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Agenda

• Homeworks

• Cognitive science
• Cognitive architectures
• Criticisms (symbol???)

• The connectionist approach
• Connectionism/artificial neural networks

• ANN „winter” 1.0

• Parallel distributed processing
• ANN „winter” 2.0

• Deep learning
• Neuroinspired-AI

• Next: the neurobiological substrate



• Grading: 
• Two homeworks 50-50%.

• Review, essay, programming..

• MI Almanach
• http://project.mit.bme.hu/mi_almanach/

• http://project.mit.bme.hu/mi_almanach/books/kieg/aima/ch01s01

• AGI topic lists
• Suggestions are welcome

• Email

• Subject: [AGI:hw] NAME NEPTUNCODE keyword(s)
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Requirements
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Introduction



AGI podcasts
• [?] Josh Tenenbaum Computational Cognitive Science

• 47. Peter Norvig. Artificial Intelligence: A Modern Approach

• 48. Gary Marcus. Hybrid of Deep Learning and Symbolic AI
• Gary Marcus is a professor emeritus at NYU, founder of Robust.AI and 

Geometric Intelligence, the latter is a machine learning company acquired by 
Uber in 2016. He is the author of several books on natural and artificial 
intelligence, including his new book Rebooting AI: Building Machines We Can 
Trust. Gary has been a critical voice highlighting the limits of deep learning 
and discussing the challenges before the AI community that must be solved in 
order to achieve artificial general intelligence.

Marcus, G., 2018. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631.
Davis, Ernest, and Gary Marcus. "Commonsense reasoning and commonsense knowledge in artificial 
intelligence." Commun. ACM 58.9 (2015): 92-103.
Marcus, G., 2017. Am I human?. Scientific American, 316(3), pp.58-63.
Marcus, G., Rossi, F. and Veloso, M., 2016. Beyond the turing test. Ai Magazine, 37(1), pp.3-4.



Human-compatible AI

• The „gorilla”, „paper clip”,… problems

• The value-alignment problem

• Counterarguments
• Switch off
• Too far
• Human(-level!?) intelligence is multifaceted („human”?)
• Not possible

• Artificial intelligence and life in 2030. One Hundred Year Study on Artificial Intelligence: 
Report of the 2015-2016 Study Panel

• Standard rules for safety and goal specification
• Expected utility is +++..

Bostrom, N., 2016. Superintelligence: Paths, Dangers, Strategies, Reprint ed.
Davis, E., 2015. Ethical guidelines for a superintelligence. Artificial Intelligence, 220, pp.121-124.

https://spectrum.ieee.org/computing/software/many-experts-
say-we-shouldnt-worry-about-superintelligent-ai-theyre-wrong

https://spectrum.ieee.org/computing/software/many-experts-say-we-shouldnt-worry-about-superintelligent-ai-theyre-wrong


Computer models of mind/cognition



Books

• Boden, M., 1980. Artificial intelligence and natural man.

• Hofstadter, Douglas R. Gödel, Escher, Bach. Penguin Books, 1980.

• Boden, Margaret A. Computer models of mind. Cambridge University 
Press, 1988.

• Mérő, László. Észjárások: a racionális gondolkodás korlátai és a 
mesterséges intelligencia. Akadémiai Kiadó, 1989.

• Tibor, Vámos. Computer epistemology. Vol. 25. World Scientific, 1991.

• Pléh, Csaba. A megismeréstudomány alapjai: az embertől a gépig és
vissza. Typotex, 2013.



Pléh Csaba: A megismeréstudomány alapjai

1. A MEGISMERÉSTUDOMÁNY (KOGNITÍV TUDOMÁNY) HELYE

2. A KOGNITÍV KUTATÁS KLASSZIKUS SZEMLÉLETE

3. A SZIMBÓLUMFELDOLGOZÓ GONDOLKODÁS NÉHÁNY RÉSZLETE

4. A SZIMBÓLUMFELDOLGOZÓ FELFOGÁS INHERENS BÍRÁLATA

5. A REPREZENTÁCIÓ FOGALMA A KOGNITÍV TUDOMÁNYBAN
6. A REPREZENTÁCIÓ „SZIGORÚBB” FOGALMA

7. GONDOLKODNAK-E A GÉPEK?

8. A KONNEKCIONISTA ALTERNATÍVA
9. A MODULOK PARLAMENTJE

10. BIOLÓGIAI ALTERNATÍVÁK

11. A TUDAT KÉRDÉSE A KOGNITÍV TUDOMÁNYBAN



• The Logic Theorist, 1955
•  see lectures on logic

• The Dartmouth conference ("birth of AI”, 1956)

• List processing (Information Processing Language, IPL)

• Means-ends analysis ("reasoning as search")
•  see lectures on planning

• The General Problem Solver

• Heuristics to limit the search space 
•  see lecture on informed search

• The physical symbol systems hypothesis
• intelligent behavior can be reduced to/emulated by symbol manipulation

• The unified theory of cognition (1990, cognitive architectures: Soar, ACT-R)

• Newel&Simon: Computer science as empirical inquiry: symbols and search, 1975
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A(G)I as “symbol manipulation”



Constraints on mind

Newell, A., 1980. Physical symbol systems. Cognitive science, 4(2), pp.135-183.



