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Agenda

* Resources
* Examples for the phases/paradigms of Al

* logic&search, } Symbolic

* (understandable/white-box) expert systems, Versus

 black-box learning non-symbolic
* Strong Al

 Superintelligence/singularity: intelligence explosion
 What Al already gave us:

 rational models of (narrow) intelligence
* broad range of theories and technologies
 collaboration: open AGI



Resources



AGI resources: books

e Russell, Stuart J., and Peter Norvig. Artificial intelligence: a modern
approach. 1st< edition

* http://aima.cs.berkeley.edu/
* http://project.mit.bme.hu/mi almanach/

* Artificial general intelligence. Ed. Goertzel, Ben., Cassio Pennachin.
Vol. 2. New York: Springer, 2007.

* Goertzel, Ben. The AGI Revolution: An Inside View of the Rise of
Artificial General Intelligence. Humanity+ Press, 2016.


http://aima.cs.berkeley.edu/
http://project.mit.bme.hu/mi_almanach/

AGI| resources: societies, conferences

* AGI Society (Artificial General Intelligence, AGlI)
e http://www.agi-society.org/

* AGI conferences 2008..2019

e https://en.wikipedia.org/wiki/Conference on Artificial General Intelligence
e 2008: AGI-08 Workshop on the Sociocultural, Ethical and Futurological
Implications of Artificial General Intelligence
* http://agi-conf.org/2008/workshop/

* http://agi-conf.org/2019/



http://www.agi-society.org/
https://en.wikipedia.org/wiki/Conference_on_Artificial_General_Intelligence
http://agi-conf.org/2008/workshop/
http://agi-conf.org/2019/

AGI| resources: courses

 MIT 6.5099: Artificial General Intelligence
e https://agi.mit.edu/

e CS 294-149: Safety and Control for Artificial General Intelligence (Fall
2018)

* https://inst.eecs.berkeley.edu/~cs294-149/fal18/



https://agi.mit.edu/
https://inst.eecs.berkeley.edu/~cs294-149/fa18/

AGI resources: podcasts

* Lex Friedman: MIT 6.5099: Artificial General Intelligence
e https://agi.mit.edu/

e Sean Carroll's Mindscape Podcast
* http://www.preposterousuniverse.com/podcast/

https://samharris.org/podcast/

* PLAN: voting for podcasts!


https://agi.mit.edu/
http://www.preposterousuniverse.com/podcast/
https://samharris.org/podcast/

Resources: your background

* Mentimeter

 Earlier Al courses
* None, without engineering BSc/MSc
* Nothing specific, but with engineering background
* Partial BSc-level Al
e BSc-level Al
* MSc-level Al: Decision support, Statistics, Machine learning
* PhD-level Al

* Expectations



Phases/paradigms of Al: symbolic Al



Al as “symbol manipulation”

* The Logic Theorist, 1955

* =» see lectures on logic
 The Dartmouth conference ("birth of Al”, 1956)
 List processing (Information Processing Language, IPL)

* Means-ends analysis ("reasoning as search")
* =» see lectures on planning

* The General Problem Solver

* Heuristics to limit the search space
 =» see lecture on informed search

* The physical symbol systems hypothesis
* intelligent behavior can be reduced to/emulated by symbol manipulation

* The unified theory of cognition (1990, cognitive architectures: Soar, ACT-R)

* Newel&Simon: Computer science as empirical inquiry: symbols and search, 1975



Problem formulation

* A problem is defined by:
* Aninitial state, e.g. Arad
e Successor function S(X)= set of action-state pairs
* e.g. S(Arad)={<Arad — Zerind, Zerind>,...}
intial state + successor function = state space
* Goal test, can be

* Explicit, e.g. x="at bucharest’
* Implicit, e.g. checkmate(x)
* Path cost (additive)
e e.g. sum of distances, number of actions executed, ...
* c(x,a,y)is the step cost, assumed to be >=0

A solution is a sequence of actions from initial to goal state.
Optimal solution has the lowest path cost.

A.l. Uninformed search 11 AIMA 9/18/2019



lterative deepening search

e What?

