



Statistical complexity: 2nd ANN winter (1988-2006)

* 1974 Vapnik, V. and Chervonenkis, A., Theory of pattern recognition. (in Russian)

e 1989 Blumer, A., Ehrenfeucht, A., Haussler, D. and Warmuth, M.K., Learnability and the
Vapnik-Chervonenkis dimension. Journal of the ACM (JACM), 36(4), pp.929-965.

e 1990 Haussler, D., Probably approximately correct learning. University of California,

Santa Cruz, Computer Research Laboratory. +patents at Bell Labs:Y.LeCun

e 1992 Boser, B.E., Guyon, I.M. and Vapnik, V.N., A training algorithm for optimal margin
classifiers. In Proceedings of the fifth annual workshop on Computational learning
theory (pp. 144-152). ACM.

e 1996 Devroye, L., Gyorfi, L. and Lugosi, G., A probabilistic theory of pattern recognition
springer. New York.

e 1998 Vapnik, V. and Vapnik, V., Statistical learning theory.

Convergence bounds for finite data size (€ accuracy,é confidence)

sample complexity: N, 5 p(DN s <‘ Error(MOdeI(DN )) ‘) < 5



Statistical complexity of learning

Sample complexity N(g,0):
sup, P(L(dh)-Le > ¢)<5

(

Estimation error: e.g.
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Kernel technologies



Kernel technologies

Precursors:
Reasoning with similarities, case-based resoning,..
universal consistency of 1/k-Nearest Neighbourhood

1, Statistical guarantees for inductive performance
2, Efficient computational complexities

(similarities of data samples) @
Kernel*

X% 215

Classifications  Probability predictions  Credible regions




Multiple kernel learning: Multi-aspect intelligence

MJ Ibata sets H
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N
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(similarities of data samples) @
Kernel*

Y ol

Classifications  Probability predictions  Credible regions

Bach, F.R., Lanckriet, G.R. and Jordan, M.I., 2004, July. Multiple kernel learning, conic duality, and the
SMO algorithm. In Proceedings of the twenty-first international conference on Machine learning (p. 6).
ACM.



Knowledge-based artificial neural networks
(precursor for ANN 3.0)



Learning with prior knowledge

Expected A

error
) @ ,
&W\
= L 3

W .
Sample size
Medium Large
(human-level)  (~asymptotic)

1, Initial error
2, Learning rate

3, Asymptotic error



Knowledge-based artificial neural networks

1993 Abu-Mostafa,Y.S.: Hints and the VC Dimension, Neural Computation, 5, 278-288

1994 Towell, G.G. and Shavlik, J.W., 1994. Knowledge-based artificial neural networks.
Artificial intelligence, 70(1-2), pp.119-165.

1995 Opitz,D.W.&J.W.Shavlik:Dynamically Adding Symbolically Meaningful Nodes to
Knowledge-Based Neural Networks, Knowledge-Based Systems, 8(6):301-311

Architectures and Techniques for Knowledge-Based Neurocomputing

1995 P.Myllymaki. Mapping Bayesian Networks to Stochastic Neural Networks: A

Foundation for Hybrid Bayesian-Neural systems. Ph.D. dissertation, University of [ Localist |
Helsinki, No. A-1995-1, 1995 ‘
. : . . . o . | Unified [

1998 P. Niyogi, T. Poggio, and F. Girosi. Incorporating prior information in machine | Architectures | ___Distributed
learning by creating virtual examples. Proceedings of the IEEE, 86(11):2196—2209 =

1 “—{ Combined L/D
1998 P. Antal. Applicability of prior domain knowledge formalised as Bayesian [ —
network in the process of construction of a classifier. In Proc. of the 24t Annual Conf. | Ntﬁllft_)»\.\"ll.h"lt' - 'I\'ra‘?slgt‘mnafl |
of the IEEE Industrial Electronic Society (IECON ’98), pages 2527-2531 | integration [ | |Architectures |

—{Chainl)mccssmg]

2000 P. Antal, G. Fannes, H. Verrelst, B. De Moor, and J. Vandewalle. Incorporation of
prior knowledge in black-box models: Comparison of transformation methods from b —] Subprocessing |

Bayesian network to multilayer perceptrons. In Workshop on Fusion of Domain
Knowledge with Data for Decision Support, 16th Uncertainty in Artificial Intelligence