A physical symbol system

Newell, A., 1980. Physical symbol systems. Cognitive science, 4(2), pp.135-183.



The physical symbol system hypothesis

Newell, A., 1980. Physical symbol systems. Cognitive science, 4(2), pp.135-183.



Architectures: cognition
• SOAR

• Newell, A., 1980. Physical symbol systems. Cognitive science, 4(2), pp.135-183.

• Laird, J.E., Newell, A. and Rosenbloom, P.S., 1987. Soar: An architecture for general intelligence. 
Artificial intelligence, 33(1), pp.1-64.

• Rosenbloom, P.S., Laird, J. and Newell, A. eds., 1993. The SOAR papers: Research on integrated 
intelligence.

• ACT-R (Adaptive Character of Thought, ACT-R)
• Anderson, J.R. and Bellezza, F.S., 1993. Rules of the mind. Hillsdale, NJ: L.

• Anderson, J.R., 2014. Rules of the mind. Psychology Press.

• Anderson, J.R., 1996. ACT: A simple theory of complex cognition. American psychologist, 51(4), p.355.

• Lebiere, C. and Anderson, J.R., 1993, June. A connectionist implementation of the ACT-R production 
system. In Proceedings of the fifteenth annual conference of the Cognitive Science Society (pp. 635-640).

• Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C. and Qin, Y., 2004. An integrated theory 
of the mind. Psychological review, 111(4), p.1036.

• Anderson, J.R., 2009. How can the human mind occur in the physical universe? (Vol. 3). Oxford 
University Press.

http://act-r.psy.cmu.edu/

https://en.wikipedia.org/wiki/ACT-R

http://act-r.psy.cmu.edu/
https://en.wikipedia.org/wiki/ACT-R


ACT-R

• a cognitive architecture

• a theory for simulating and understanding human cognition

http://act-r.psy.cmu.edu/publication/



Architectures: vision

• David Marr’s Tri-Level Hypothesis:
• computational level:

• what does the system do (e.g.: what problems does it solve or overcome) and similarly, 
why does it do these things

• algorithmic level (sometimes representational level):
• how does the system do what it does, specifically, what representations does it use and 

what processes does it employ to build and manipulate the representations

• implementational/physical level:
• how is the system physically realised (in the case of biological vision, what neural 

structures and neuronal activities implement the visual system)



Architectures: maps

• Self-organizing map (SOM)
• https://en.wikipedia.org/wiki/Self-organizing_map

• Thousand Brains Theory of Intelligence
• https://numenta.com/blog/2019/01/16/the-thousand-brains-theory-of-

intelligence/
• https://www.youtube.com/watch?v=-EVqrDlAqYo
• Hawkins, J., Lewis, M., Klukas, M., Purdy, S. and Ahmad, S., 2018. A framework 

for intelligence and cortical function based on grid cells in the neocortex. 
Frontiers in neural circuits, 12, p.121.

• Adaptive Resonance Theory (ART)
• Grossberg, S., 2006. Adaptive resonance theory. Encyclopedia of cognitive 

science.

https://en.wikipedia.org/wiki/Self-organizing_map
https://numenta.com/blog/2019/01/16/the-thousand-brains-theory-of-intelligence/
https://www.youtube.com/watch?v=-EVqrDlAqYo


Architectures: language (of thought)

• Famous experiments about an inherent (~oldest) language

• N. Chomsky: 
• Universal grammar
• Inherent language theory

• J. Fodor
• Innate language module
• Fodor, J.A., 1983. The modularity of mind. MIT press.
• Fodor, J.A. and Pylyshyn, Z.W., 1988. Connectionism and cognitive architecture: A 

critical analysis. Cognition, 28(1-2), pp.3-71.

• S. Pinker
• innate capacity for language
• Pinker, S., 2003. The language instinct: How the mind creates language. Penguin UK.



Language of thought

• Properties
• Combinatorial syntax and semantics for mental representations

• Productivity

• Systematicity

• Compositionality

• Inferential coherence

• Intensional logic
• Possible worlds semantics



Birth of a word

Roy, B.C., Frank, M.C., DeCamp, P., Miller, M. and Roy, D., 2015. Predicting the birth of a spoken 
word. Proceedings of the National Academy of Sciences, 112(41), pp.12663-12668.