* A general strategy to find best depth limit /.
* Goals is found at depth d, the depth of the shallowest goal-node.

e Often used in combination with DF-search

e Combines benefits of DF- en BF-search

AIMA



lterative deepening search

function ITERATIVE_DEEPENING_SEARCH(problem) return a solution or failure
inputs: problem
for depth «~ 0 to = do

result < DEPTH-LIMITED_SEARCH(problem, depth)

if result #cuttoff then return result

AIMA



|ID-search, example

e Limit=0

9/18/2019

A.l. Uninformed search

AIMA
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|ID-search, example

e Limit=1
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9/18/2019 A.l. Uninformed search AIMA
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|ID-search, example

 Limit=2

9/18/2019 A.l. Uninformed search AIMA
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|ID-search, example

e Limit=3

O

-

AR LR
Sn T dn

ol

9/18/2019 A.l. Uninformed search

AIMA
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ID search, evaluation

 Completeness:
* YES (no infinite paths)

AIMA



ID search, evaluation

 Completeness:
* YES (no infinite paths)

* Time complexity:

* Algorithm seems costly due to repeated generation of certain states.

* Node generation:
* level d: once
* level d-1: 2
* level d-2:3

e level 2: d-1
e level 1: d

O(b")
N(UIDS) =(d)b+(d-1Db” + ...+ (1)b*
N(BFS)=b+b*+ ..+ b* + (""" —b)

Num. Comparison for b=10 and d=>5 solution at far right
N(IDS)=50+400+3000+20000+100000=123450

N(BFS)=10+100+1000+10000+100000+999990=1111100
AIMA



ID search, evaluation

 Completeness: ]
* YES (no infinite paths) O(b )

* Time complexity: Abd)

* Space complexity:
e Cfr. depth-first search

AIMA



ID search, evaluation

 Completeness: ]
* YES (no infinite paths) O(b )

* Time complexity: O(bd)
* Space complexity:
* Optimality:

* YES if step cost is 1.
* Can be extended to iterative lengthening search

e« Same idea as uniform-cost search
* |ncreases overhead.

AIMA



Summary of algorithms

Criterion Breadth- Uniform- Depth-First Depth- Iterative Bidirectional
First cost limited deepening search
Complete? YES* YES* NO YES, YES YES*
ifl>d
Time pd+1 pC*/e pm b pd a2
Space pd+1 pC*le bm bl bd /2
Optimal? YES* YES* NO NO YES YES

AIMA




he Cyc project (1984-2016)

Goal: common sense

Estimations in 1984:
e 250 000 rules
* 350 man-year

Language: CyclL
Access: OpenCyc

Current state
* 239,000 concept
e 2,093,000 facts

!
}nr:'.ﬂn:'ble Individual

Sets
Relations
Collections

Physcal
Objects
Materials
Parts & Actors &
Statics Actions Organization

Agents

State
st Living Change Plans & Types ot

Goography Things Dynamics Goals Omganizational grganization

Chemis Sentient Physical Oraanizational Human Political
2 Beings Ecology Agén;s o g Activitis Geography

Human »
Physical Politics & Natons
Artifacts Emation, anutoeny & Plants 3 Warefare Gove mments
Petception Physiclogy Animals Law Business and
& Boliof Conceptual & Commerce P‘n‘. rchasing Qeopolics
Astronomy Works Shopping
Products &
Devices

Human Soclal Sports .
Literature & Behavior Behavi Recreation & Professions
Eorth & Works of Ant & Actons our Entertamnment Occupations 3
Solar Software + - Everyday
Vehic k i < Transportaiton ravel Liviny
Systom Vel ; ';,’ &l' dings Mechanica & Social Relations REOUR & Logistics Communicaton «
Weapont  giectrical Devices  Language & Culture Activities - ;

Domain-Specific Knowledge
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Phases/paradigms of Al: expert Al



Optimal decision: decision theory
probability theory+utility theory

e Decision situation:

* Actions a.
|
* Outcomes 0.
* Probabilities of outcomes (
o> p(o; | &)
» Utilities/losses of outcomes
 Maximum Expected Utility U (Oj | ai)

Principle (MEU)

e Best action is the one with
maximum expected utility

EU(ai):ZjU(Oj |ai)p(oj |ai)
a*=argmax. EU (a.)

Actions g, Outcomes Probabilities  Utilities, costs  Expected utilities

P(o;|a)) U(o), C(a)) } EU(a) = 3 P(o;]a)U(o))
N : ’ '
9



Decision networks

Antal, P.,, Fannes, G., Timmerman, D., Moreau, Y. and De Moor, B., 2004. Using literature and data to learn
Bayesian networks as clinical models of ovarian tumors. Artificial Intelligence in medicine, 30(3), pp.257-281.