Conference, pages 42—48, —{_Coprocessing

2000 I. Cloete and J. M. Zurada. Knowledge-Based Neurocomputing. MIT Press, |:> Figure 2.1 Classification of integrated neurosymbolic systems.
Cambridge, MA, 2000

| Architectures |
. { Mclupmccs\inﬂ

2003 P. Antal, G. Fannes, Y. Moreau, and B. De Moor. Bayesian applications of belief
networks and multilayer perceptrons for ovarian tumor classification with rejection.
Artificial Intelligence in Medicine, 29:39-60



Informed neural networks

[ [
A
+ Missclassification rate
0.35— -
Multilayer perceptron with a non-informative prior
Bayesian network with an non-informatice prior
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P. Antal, G. Fannes, D. Timmerman, Y. Moreau, B. De Moor: Bayesian Applications of Belief
Networks and Multilayer Perceptrons for Ovarian Tumor Classification with Rejection,
Artificial Intelligence in Medicine, vol. 29, pp 39-60, 2003



Deep learning
(Artificial neural networks 2.0++)



Return of ANNs as deep learning: 2006<

e 2006 - Hinton, Osindero, Yee-Whye Teh: A fast learning algorithm for deep belief nets

Learning by layers then global refinement

» 2010, Glorot, Bengio: Understanding the difficulty of training deep feedforward neural
networks

Novel transfer function: RelLU,

Novel parameter initialization

2011 - Mohamed, A. R., Sainath, T. N., Dahl, G., Ramabhadran, B., Hinton, G. E., &
Picheny, M. (2011, May). Deep belief networks using discriminative features for phone
recognition.

GPUs (x10-x100 speed-up)

2011 - Google Brain

The work resulted in unsupervised neural net learning of an unprecedented scale - 16,000 CPU cores
powering the learning of a whopping 1 billion weights

» 2012/14/15: AlexNet (8),GooglLeNet(22), ResNet(152 hidden layer)



ANN learning in 1986 vs. in 2006

1. Our labeled datasets were thousands of times too small. :
2. Our computers were millions of times too slow. 3:::'::']“
3. We initialized the weights in a stupid way. T/
4. We used the wrong type of non-linearity. : |

LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. Nature, 521(7553), p.436.

[L1/Lasso, parameter sharing (convolutional nets, long short-term memory), dropout, SGD/momentum/.../ADAM,..]

ey — https://imgur.com/a/Hqgolp#2dKCQHh

-!r'gJ
Li-norm Lz-norm ™ ,-__
FUN X) http://ruder.io/optimizing-gradient-
{’<> :} W j <> :| L O descentz

https://towardsdatascience.com/simplifi
| N o ed-math-behind-dropout-in-deep-  https://bl.ocks.org/EmilienDupont/aaf4
https://en.wikipedia.org/wiki/Lasso_(statistics) learning-6d50f3f47275 29be5705b219aaaf8d691e27cas7



https://en.wikipedia.org/wiki/Lasso_(statistics)
https://towardsdatascience.com/simplified-math-behind-dropout-in-deep-learning-6d50f3f47275
https://bl.ocks.org/EmilienDupont/aaf429be5705b219aaaf8d691e27ca87
http://ruder.io/optimizing-gradient-descent/

Deep learning problems (=»3rd ANN winter?)

Deep learning thus far is data hungry

Deep learning thus far is shallow and has limited capacity for transfer

Deep learning thus far has no natural way to deal with hierarchical structure
Deep learning thus far has struggled with open-ended inference

Deep learning thus far is not sufficiently transparent

Deep learning thus far has not been well integrated with prior knowledge

Deep learning thus far cannot inherently distinguish causation from correlation
Deep learning presumes a largely stable world, in ways that may be problematic

Deep learning thus far works well as an approximation, but its answers often
cannot be fully trusted

10. Deep learning thus far is difficult to engineer with

0 00N hEWNRE

Marcus, G., 2018. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631.



AGl-inspired ANNs



Large-scale data for inferring-learning

commonsense knowledge?