Learning rate of words

Roy, B.C., Frank, M.C., DeCamp, P., Miller, M. and Roy, D., 2015. Predicting the birth of a spoken 
word. Proceedings of the National Academy of Sciences, 112(41), pp.12663-12668.



Intelligence without (symbolic) representation

Brooks, R.A., 1991. Intelligence without representation. Artificial intelligence, 47(1-3), pp.139-159.



Beyond symbolic cognition
(After GOFAI*)

*: Good Old Fashioned AI



Challenges for symbolic systems

• Trivialities: sensation, perception, motoric/sensory-motoric capabilities

• Symbols (as atomic concepts) + UTM (as centralized, sequential computation)
artificial neural networks, connectionism, parallel distributed computing

• Non-symbolic heuristics
• Connectionist approaches to heuristics

• Uncertainties
• Probabilistic Graphical Models (PGMs)

• Utilities(~values)
• Utility theory, Decision theory

• Causality
• Causality research



Beyond symbolic cognition: 
non-symbolic heuristics



Nature of expertise 
(in rule-based production systems)

• Complex symbols (schemata, gestalt, patterns)
• Flexible, multi-aspect, „grounded” concepts (~symbols)

• Sub-symbolic learning

• Complex rules
• Meta-learning

• Efficient inference: heuristics (sub-thinking the right thing ;-)
• [dictionary]“A rule of thumb, simplification, or educated  guess that reduces 

or limits the search for solutions in  domains that are difficult and poorly 
understood.”

• Prioritization of rules: timing, scoring,..



Reminder: main properties of uninformed search

Criterion Breadth-

First

Uniform-

cost

Depth-First Depth-

limited

Iterative 

deepening

Bidirectional 

search

Complete? YES* YES* NO YES, 

if l  d

YES YES*

Time bd+1 bC*/e bm bl bd bd/2

Space bd+1 bC*/e bm bl bd bd/2

Optimal? YES* YES* NO NO YES YES

A.I. AIMA Uninformed search 2710/11/2019



• [dictionary]“A rule of thumb, simplification, or educated  guess that 
reduces or limits the search for solutions in  domains that are difficult 
and poorly understood.”
• h(n) = estimated cost of the cheapest path from node n to goal node.

• If n is goal then h(n)=0

 for definition, derivation, effect, etc., see Appendix

10/11/2019 A.I. 28

A heuristic function



• The cardinality: 1019

• Any position can be solved in 20 or fewer moves (where a half-twist is 
counted as a single move)

• average branching factor is ~13.3

• Invented in 1974 by Ernő Rubik.

• Rubik's cube current world records
• http://www.youtube.com/watch?v=oC0B4b4J9Ys

• How can we guide the search process???

Rubik’s Cube 

Agostinelli, F., McAleer, S., Shmakov, A. and Baldi, P., 2019. Solving the Rubik’s cube with deep reinforcement 
learning and search. Nature Machine Intelligence, 1(8), pp.356-363.

http://www.youtube.com/watch?v=oC0B4b4J9Ys


Solving the Rubik’s cube with deep reinforcement 
learning and search
The Rubik’s cube is a prototypical combinatorial puzzle that has a large state space 
with a single goal state. The goal state is unlikely to be accessed using sequences of 
randomly generated moves, posing unique challenges for machine learning. We 
solve the Rubik’s cube with DeepCubeA, a deep reinforcement learning approach 
that learns how to solve increasingly difficult states in reverse from the goal state 
without any specific domain knowledge. DeepCubeA solves 100% of all test 
configurations, finding a shortest path to the goal state 60.3% of the time. 
DeepCubeA generalizes to other combinatorial puzzles and is able to solve the 15 
puzzle, 24 puzzle, 35 puzzle, 48 puzzle, Lights Out and Sokoban, finding a shortest 
path in the majority of verifiable cases.

Agostinelli, F., McAleer, S., Shmakov, A. and Baldi, P., 2019. Solving the Rubik’s cube with deep reinforcement 
learning and search. Nature Machine Intelligence, 1(8), pp.356-363.



Long-term planning, meta-heuristics

• Dota 2
• https://openai.com/blog/dota-2/

• Starcraft
• Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A.S., Yeo, M., 

Makhzani, A., Küttler, H., Agapiou, J., Schrittwieser, J. and Quan, J., 2017. 
Starcraft ii: A new challenge for reinforcement learning. arXiv preprint 
arXiv:1708.04782.