Phases/paradigms of Al: machine learning



Inductive learning

e Simplest form: learn a function from examples

fis the
An is a pair (x, f(x))
Problem: find a h
suchthat h=f
given a of examples

(This is a highly simplified model of real learning:
* lgnores prior knowledge
* Assumes examples are given)

AIMA



Inductive learning method

Construct/adjust h to agree with f on training set

e (his if it agrees with f on all examples)

E.g., curve fitting:  fix)
'

AIMA



Inductive learning method

Construct/adjust h to agree with f on training set

(his if it agrees with f on all examples)

E.g., curve fitting:  fix)
A
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Inductive learning method

Construct/adjust h to agree with f on training set

e (his if it agrees with f on all examples)
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Inductive learning method

Construct/adjust h to agree with f on training set

e (his if it agrees with f on all examples)

E.g., curve fitting: fr.‘:}

AIMA



Inductive learning method

» Construct/adjust h to agree with f on training set

e (his if it agrees with f on all examples)
(x)
e E.g., curve fifcfing:
_-"""ﬁ
<l
T..-ﬁ":?
W\ M

AIMA



Inductive learning method

Construct/adjust h to agree with f on training set
e (his if it agrees with f on all examples)

‘,F
..-""H

ﬂﬁ# I
_F_ﬁf/ \/

E.g., curve fitfing:
'

* Ockham’s razor: prefer the simplest hypothesis consistent with data
AIMA



Phases/paradigms of Al:
learning with background knowledge



Informed neural networks

JQuantitative
models

s

Classification Probability prediction Credible region

P. Antal, G. Fannes, D. Timmerman, Y. Moreau, B. De Moor: Bayesian Applications of Belief Networks and Multilayer Perceptrons for Ovarian Tumor Classification with
Rejection, Artificial Intelligence in Medicine, vol. 29, pp 39-60, 2003

P. Antal, G. Fannes, H. Verrelst, B. De Moor, J Vandewalle: Incorporation of prior knowledge in black-box models: Comparison of Transformation Methods from
Bayesian Network to Multilayer Perceptrons, in Working notes of the Fusion of Domain Knowledge with Data for Decision Support workshop, The Sixteenth
Conference on Uncertainty in Artificial Intelligence (UAI-2000), June 30, 2000, Stanford University, pp. 11-16

Antal, P. et al. (2000). How might we combine the information we know about a mass better? In Proc. of the 1st Montecarlo Conference on updates in Gynaecology (MCG)
(pp. 1-3).

Timmerman, D. (2004). The use of mathematical models to evaluate pelvic masses; can they beat an expert operator?. Best Practice & Research Clinical Obstetrics &
Gynaecology, 18(1), 91-104.



Phases/paradigms of Al:
explanation generation



Evidence-based, explainable Al

0.)uni-g[1.;1.)Jmulti[2.;2.)Jmulti-s[3.;3.]solid[4.;4.]

Annotation for the variable Locularity

OﬂtOlOgy i""'""':"""'“i E Populati |

1. multilocular with solid component (a

——————————————————————————

k ] J multilocular cyst with a measurable solid
i Vol 1 commponett or at least one papillary
W ascularizati i : N structure)

ok I Cancel |

——————————————————

'
———————————

Decision network

R

Free text explanation

3

Antal, P., Mészaros, T., De Moor, B., & Dobrowiecki, T. (2001). Annotated Bayesian Networks: a tool to integrate

textual and probabilistic medical knowledge. In Proceedings 14th IEEE Symposium on Computer-Based Medical
Systems. CBMS 2001 (pp. 177-182).
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Phases/paradigms of Al:
strong Al



Strong Al, zombie arguments

e Simulation and tests for reality (~testing outside from inside)
* ~BC300: Zhuangzi's (Chuang-Tzu's), Butterfly Dream
e ~1700: G.Berkeley, subjective idealism
* Movies: Matrix, Inception,...
* .. N. Bostrom: https://en.wikipedia.org/wiki/Simulation hypothesis
* A. Becker: What Is Real?: The Unfinished Quest for the Meaning of Quantum Physics

e Simulation and tests for human mind (~testing inside)
* Experience: any formally defined (discrete) computation is a program on a universal Turing machine.
* Experience: any (narrow) intelligence can have a functionally equivalent computational model.

e Zombie arguments:
* Assumption: there are (discrete) computational models for conscious minds.
* Paradox: any execution using arbitrary substrate and realization will give rise to qualia/consciousness.
e Example: Chinese room (using epiphenomenal patterns in a cellular automaton, see next slide)
* https://en.wikipedia.org/wiki/Philosophical zombie

e Reductionism, emergence, downward causation,..



https://en.wikipedia.org/wiki/Simulation_hypothesis
https://en.wikipedia.org/wiki/Philosophical_zombie