Commeonsense
Reasoning
h
Web Mining Knowledge based Crowd Sourcing
MNELL, KnowItAll ConceptMet,
OpenMind
3
Mathematical Informal Large-scale
Situation calculus, Scripts, CYC
Region connection calculus, Frames,
Qualitative process theory Case-based reasoning

https://mosaic.allenai.org/projects/mosaic-commonsense-benchmarks
SWAG: A Large-Scale Adversarial Dataset for Grounded Commonsense Inference
Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi e EMNLP ¢ 2018



https://mosaic.allenai.org/projects/mosaic-commonsense-benchmarks
https://www.semanticscholar.org/paper/SWAG:-A-Large-Scale-Adversarial-Dataset-for-Zellers-Bisk/06c137bffcad7376d5cb4a5f269e2fb88b715647

Sources for commonsense knowledge

* Emails (,,free” service providers) +Federated learning

* Chats (,,free” service providers)

* Everyday conversations (Siri, Alexa)

* Wearable electronics, basic physiological data (quantified self)...



Beyond standard learning

Learning with prior knowledge
Sequential/online learning
Reinforcement learning
Multitask learning

Transfer learning

Budgeted learning

Active learning

One-shot learning

Federated learning

e (Machine teaching)



Hilbert's twenty-three problems

Problem E Brief explanation Status % | Year Solved #
) . . . o . . Proven to be impossible to prove or disprove within Zermelo—Fraenkel set theery with or without the Axiom of Choice (provided Zermelo—Fraenkel set
1=t The continuum hypothesis (that is, there iz no =et whose cardinality is strictly between that of the integers and that of the real numbers) . . o i o . . i 1940, 1963
theory is consistent, i.e., it does not contain a contradiction). There is no consensus on whether this is a selution to the problem.
There is no consensus on whether results of Godel and Gentzen give a solution to the problem as stated by Hilbert. Gddel's zecond incompleteness
2nd Prowve that the axioms of arithmetic are consistent. theorem, proved in 1931, shows that no proof of its consistency can be carried out within arthmetic itself. Gentzen proved in 1536 that the consistency of 1931, 1936
arithmetic follows from the well-foundedness of the ordinal &.
Given any two polyhedra of equal volume, is it always possible to cut the first inte finitely many polyhedral pieces that can be reassembled to yield the B . .
3rd - Resolved. Result: No, proved using Dehn invariants. 1500
second?
4th Construct all metrics where lines are geodesics. Too vague to be stated resolved or not. —
. . . . Resolved by Andrew Gleason, depending on how the original statement is interpreted. If, howewver, it is understood as an equivalent of the Hilbert—Smith
Sth Are continuous groups automatically differential groups? ) o 19537
conjecture, it is still unsolved.
Mathematical treatment of the axioms of physics
Partialty resolved depending on how the original statement is interpreted.[5] tems (a) and (b) were two specific problems given by Hilbert in a later
Gth (a) axiomatic treatment of probability with limit thecrems for foundation of statistical physics explanation.["! Kolmogorov's axiomatice (1933) is now accepted as standard. There is some success on the way from the "stomistic view to the laws of 1933-20027
motion of continua."['%]
(b} the rigorous theory of limiting precesses "which lead from the atomistic view to the laws of motion of continua™
Tth Iz 5 transcendental, for algebraic & # 0,1 and irraticnal algebraic & 7 Resolved. Result: Yes, illustrated by Gelfond's theorem or the Gelfond—Schneider theorem. 1534
The Riemann hypothesis
&th ("the real part of any non-trivial zere of the Riemann zeta function is 27
and other prime number problems, ameng them Goldbach's conjecture and the twin prime conjecture
Sth Find the most general law of the reciprocity thecrem in any algebraic number field. Partially resolved. m —
10th Find an algerithm to determine whether a given pohynomial Diophantine eguation with integer coefficients has an integer solution. Resolved. Result: Impossible; Matiyasevich's theorem implies that there is no such algorithm. 1970
11th Solving guadratic forms with algebraic numerical coefficients. Partialty resolved |17 —
12th Extend the Kronecker-\Weber theorem on Abelian extensions of the rational numbers to any base number field. _
13th Solve Tth degree equation using algebraic (variant: continuous) functions of two parameters. The problem was partially solved by Vladimir Arncld based on work by Andrei Kuln‘mgurn'.r.[[I 1957
14th Is the ring of invariantz of an algebraic group acting on a potynomial ring always fintely generated? Reszolved. Result: No, a counterexample was constructed by Masayoshi Nagata. 1959
15th Rigorous foundation of Schubert's enumerative calculus. Partially resolved. —
16th Describe relative positions of ovals originating from a real algebraic curve and as limit cycles of a polynomial vecter field on the plane. _
17th Express a nonnegative rational function as guotient of sums of squares. Reszolved. Result: Yes, due to Emil Artin. Moreover, an upper limit was established for the number of square terms necessary. 1927
. ) o ) ) (a) Resolved. Result: Yes (by Karl Reinhardt).
(a}) Is there a pelyhedron that admits onby an anizchedral tiling in three dimensions? (a) 1928
1&th
. . {b) Widely believed to be resolved, by computer-azsisted proof (by Thomas Callister Hales). Result: Highest density achieved by close packings, each with
(b} What i= the denzest sphere packing? ) ) ; B (b} 1998
density approximately 74%, such as mmmmwwmmm
15th Are the solutions of regular problems in the calculus of variations always necessarily analytic? Resolved. Result: Yes, proven by Ennio de Giorgi and, independently and using different methods, by John Forbes Nash. 1957
20th Do all variatienal preblems with certain boundary conditions have solutions? Resolved. A significant topic of research throughout the 20th century, culminating in solutions for the non-linear case. 7
215t Proof of the existence of linear differential equations having a prescribed monodromic group Partially resolved. Result: Yes/No/Open depending on more exact formulations of the problem. ?
22nd Uniformization of analytic relations by means of automerphic functions —
23rd Further development of the calculus of variations Too vague to be stated resalved or not. —