• Hierarchical planning
• Wu, B., 2019, July. Hierarchical macro strategy model for moba game ai. In 

Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, pp. 
1206-1213).

https://openai.com/blog/dota-2/


Beyond symbolic cognition: utilities
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Preferences
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Rational preferences

AIMA
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An irrational preference

AIMA
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Maximizing expected utility

AIMA
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Utilities

AIMA



AIMA



AIMA



Beyond symbolic cognition: causality



Principles of causality

• Principles for a causal relation between XY:
• Probabilistic association,
• Temporal asymmetry: X precedes temporally Y,
• (Physical locality)
• Quantitative effect of interventions: dose-effect relation

• necessity (i.e., if the cause is removed, effect is decreased)
• sufficiency (if exposure to cause is increased, effect is increased)

• Counterfactuals:
• Y would not have been occurred with that much probability if Y hadn’t been 

present
• Y would have been occurred with larger probability if X had been present

• Bounded context-sensitivity (~context-free): relevant on average
• Plausible explanation (no alternative based on confounding).

• Duality principle:  rules/mechanisms  vs. observations/interventions.



Beyond symbolic cognition: 
Artificial neural networks (ANN 1.0)



Birth of artificial neural networks (ANNs)
• 1943     McCulloch & Pitts: Boolean circuit model of brain

• 1949 Hebb: Organization of Behaviour: Hebbian learning fire together-wire together

• 1958 Frank Rosenblatt: Perceptron (Mark I Perceptron)

• 1959 Bernard Widrow and Marcian Hoff: (Multiple) ADAptive LINear Elements

• 1960-79 The physical symbol system hypothesis: search

• 1969 Marvin Minsky, Seymour Papert: “Perceptrons”

Credit assignment problem in multilayer perceptrons 1st ANN winter
• (1973 Lighthill report "Artificial Intelligence: A General Survey (?) AI winter

• https://en.wikipedia.org/wiki/Lighthill_report )

https://en.wikipedia.org/wiki/Artificial_neuron

https://en.wikipedia.org/wiki/Linear_separability

The Credit Assignment Problem

The credit assignment problem concerns determining how the 
success of a system’s overall performance is due to the various 
contributions of the system’s components (Minsky, 1963).

Minsky, M. L. (1963). Steps toward artificial intelligence. In E. A. 
Feigenbaum & J. Feldman (Eds.), Computers And Thought (pp. 
406-450). New York, NY: McGraw-Hill. 

http://www.bcp.psych.ualberta.ca/~mike/Pearl_Street/Diction
ary/contents/C/creditassign.html

https://en.wikipedia.org/wiki/Lighthill_report
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Linear_separability
http://www.bcp.psych.ualberta.ca/~mike/Pearl_Street/Dictionary/contents/C/creditassign.html


Connectionism, parallel distributed processing 
ANN 2.0



Development of connectionism: 
the message passing paradigm

• 1969 Marvin Minsky, Seymour Papert: “Perceptrons” (?) NN winter

• 1974 Paul Werbos solved the backward flow of credit assignment (Freud’s work)

• 1979 Kunihiko Fukushima neocognitron precursor for  convolutional neural networks

• 1982 Jon Hopfield recurrent network (Hopfield Net)

• 1985 Ackley, David H; Hinton Geoffrey E; Sejnowski, Terrence J Boltzmann machines

• 1986 Rumelhart, D.E., Hinton, G.E. and McClelland, J.L., 1986. A general framework for parallel distributed processing. Parallel distributed 
processing: Explorations in the microstructure of cognition

• Pearl, J., 1988. 88, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

• 1988 Rumelhart, D.E., Hinton, G.E. and Williams, R.J., 1988. Learning representations by back-propagating errors. Cognitive modeling

• 1989 George Cybenko: universal approximation using sigmoid activation functions

https://en.wikipedia.org/wiki/Artificial_neural_network

The message passing paradigm
(the parallel distributed processing paradigm)

Precursors:
Forward/backward chaining in (Horn) logic
Propagating uncertainty factors

1980-90: PDP, inference in PGMs,…

Now (~2020): network-based propagation paradigm

https://en.wikipedia.org/wiki/Artificial_neural_network


Connectionism and cognitive architecture: pros-cons

Pléh Csaba, 2013. A megismeréstudomány alapjai: az embertől a gépig és vissza. Typotex.

Fodor, J.A. and Pylyshyn, Z.W., 1988. Connectionism and cognitive architecture: A critical analysis. 

Cognition, 28(1-2), pp.3-71.



Statistical complexity: 2nd ANN winter (1988-2006)

• 1974 Vapnik, V. and Chervonenkis, A., Theory of pattern recognition. (in Russian)

• 1989 Blumer, A., Ehrenfeucht, A., Haussler, D. and Warmuth, M.K., Learnability and the 
Vapnik-Chervonenkis dimension. Journal of the ACM (JACM), 36(4), pp.929-965.