Universal compution in cellular automatons
using epiphenomenal patterns

 Von Neumann, J. and A. W. Burks (1966): Theory of self-reproducing automata

Generation=0 Population=25



http://en.wikipedia.org/wiki/File:VonNeumann_CA_demo.gif
http://en.wikipedia.org/wiki/File:VonNeumann_CA_demo.gif
http://upload.wikimedia.org/wikipedia/commons/d/d0/Color_coded_racetrack_large_channel.gif
http://upload.wikimedia.org/wikipedia/commons/d/d0/Color_coded_racetrack_large_channel.gif
http://upload.wikimedia.org/wikipedia/commons/e/e6/Conways_game_of_life_breeder_animation.gif
http://upload.wikimedia.org/wikipedia/commons/e/e6/Conways_game_of_life_breeder_animation.gif

Phases/paradigms of Al:
singularity



Intelligence explosion, ,singularity”

,Let an ultraintelligent machine be defined as a machine that can far
surpass all the intellectual activities of any man however clever. Since
the design of machines is one of these intellectual activities, an
ultraintelligent machine could design even better machines; there
would then unquestionably be an ‘intelligence explosion,” and the
intelligence of man would be left far behind. Thus the first
ultraintelligent machine is the last invention that man need ever make,
provided that the machine is docile enough to tell us how to keep it
under control.” Good (1965),



https://en.wikipedia.org/wiki/Intelligence_explosion#CITEREFGood1965
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Al: computational power, data, methods, money
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Chart 1.1 Artificial Intelligence Revenue, World Markets: 2016-2025
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https://en.wikipedia.org/wiki/10_%C2%B5m_process
https://en.wikipedia.org/wiki/6_%C2%B5m_process
https://en.wikipedia.org/wiki/3_%C2%B5m_process
https://en.wikipedia.org/wiki/1.5_%C2%B5m_process
https://en.wikipedia.org/wiki/1_%C2%B5m_process
https://en.wikipedia.org/wiki/800_nanometer
https://en.wikipedia.org/wiki/600_nanometer
https://en.wikipedia.org/wiki/350_nanometer
https://en.wikipedia.org/wiki/250_nanometer
https://en.wikipedia.org/wiki/180_nanometer
https://en.wikipedia.org/wiki/130_nanometer
https://en.wikipedia.org/wiki/90_nanometer
https://en.wikipedia.org/wiki/65_nanometer
https://en.wikipedia.org/wiki/45_nanometer
https://en.wikipedia.org/wiki/32_nanometer
https://en.wikipedia.org/wiki/22_nanometer
https://en.wikipedia.org/wiki/14_nanometer
https://en.wikipedia.org/wiki/10_nanometer
https://en.wikipedia.org/wiki/7_nanometer

Feedback, self-improving Al

* Chip design and production (optimal wiring, ...fault diagnosis)
* Al environments (TensorFlow, fastAl,...)

e Compiler technologies (GPUs...)

* Active learning



Artificial general/super intelligence,

* Narrow Al:

* In any well-defined task Al will
beat human performance

* Human-level Al

* Beyond human-level AU

System capability

duration

Mow Takeoff (-2075)
(~2045)

Mote: Al is artificial intelligence, ASl is artificial superintelligence, and AGI is artificial general intelligence,
Sources: WaitButWhy.com, Nick Bostrom, Superintelligence: Paths, Dangers, Strategies; AT. Kearney analysis



Mesterséges Altalanos Intelligencia (MAI)

* MI dimenzidk
* Teljesitményszintek: jelolt, halado, mester, nagymester

 Szlik (narrow) versus altalanos (general) intelligencia
e Jézan ész (common sense), naiv fizika,...

* MAI — Emberkdzpontu megkozelités « MAI — Racionalis megkozelités

e The Turing Test (Turing) * Egységes elmélet

* The Coffee Test (Wozniak) * K6z0s alap MSZI-k szdmara

* The Robot College Student Test (Goertzel) * Hordozhatd intelligencia, analdgikus
 The Employment Test (Nilsson) gondolkodas, kreativitas,..

* The flat pack furniture test (Severyns) ' ' '




Pharma productivity gap:
explosion in resources only!
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Figure 1| Novel FDA approvals since 1993. New molecular entities TABLE 1). Approvals by the Center for Biologics Evaluation and Research
(NMEs) and biologics licence applications (BLAs) approved by the (CBER) are not included in this drug count (see TABLE 3). Data are from
Center for Drug Evaluation and Research (CDER) since 1993 (see also Drugs@FDA.

Mullard, A., 2017. 2016 FDA drug approvals. Nature Reviews Drug Discovery, 16(2),
pp.73-76.