https://en.wikipedia.org/wiki/Hilbert’s problems



https://en.wikipedia.org/wiki/Hilbert’s_problems

Smale's problems

Problem % Brief explanation
1st Riemann hypothesis: The real part of every non-trivial zero of the Riemann zeta function is 1/2. (see also Hilbert's eighth problem)
2nd Poincaré conjecture: Every simply connected, closed 3-manifold is homeomorphic to the 3-sphere. Reszolved. Result; Yes, Proved by Grigori Perelman using Ricci Flow B4
£ P versus NP problem: For all preblems for which an algorithm can verifir a given solution quickly (that is, in polynomial time), can an algorithm alzo find that
{
solution quickly?
4th Shub—Smale tau-conjecture on the integer zeros of a polynomial of one wvariable®7]
Sth Can one decide if a Diophantine eguation fix ¥) = 0 (input f = E [v,v]) has an integer solution, (x,)), in time (25)¢ for some universal constant c? That is,
can the problem be decided in exponential time?
6th Iz the number of relative equilibria finite, in the n-body problem of celestial mechanics, for any cheice of positive real numbers my, ..., My as the masses? Partialty resolved. Proved for five bodies by A. Albouy and V. Kaloshin in 20128 2012
Partially resolved. A noteworthy form of this problem is the Thomsen Problem of equal point charges on a unit sphere governed by the electrostatic
e Coulomb's law. Very few exact N-point solutions are known while most solutiens are numerical. Mumerical solutions to this problem have been shown to
Tth Digtribution [cl2Afication needed] of points on the 2-sphere & i o ) o — ) ; =
correspond well with features of electron shel-filing in Atemic structure found throughout the periedic table.[%] & wel-defined, intermediate step to this
problem involving a point charge at the origin has been repnded.[w]
Gierstad (2013)[""] extends the deterministic model of price adjustment to a stochastic model and shows that when the stochastic medel is linearized
Bth Extend the mathematical model of general eguilibrium theory to include price adjustments around the eguilibrium the result is the autoregressive price adjustment model used in applied econometrics. He then tests the model with price adjustment 2013
data from a general eguilibrium experiment. The model performs well in @ general equilibrium experiment with two commodities.
oth The linear programming problem: Find a stronghy-polynomial time algorithm which for given matric 4 & R™" and b = R™ decides whether there exists
¥ & R with Ax z b, N
10th Pugh’s closing lemma (higher erder of smoothness) Partialty Resohved. Proved for Hamittenian diffeomorphisms of closed surfaces by M. Asaocka and K. Irie in 2016012 2016
Is one-dimenszional dynamics generally hyperbolic?
. . . . . o (a) Unresolved, even in the simplest parameter space of polynomialg, the Mandelbrot set.
Hth (a) Can a complex polynomial I be approximated by one of the same degree with the property that every critical point tends to a periodic sink under 2007
iteration? . T
(b} Resolved. Proved by Kezlovski, Shen and van Strien 12!
(k) Can a smooth map I : [0,1] — [0.1] be C" approximated by one which is hyperbolic, for all» > 17
132th Can a diffeomoerphizm of a compact manifold M onto itself be C approximated, allr= 1, by one T M — M which commutes with onby its iterates? In other Partial wed. Solved in the C’lt o Christian Bonati vain Crovisi nd Amie Wiki [84] ; il in the C* tonology f =1
words, what are the centralizers of a diffeomorphism? ialty Resohved. in opology by Christian Bonatti, Sylvain Crovigier al mie Wikingen!"*! in 2008. Still open in bopology for r = 1. 2009
& Hilbert's 16th problem: Describe relative positions of ovals eriginating from a real algebraic curve and as limit cycles of a polynomial vector field on the
plane. B
14th Do the properties of the Lorenz attractor exhibit that of a strange attractor? Resolved. Result; Yes, solved by Warwick Tucker uging interval arithmetic.I1¥! 2002
15th Do the Navier—Stokes equations in r? always have a unigue smoecth solution that extends for all time? -
T Jacobian conjecture: If The Jacebian determinant of F is a non-zere constant and & has characteristic 0, then F has an inverse function & : KN k” and
& is regular (in the sense that its components are polynomials ).
Resolved. C. Beltran and L. M. Pardo found a uniform probabilistic algorithm (average Las Vegas algorithm) for Smale’s 17th probleml *S117]
F. Cucker and P. Burgisser made the smoothed analysis of a probabilistic algerithm & I Beltrén-Pardo and then exhibited a deterministic algerithm running in
time N Cflog log N} [18)
17th Solving polynomial eguations in polynomial time in the average case 2008-2016
Finally, P. Lairez found an afternative method to de-randemize the algorithm and thus found a deterministic algorithm which runs in average polynomial
time. [15]
Allthese works mmmmmmmmmm‘)mﬂml