• 1990 Haussler, D., Probably approximately correct learning. University of California, 
Santa Cruz, Computer Research Laboratory.

• 1992 Boser, B.E., Guyon, I.M. and Vapnik, V.N., A training algorithm for optimal margin 
classifiers. In Proceedings of the fifth annual workshop on Computational learning 
theory (pp. 144-152). ACM.

• 1996 Devroye, L., Györfi, L. and Lugosi, G., A probabilistic theory of pattern recognition 
springer. New York.

• 1998 Vapnik, V. and Vapnik, V., Statistical learning theory.

Convergence bounds for finite data size (ε accuracy,δ confidence)
sample complexity: Nε,δ   ) |))(Model(|:( NN DErrorDp

+patents at Bell Labs:Y.LeCun
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Kernel technologies



Kernel technologies
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Precursors: 
Reasoning with similarities, case-based resoning,..
universal consistency of 1/k-Nearest Neighbourhood

1, Statistical guarantees for inductive performance
2, Efficient computational complexities



Multiple kernel learning: Multi-aspect intelligence
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Bach, F.R., Lanckriet, G.R. and Jordan, M.I., 2004, July. Multiple kernel learning, conic duality, and the 
SMO algorithm. In Proceedings of the twenty-first international conference on Machine learning (p. 6). 
ACM.



Knowledge-based artificial neural networks
(precursor for ANN 3.0)



Learning with prior knowledge

Expected 
error

Sample size
Medium
(human-level)

Large
(~asymptotic)

1, 2,

3,

1, Initial error

2, Learning rate

3, Asymptotic error



Knowledge-based artificial neural networks
• 1993 Abu-Mostafa,Y.S.: Hints and the VC Dimension, Neural Computation, 5, 278-288

• 1994 Towell, G.G. and Shavlik, J.W., 1994. Knowledge-based artificial neural networks. 
Artificial intelligence, 70(1-2), pp.119-165.

• 1995 Opitz,D.W.&J.W.Shavlik:Dynamically Adding Symbolically Meaningful Nodes to 
Knowledge-Based Neural Networks, Knowledge-Based Systems, 8(6):301-311

• 1995 P.Myllymaki. Mapping Bayesian Networks to Stochastic Neural Networks: A 
Foundation for Hybrid Bayesian-Neural systems. Ph.D. dissertation, University of 
Helsinki, No. A-1995-1, 1995

• 1998 P. Niyogi, T. Poggio, and F. Girosi. Incorporating prior information in machine 
learning by creating virtual examples. Proceedings of the IEEE, 86(11):2196–2209

• 1998 P. Antal. Applicability of prior domain knowledge formalised as Bayesian
network in the process of construction of a classifier. In Proc. of the 24th Annual Conf. 
of the IEEE Industrial Electronic Society (IECON ’98), pages 2527–2531

• 2000 P. Antal, G. Fannes, H. Verrelst, B. De Moor, and J. Vandewalle. Incorporation of 
prior knowledge in black-box models: Comparison of transformation methods from 
Bayesian network to multilayer perceptrons. In Workshop on Fusion of Domain 
Knowledge with Data for Decision Support, 16th Uncertainty in Artificial Intelligence 
Conference, pages 42–48,

• 2000 I. Cloete and J. M. Zurada. Knowledge-Based Neurocomputing. MIT Press, 
Cambridge, MA, 2000

• 2003 P. Antal, G. Fannes, Y. Moreau, and B. De Moor. Bayesian applications of belief 
networks and multilayer perceptrons for ovarian tumor classification with rejection. 
Artificial Intelligence in Medicine, 29:39–60
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P. Antal, G. Fannes, D. Timmerman, Y. Moreau, B. De Moor: Bayesian Applications of Belief 
Networks and Multilayer Perceptrons for Ovarian Tumor Classification with Rejection, 
Artificial Intelligence in Medicine, vol. 29, pp 39-60, 2003



Deep learning
(Artificial neural networks 2.0++)



Return of ANNs as deep learning: 2006<

• 2006 - Hinton, Osindero, Yee-Whye Teh: A fast learning algorithm for deep belief nets
• Learning by layers then global refinement

• 2010, Glorot, Bengio: Understanding the difficulty of training deep feedforward neural 
networks

• Novel transfer function: ReLU, 

• Novel parameter initialization

• 2011 - Mohamed, A. R., Sainath, T. N., Dahl, G., Ramabhadran, B., Hinton, G. E., & 
Picheny, M. (2011, May). Deep belief networks using discriminative features for phone 
recognition.