Data: Big data in life sciences

Healthcare Industry is dealing with data overload

Exogenous data
(Behavior, Socio-economic, Environmental, ..

6000 of determinants of health = s 1 1 OO Terabytes
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Free text knowledge: publications, patents
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WHY CAN'T MY COMPUTER UNDERSTAND ME?
(COMMON SENSE???7?)

9/18/2019 G()ugle Can an alligator run the hundred-metre hurdles? & “ >4/x




Paradox of Al: solved = trivial (~not intelligent)



What have they [ROMANS] ever given us [in return]?!

XERXES: The aqueduct? W h at ’] ave ro m a n S

REG: What?

XERXES: The aqueduct. eve r g Ve n u S ? !

REG: Oh. Yeah, yeah. They did give us that. Uh, that's true. Yeah.

COMMANDO #3: And the sanitation.

LORETTA: Oh, yeah, the sanitation, Reg. Remember what the city used to be like?

REG: Yeah. All right. I'll grant you the aqueduct and the sanitation are two things that the Romans have done.

MATTHIAS: And the roads.

REG: Well, yeah. Obviously the roads. | mean, the roads go without saying, don't they? But apart from the sanitation, the aqueduct, and the roads--
COMMANDO: Irrigation.

XERXES: Medicine.

COMMANDOS: Huh? Heh? Huh...

COMMANDO #2: Education.

COMMANDOS: Ohh...

REG: Yeah, yeah. All right. Fair enough.

COMMANDO #1: And the wine.

COMMANDOS: Oh, yes. Yeah...

FRANCIS: Yeah. Yeah, that's something we'd really miss, Reg, if the Romans left. Huh.

COMMANDO: Public baths.

LORETTA: And it's safe to walk in the streets at night now, Reg.

FRANCIS: Yeah, they certainly know how to keep order. Let's face it. They're the only ones who could in a place like this.

COMMANDOS: Hehh, heh. Heh heh heh heh heh heh heh.

REG: All right, but apart from the sanitation, the medicine, education, wine, public order, irrigation, roads, a fresh water system, and public health, what have the Romans ever done for us?
XERXES: Brought peace.

REG: Oh. Peace? Shut up! http://montypython.50webs.com/scripts/Life of Brian/10.htm



http://montypython.50webs.com/scripts/Life_of_Brian/10.htm

What have Al ever given us?

e Search methods: internet search, route finding

* Logic: software testing

* Linguistics: [real-time] translation, compiler technologies
* Decision theory: expert systems

* Game theory: economics, computer games

* Recommendation systems: web shops, movies,..

* Unbiased uncertain reasoning methods: human biases

* Machine learning: funtion approximation, online learning
e Causality research

* Collaboration: open AGI



Phases/paradigms of Al:
open Al research



Open AGlI: collaboration

* Linked Open Data (LOD)

* Open collaborative environments

* openAl

* https://openai.com/
 fastAl

* https://www.fast.ai/

* Open society

* Ethics guidelines for trustworthy Al
* https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai



https://openai.com/
https://www.fast.ai/
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai

Phases/paradigms of Al:
ethics for Al, existential risk



Intelligent decisions:
the trolley problem

e [Recall: self-driving cars]

* There is a runaway trolley barreling down the railway tracks. Ahead, on the tracks, there are five people tied
up and unable to move. The trolley is headed straight for them. You are standing some distance off in the
train yard, next to a lever. If you pull this lever, the trolley will switch to a different set of tracks. However,

you notice that there is one person on the side track. You have two options:
* (1) Do nothing, and the trolley kills the five people on the main track.
* (2) Pull the lever, diverting the trolley onto the side track where it will kill one person.

Which is the most ethical choice?
[../wiki/Trolley _problem]
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https://en.wikipedia.org/wiki/Tram
https://en.wikipedia.org/wiki/Track_(rail_transport)

AGI: ethical/moral dilemmas

* Mass unemployment.
 Safety Al/provably beneficial/trustworthy Al.
* The value alignment problem.

* Political/civilization-level risk.

e Social credit systems.
* https://en.wikipedia.org/wiki/Social Credit System

e Existential risk.

Leben, D., 2018. Ethics for robots: How to design a moral algorithm. Routledge.


https://en.wikipedia.org/wiki/Social_Credit_System

Summary

* Resources: vote for podcasts

* Examples for the phases/paradigms of Al

* Strong Al

* Superintelligence/singularity: intelligence explosion

 What Al already gave us:
* rational models of (narrow) intelligence
* broad range of theories and technologies
 collaboration: open AGI