https://en.wikipedia.org/wiki/Smale’s problems




Smale’s 18th problem: Limits of intelligence

* Penrose (1991) attempts to show some limitations of artificial intelligence. Involved in his argumentation is the interesting question, "is the
Mandelbrot set decidable?" (see problem 14) and implications of the Godel incompleteness theorem.

* However a broader study is called for, one which involves deeper models of the brain, and of the computer, in a search of what artificial and human
intelligence have in common,and how they differ.

. This”project requires the development of a mathematical model of intelligence, with variations to take into account the differences between kinds of
intelligence.

* ltis useful to realize that there can be no unique model. Even in physics which is more clearly defined, one has classical mechanics, quantum
mechanics, and relativity theory, each yielding its own insights and understandings and each with its own limitations. Models are idealizations with
drastic simplifications which capture main truths.

* Animportant part of intelligent activity is problem solving. For this one has a traditional model, the Turing machine, as well as a newer machine which
processes real numbers (see BCSS), referred to previously in problem 3. The Turing machine has been accepted as a reasonable model for the digital
computer. We have argued for the alternative real number machine as a more appropriate model for the digital computer's use in scientic
computation and in situations where arithmetic operations dominate (the Manifesto as reprinted as Chapter 1 of BCSS). Such mathematical models
for human intelligence are less developed.

* There is one example of a general problem that comes to the forefront; that is the problem of equation solving for polynomial systems, over some
field of numbers. The real numbers with inequalities are an important special case of this problem. Artificial intelligence hasencountered it in its study
of robotics. Moreover, over any field, equation solving possesses a universality in a formal mathematical sense in the theory of NP completeness.

* One might ask, is there a form of intelligence that can solve general systems of polynomial equations. This problem is anticipated by the previous
problems 3 and 17.

* The use of the Turing machine versus its real counterpart is a manifestation of the age old conflict between the discrete and the continuous. |
believe that the real number machine is the more important of the two for understanding the problem solving limitations of humans. ....



Towards hybrid systems:
Neural Turing Machines
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Graves, A., Wayne, G. and Danihelka, I., 2014. Neural turing machines. arXiv preprint arXiv:1410.5401.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwiniska, A., Colmenarejo, S.G., Grefenstette, E.,

Ramalho, T., Agapiou, J. and Badia, A.P., 2016. Hybrid computing using a neural network with dynamic external
memory. Nature, 538(7626), p.471.