• GPUs (x10-x100 speed-up)

• 2011 - Google Brain
• The work resulted in unsupervised neural net learning of an unprecedented scale - 16,000 CPU cores 

powering the learning of a whopping 1 billion weights

• 2012/14/15: AlexNet (8),GoogLeNet(22), ResNet(152 hidden layer)



ANN learning in 1986 vs. in 2006

1. Our labeled datasets were thousands of times too small.

2. Our computers were millions of times too slow.

3. We initialized the weights in a stupid way.

4. We used the wrong type of non-linearity.

LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. Nature, 521(7553), p.436.

https://en.wikipedia.org/wiki/Lasso_(statistics)

[L1/Lasso, parameter sharing (convolutional nets, long short-term memory), dropout, SGD/momentum/…/ADAM,..]

https://towardsdatascience.com/simplifi
ed-math-behind-dropout-in-deep-
learning-6d50f3f47275

https://bl.ocks.org/EmilienDupont/aaf4
29be5705b219aaaf8d691e27ca87

http://ruder.io/optimizing-gradient-
descent/

https://imgur.com/a/Hqolp#2dKCQHh

https://en.wikipedia.org/wiki/Lasso_(statistics)
https://towardsdatascience.com/simplified-math-behind-dropout-in-deep-learning-6d50f3f47275
https://bl.ocks.org/EmilienDupont/aaf429be5705b219aaaf8d691e27ca87
http://ruder.io/optimizing-gradient-descent/


Deep learning problems (3rd ANN winter?)

1. Deep learning thus far is data hungry

2. Deep learning thus far is shallow and has limited capacity for transfer

3. Deep learning thus far has no natural way to deal with hierarchical structure

4. Deep learning thus far has struggled with open-ended inference

5. Deep learning thus far is not sufficiently transparent
6. Deep learning thus far has not been well integrated with prior knowledge

7. Deep learning thus far cannot inherently distinguish causation from correlation

8. Deep learning presumes a largely stable world, in ways that may be problematic
9. Deep learning thus far works well as an approximation, but its answers often 

cannot be fully trusted

10. Deep learning thus far is difficult to engineer with

Marcus, G., 2018. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631.



AGI-inspired ANNs
(ANNs 3.0)



Large-scale data for inferring-learning 
commonsense knowledge?

https://mosaic.allenai.org/projects/mosaic-commonsense-benchmarks
SWAG: A Large-Scale Adversarial Dataset for Grounded Commonsense Inference
Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi • EMNLP • 2018 

https://mosaic.allenai.org/projects/mosaic-commonsense-benchmarks
https://www.semanticscholar.org/paper/SWAG:-A-Large-Scale-Adversarial-Dataset-for-Zellers-Bisk/06c137bffcad7376d5cb4a5f269e2fb88b715647


Sources for commonsense knowledge

• Emails („free” service providers)

• Chats („free” service providers)

• Everyday conversations (Siri, Alexa)

• Wearable electronics, basic physiological data (quantified self)…

• Decoding the inner speech/Thoughts-to-speech
• Moses, D.A., Leonard, M.K., Makin, J.G. and Chang, E.F., 2019. Real-time 

decoding of question-and-answer speech dialogue using human cortical 
activity. Nature communications, 10(1), pp.1-14.

• Anumanchipalli, G.K., Chartier, J. and Chang, E.F., 2019. Speech synthesis from 
neural decoding of spoken sentences. Nature, 568(7753), p.493.

+Federated learning



Beyond standard learning

• Learning with prior knowledge

• Sequential/online learning

• Reinforcement learning

• Multitask learning

• Transfer learning
• Budgeted learning

• Active learning

• One-shot learning
• Federated learning

• …

• (Machine teaching)



Hilbert's twenty-three problems

https://en.wikipedia.org/wiki/Hilbert’s_problems

https://en.wikipedia.org/wiki/Hilbert’s_problems


Smale's problems

https://en.wikipedia.org/wiki/Smale’s_problems



Smale’s 18th problem: Limits of intelligence

• Penrose (1991) attempts to show some limitations of artificial intelligence. Involved in his argumentation is the interesting question, "is the 
Mandelbrot set decidable?" (see problem 14) and implications of the Gödel incompleteness theorem. 

• However a broader study is called for, one which involves deeper models of the brain, and of the computer, in a search of what artificial and human 
intelligence have in common,and how they differ. 

• This project requires the development of a mathematical model of intelligence, with variations to take into account the differences between kinds of 
intelligence. 

• It is useful to realize that there can be no unique model. Even in physics which is more clearly defined, one has classical mechanics, quantum 
mechanics, and relativity theory, each yielding its own insights and understandings and each with its own limitations. Models are idealizations with 
drastic simplifications which capture main truths. 

• An important part of intelligent activity is problem solving. For this one has a traditional model, the Turing machine, as well as a newer machine which 
processes real numbers (see BCSS), referred to previously in problem 3. The Turing machine has been accepted as a reasonable model for the digital 
computer. We have argued for the alternative real number machine as a more appropriate model for the digital computer's use in scientic 
computation and in situations where arithmetic operations dominate (the Manifesto as reprinted as Chapter 1 of BCSS). Such mathematical models 
for human intelligence are less developed. 

• There is one example of a general problem that comes to the forefront; that is the problem of equation solving for polynomial systems, over some 
field of numbers. The real numbers with inequalities are an important special case of this problem. Artificial intelligence hasencountered it in its study 
of robotics. Moreover, over any field, equation solving possesses a universality in a formal mathematical sense in the theory of NP completeness. 

• One might ask, is there a form of intelligence that can solve general systems of polynomial equations. This problem is anticipated by the previous 
problems 3 and 17. 

• The use of the Turing machine versus its real counterpart is a manifestation of the age old conflict between the discrete and the continuous. I 
believe that the real number machine is the more important of the two for understanding the problem solving limitations of humans. ….



Towards hybrid systems:
Neural Turing Machines

Graves, A., Wayne, G. and Danihelka, I., 2014. Neural turing machines. arXiv preprint arXiv:1410.5401.
Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., Colmenarejo, S.G., Grefenstette, E., 
Ramalho, T., Agapiou, J. and Badia, A.P., 2016. Hybrid computing using a neural network with dynamic external 
memory. Nature, 538(7626), p.471.



Neuroscience-Inspired Artificial Intelligence

Hassabis, D., Kumaran, D., Summerfield, C. and Botvinick, M., 2017. Neuroscience-inspired artificial 

intelligence. Neuron, 95(2), pp.245-258.



Using neuroscience to develop artificial intelligence

Ullman, S., 2019. Using neuroscience to develop artificial intelligence. Science, 363(6428), pp.692-693.

Complexity of structure
• Evolution x100m years 10years
• Development 9 months (~25 years) 1sec
• Learning(&Development) experimenting~25 years (+9m) days (<weeks)
• Information content DNA+epigenetics+nature(!!!) xGB
• Computational model nature(!!!) UTM



Summary

• Cognitive science
• Cognitive architectures
• Criticisms

• Symbols, values, causality

• The connectionist approach
• Connectionism/artificial neural networks (ANN 1.0): 1943-1969

• ANN „winter” 1.0
• Parallel distributed processing (ANN 2.0): 1974-1988

• ANN „winter” 2.0
• Knowledge-based neurocomputing

• Deep learning (ANN 2.0++): 2006-
• Limits of deep ANNs

• Neuroinspired-AI (ANN 3.0)

• Next: the neurobiological substrate



Heuristics



A.I. Uninformed search 72 10/11/2019

Problem solving with search

• A problem is defined by:
• An initial state, e.g. Arad

• Successor function S(X)= set of action-state pairs

• e.g. S(Arad)={<Arad  Zerind, Zerind>,…}

intial state + successor function = state space

• Goal test, can be

• Explicit, e.g. x=‘at bucharest’

• Implicit, e.g. checkmate(x)

• Path cost (additive)

• e.g. sum of distances, number of actions executed, …

• c(x,a,y) is the step cost, assumed to be >= 0

A solution is a sequence of actions from initial to goal state.

Optimal solution has the lowest path cost.

AIMA



• General approach of informed search:
• Best-first search: node is selected for expansion based on an evaluation function f(n) in TREE-

SEARCH().

• Idea: evaluation function measures distance to the goal. 
• Choose node which appears best

• Implementation:
• fringe is queue sorted in decreasing order of desirability.

• Special cases: greedy search, A* search

10/11/2019 A.I. 73

Best-first search



• [dictionary]“A rule of thumb, simplification, or educated  guess that 
reduces or limits the search for solutions in  domains that are difficult 
and poorly understood.”
• h(n) = estimated cost of the cheapest path from node n to goal node.

• If n is goal then h(n)=0

10/11/2019 A.I. 74

A heuristic function



• Best-known form of best-first search.

• Idea: avoid expanding paths that are already expensive.

• Evaluation function f(n)=g(n) + h(n)
• g(n) the cost (so far) to reach the node.

• h(n) estimated cost to get from the node to the closest goal.

• f(n) estimated total cost of path through n to goal. 

10/11/2019 A.I. 75

A* search



• A* search uses an admissible heuristic 
• A heuristic is admissible if it never overestimates the cost to reach the goal

(~optimistic).

Formally: 

1. h(n) <= h*(n) where h*(n) is the true cost from n

2. h(n) >= 0 so h(G)=0 for any goal G.

e.g. hSLD(n) never overestimates the actual road distance

Theorem: If h(n) is admissible, A* using BEST-FIRST-SEARCH() with selector function 
f(n)=h(n) is optimal.