Neuroscience-Inspired Artificial Intelligence
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Hassabis, D., Kumaran, D., Summerfield, C. and Botvinick, M., 2017. Neuroscience-inspired artificial
intelligence. Neuron, 95(2), pp.245-258.
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Complex neural network Informed Al network
Connectivity in cortical networks includes rich sets Biological innate connectivity patterns provide
of connections, including local and long-range mechanisms that guide human cognitive learning.
lateral connectivity, and top-down connections Discovering similar mechanisms, by machine learning or
from high to low levels of the hierarchy. by mimicking the human brain, may prove crucial for

future artificial systems with human-like cognitive abilities.

Complexity of structure

* Evolution x100m years 10years

* Development 9 months (~25 years) 1sec

* Learning(&Development) experimenting~25 years (+9m) days (<weeks)
* Information content DNA+epigenetics+nature(!!! xGB

* Computational model nature(!!! UTM

Ullman, S., 2019. Using neuroscience to develop artificial intelligence. Science, 363(6428), pp.692-693.



Summary

* Cognitive science
e Cognitive architectures
* Criticisms
* Symbols, values, causality
* The connectionist approach
* Connectionism/artificial neural networks (ANN 1.0): 1943-1969
 ANN ,winter” 1.0

e Parallel distributed processing (ANN 2.0): 1974-1988
* ANN ,winter” 2.0
* Knowledge-based neurocomputing

* Deep learning (ANN 2.0++): 2006-
* Limits of deep ANNs
* Neuroinspired-Al (ANN 3.0)

* Next: the neurobiological substrate



Heuristics



Problem solving with search

* A problem is defined by:
* Aninitial state, e.g. Arad
e Successor function S(X)= set of action-state pairs
* e.g. S(Arad)={<Arad — Zerind, Zerind>,...}
intial state + successor function = state space
* Goal test, can be

* Explicit, e.g. x="at bucharest’
* Implicit, e.g. checkmate(x)
* Path cost (additive)
e e.g. sum of distances, number of actions executed, ...
* c(x,a,y)is the step cost, assumed to be >=0

A solution is a sequence of actions from initial to goal state.
Optimal solution has the lowest path cost.

A.l. Uninformed search 72 AIMA 10/11/2019



Best-first search

* General approach of informed search:

 Best-first search: node is selected for expansion based on an evaluation function f(n) in TREE-
SEARCH().

* |dea: evaluation function measures distance to the goal.

* Choose node which appears best

* Implementation:

° fringe is queue sorted in decreasing order of desirability.
* Special cases: greedy search, A* search



A heuristic function

 [dictionary]“A rule of thumb, simplification, or educated guess that
reduces or limits the search for solutions in domains that are difficult
and poorly understood.”
* h(n) = estimated cost of the cheapest path from node n to goal node.
* If nis goal then h(n)=0



A* search

* Best-known form of best-first search.
* |dea: avoid expanding paths that are already expensive.

 Evaluation function f(n)=g(n) + h(n)
* g(n) the cost (so far) to reach the node.
* h(n) estimated cost to get from the node to the closest goal.
* f(n) estimated total cost of path through n to goal.



A* search

* A* search uses an admissible heuristic

* A heuristic is admissible if it never overestimates the cost to reach the goal
(~Yoptimistic).

Formally:
1. h(n) <= h*(n) where h*(n) is the true cost from n
2. h(n) >= 0 so h(G)=0 for any goal G.

e.g. hg p(n) never overestimates the actual road distance

. If h(n) is admissible, A* using BEST-FIRST-SEARCH () with selector function
f(n)=h(n) is optimal.



Optimality of A*(standard proof)

nO/
G

. \O

* Suppose a suboptimal goal G, in the queue.
* Let n be an unexpanded node on a shortest to optimal goal G.

f(G;) =9(G,) since h(G,)=0
>g(G) since G, is suboptimal
>= f(n) since h is admissible

Since f(G,) > f(n), A* will never select G, for expansion (i.e. for checking, but note
that G, can be inside the queue).



Consistency

e A heuristic is consistent if
h(n)<c(n,a,n")+ h(n'") ’(/)

* If his consistent, we have @ i
f(n')y=g(n'")+ h(n')

=g(n)+c(n,a,n')+ h(n')
> o(n) + h(n) (6)
> f(n)

h(n))

i.e. f(n) is non-decreasing along any path.
. If h(n) is consistent, A* using GRAPH-SEARCH is optimal



Optimality of A*(more usefull)

 A* expands nodes in order of increasing f value

* Contours can be drawn in state space

 Uniform-cost search adds circles.

e F-contours are gradually
Added:

1) nodes with f(n)<C*

2) Some nodes on the goal
Contour (f(n)=C*).

Contour i has all nodes
with f=f, where f, < f.,,.
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A* search, evaluation

* Completeness: YES
* Since bands of increasing f are added
* Unless there are infinitly many nodes with f<f(G)



A* search, evaluation

* Completeness: YES

* Time complexity:
* Number of nodes expanded is still exponential in the length of the solution.



A* search, evaluation

* Completeness: YES
* Time complexity: (exponential with path length)

e Space complexity:
* |t keeps all generated nodes in memory
* Hence space is the major problem not time



A* search, evaluation

* Completeness: YES

* Time complexity: (exponential with path length)
» Space complexity:(all nodes are stored)

* Optimality: YES

e Cannot expand f;,; until f; is finished.
* A* expands all nodes with f(n)< C*
* A* expands some nodes with f(n)=C*
* A* expands no nodes with f(n)>C*

Also optimally efficient (not including ties)



Heuristic functions

7 2 4 1

5 6 3 4

8 3 1 6 7
Start State Goal State

e E.g for the 8-puzzle

» Avg. solution cost is about 22 steps (branching factor +/- 3)
* Exhaustive search to depth 22: 3.1 x 10%° states.
* A good heuristic function can reduce the search process.
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Heuristic functions

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

e E.g for the 8-puzzle knows two commonly used heuristics

* h, =the number of misplaced tiles
* hy(s)=8

* h, =the sum of the distances of the tiles from their goal positions (manhattan distance).
* h,(s)=3+1+2+2+2+3+3+2=18
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Heuristic quality

e Effective branching factor b*
* |s the branching factor that a uniform tree of depth d would have in order to

contain N+1 nodes. N+1=1—|—b*+(b*)2 + m+(b*)d

* Measure is fairly constant for sufficiently hard problems.
* Can thus provide a good guide to the heuristic’s overall usefulness.
* A good value of b*is 1.



Inventing admissible heuristics

 Admissible heuristics can be derived from the exact solution cost of a
relaxed version of the problem:

* Relaxed 8-puzzle for h,: a tile can move anywhere
As a result, h,(n) gives the shortest solution

* Relaxed 8-puzzle for h, : a tile can move to any adjacent square.
As a result, h,(n) gives the shortest solution.

The optimal solution cost of a relaxed problem is no greater than the optimal
solution cost of the real problem.

ABSolver found a useful heuristic for the Rubic cube.



Inventing admissible heuristics

* Admissible heuristics can also be derived from the solution cost of a subproblem of a given
problem.

* This cost is a lower bound on the cost of the real problem.

* Pattern databases store the exact solution for every possible subproblem instance.
* The complete heuristic is constructed using the patterns in the DB

% 2 4 1 2

% 4 3 4 %

a 3 1 * * E3
Start State Goal State
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Inventing admissible heuristics

* Another way to find an admissible heuristic is through learning from
experience:
* Experience = solving lots of 8-puzzles

* An inductive learning algorithm can be used to predict costs for other states
that arise during search.

Prieditis: Machine Discovery of Effective Admissible Heuristics, 1993



Heuristic quality and dominance

* 1200 random problems with solution lengths from 2 to 24.

‘ Search Cost Effective Branching Factor

d IDS Af(hy) Af(hs) IDS A*(hy) A*(hs)
2 10 6 6 2.45 1.79 1.79

+ 112 13 12 2.87 1.48 1.45

6 680 20 18 273 1.34 1.30

8 6384 ‘ 39 25 2.80 1533 1.24
10 47127 | 93 39 2.79 1.38 1.22
12 || 3644035 227 73 | 2.78 1.42 1.24
14 — 539 113 - 1.44 1.23
16 - 1301 211 - 1.45 1.25
18 - 3056 363 - 1.46 1.26
20 - 7276 676 - 1.47 1.27
22 - | 18094 1219 1.48 1.28
24 || - ‘ 39135 1641 = 1.48 1.26

pas il = Y | . —

* If h,(n) >= h,(n) for all n (both admissible)

then h, dominates h, and is better for search
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