10/11/2019 A.I. 76

A* search



Optimality of A*(standard proof)

• Suppose a suboptimal goal G2 in the queue.

• Let n be an unexpanded node on a shortest to optimal goal G.
f(G2 ) = g(G2 ) since h(G2 )=0

> g(G) since G2 is suboptimal
>= f(n) since h is admissible

Since f(G2) > f(n), A* will never select G2 for expansion (i.e. for checking, but note 
that G2 can be inside the queue).

A.I. 7710/11/2019



• A heuristic is consistent if

• If h is consistent, we have

i.e. f(n) is non-decreasing along any path.

Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

10/11/2019 A.I. 78

Consistency 



h(n)  c(n,a,n') h(n')



f (n')  g(n')  h(n')

 g(n)  c(n,a,n')  h(n')

 g(n)  h(n)

 f (n)



Optimality of A*(more usefull)

• A* expands nodes in order of increasing f value

• Contours can be drawn in state space
• Uniform-cost search adds circles.

• F-contours are gradually

Added: 

1) nodes with f(n)<C*

2) Some nodes on the goal

Contour (f(n)=C*).

Contour i has all nodes 

with f=fi, where fi < fi+1.

A.I. 7910/11/2019



• Completeness: YES
• Since bands of increasing f are added

• Unless there are infinitly many nodes with f<f(G)

10/11/2019 A.I. 80

A* search, evaluation



• Completeness: YES

• Time complexity:
• Number of nodes expanded is still exponential in the length of the solution.

10/11/2019 A.I. 81

A* search, evaluation



• Completeness: YES

• Time complexity: (exponential with path length)

• Space complexity:
• It keeps all generated nodes in memory

• Hence space is the major problem not time

10/11/2019 A.I. 82

A* search, evaluation



• Completeness: YES

• Time complexity: (exponential with path length)

• Space complexity:(all nodes are stored)

• Optimality: YES
• Cannot expand fi+1 until fi is finished.

• A* expands all nodes with f(n)< C*

• A* expands some nodes with f(n)=C*

• A* expands no nodes with f(n)>C*

Also optimally efficient (not including ties)

10/11/2019 A.I. 83

A* search, evaluation



Heuristic functions

• E.g for the 8-puzzle
• Avg. solution cost is about 22 steps (branching factor +/- 3)

• Exhaustive search to depth 22: 3.1 x 1010 states.

• A good heuristic function can reduce the search process.

A.I. 8410/11/2019



Heuristic functions

• E.g for the 8-puzzle knows two commonly used heuristics

• h1 = the number of misplaced tiles
• h1(s)=8

• h2 = the sum of the distances of the tiles from their goal positions (manhattan distance). 
• h2(s)=3+1+2+2+2+3+3+2=18

A.I. 8510/11/2019



• Effective branching factor b*
• Is the branching factor that a uniform tree of depth d would have in order to 

contain N+1 nodes.

• Measure is fairly constant for sufficiently hard problems.
• Can thus provide a good guide to the heuristic’s overall usefulness.

• A good value of b* is 1.

10/11/2019 A.I. 86

Heuristic quality



N 11 b*(b*) 2  ... (b*) d



• Admissible heuristics can be derived from the exact solution cost of a 
relaxed version of the problem:
• Relaxed 8-puzzle for h1 : a tile can move anywhere

As a result, h1(n) gives the shortest solution

• Relaxed 8-puzzle for h2 : a tile can move to any adjacent square.

As a result, h2(n) gives the shortest solution.

The optimal solution cost of a relaxed problem is no greater than the optimal 
solution cost of the real problem.

ABSolver found a useful heuristic for the Rubic cube.

10/11/2019 A.I. 87

Inventing admissible heuristics



Inventing admissible heuristics

• Admissible heuristics can also be derived from the solution cost of a subproblem of a given 
problem.

• This cost is a lower bound on the cost of the real problem.

• Pattern databases store the exact solution for every possible subproblem instance.
• The complete heuristic is constructed using the patterns in the DB

A.I. 8810/11/2019



• Another way to find an admissible heuristic is through learning from 
experience:
• Experience = solving lots of 8-puzzles

• An inductive learning algorithm can be used to predict costs for other states 
that arise during search. 

10/11/2019 A.I. 89

Inventing admissible heuristics

Prieditis: Machine Discovery of Effective Admissible Heuristics, 1993



• 1200 random problems with solution lengths from 2 to 24.

• If h2(n) >= h1(n) for all n (both admissible)

then h2 dominates h1 and is better for search

10/11/2019 A.I. 90

Heuristic quality and dominance


