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Time and uncertainty

Markov process

Hidden Markov models

Inference: filtering, prediction, smoothing

Most likely explanation: Viterbi




Time and uncertainty

The world changes; we need to track and predict it
Weather forecast; speech recognition; diabetes management
Basic idea: copy state and evidence variables for each time step

X, = set of unobservable state variables at time ¢
e.g., BloodSugar;, StomachContents;, etc.

E, = set of observable evidence variables at time ¢
e.g., MeasuredBloodSugar;, PulseRate;, FoodEaten;

This assumes discrete time; step size depends on problem

Notation: Xa:b — Xaa Xa+17 c ey Xb—h Xb



Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?

Markov assumption: X, depends on bounded subset of X,

First-order Markov process: P (X,| X, ) = P(X;|X; 1)
Second-order Markov process: P (X;| X, 1) = P(X;|X; 5, X; )

Stationary process: transition model P(X;|X; ;) fixed for all
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Hidden Markov models - Example

Ri-1| P(Rt)




Hidden Markov models - Definition

X is a single, discrete variable (/V states). Domain of X, is{1,... N}
E, is also a discrete variable (/\/ symbols). Domain of £;is {1,... M}

Transition matrix A, = P(X,=7| X, =1), e.g., (0'7 0'3)

0.3 0.7
Emission probability distribution B, (k) = P(FE; = k| X, =1)
Prior state occupation 7, = P(X|;=1) e.g., (0.7 0.3)
Hidden Markov modell A = (A, B, )

First-order Markov process: P (XX ; ) = P(X;| X, 1)
Sensor Markov assumption: P (E; X, E, ) = P(E;|X,)



Hidden Markov model

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add T'emp,;, Pressure;



Inference tasks

Filtering: P(X,|eq;)
belief state—input to the decision process of a rational agent

Prediction: P (X, . |e;,) for k > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P (X |e ;) for 0 < k < ¢
better estimate of past states, essential for learning

Most likely explanation: arg maxy,, P(x|e1.)
speech recognition, decoding with a noisy channel



Filtering

Aim: devise a recursive state estimation algorithm:

P<Xt+1\91:t+1) — f(et+17 P(Xt\elzt»

P<Xt+1\elzt+1) — P(Xt+1\elzt, et+1>
— OéP(etH\XtH, 61:t>P(Xt+1\e1:t)
= aP(e; 1| X 1)P(Xyi1lers)

|.e., prediction + estimation. Prediction by summing out X;:

P<Xt+1\81:t+1) — @P(et+1’Xt+1>ZXtP(Xt+1’Xta el:t)P(Xt\elzt)
= @P<et+1‘Xt+1)ExtP<Xt+1‘Xt)P<Xt’elzt>

fl:t—l—l = FORWARD(fl;t, et_|_1> where fl:t = P(Xt‘el:t)
Time and space constant (independent of #)



Filtering example

0.500 0.627

0.500 0.373
True 0.500 0.318 0.583

False

0.500

0.182 0.117

Rain, Rain,

SN
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Prediction

P(Xt+k:+1‘el:t> — th+A,P<Xt+kf+1’Xt+k7>P(Xt+k‘elit>

As k. — oo, P(x;,)|ei;) tends to the stationary distribution

of the Markov chain
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Smoothing

CDO~CD—~-~ -~

Divide evidence e, into e, €, 1:

P(Xjlei) = P(Xkler, €rt1:t)
— OzP(Xk‘e1;k)P(ek+1:t|Xka el:k>
= aP(Xj|err)Pleri1.4|Xx)
= of. by

Backward message computed by a backwards recursion:

Pep14|Xi) = 2x,, Pleni1| X, Xpp1) P (%541 Xi)
— Zx,{ﬂp(ekﬂzt’Xkﬂ)P(XkH|X/~s>
= 2, Pler[Xpe1) Plerya X)) P (31| X)
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Smoothing example

0.500 0.627
0.500 0.373
True  0.500 0.2!18 o.!ss o
False 0.500 0.182 0.117 orwar
o.a!ss o.e!sss
0.117 0.117 smoothed
0.690 1.000
-
0.410 1.000 backward

Umbrella,

Forward—backward algorithm: cache forward messages along the way
Time linear in ¢ (polytree inference), space O(¢|f])
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Most likely explanation

Most likely sequence # sequence of most likely states!!!!

Most likely path to each %,
= most likely path to some x; plus one more step

Jnax P(x1,...,x¢, Xev1l€r:e1)
= Per1Xip1) ngpx (P(Xtﬂ\xt) X P(X1, X, Xt\eu))

|dentical to filtering, except . replaced by

mj.; = Xlnl)agf( . P(Xh vy X1, Xt’elzt)a

l.e., my(7) gives the probability of the most likely path to state .
Update has sum replaced by max, giving the Viterbi algorithm:

Myt = P<et+1‘Xt+1) n%gx (P<X7€+1‘X7€>m1:t)
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Viterbi example

state
space
paths

umbrella

most
likely
paths

Rain,

Rain,

Raing

<

<

false Z false X false
false
.8182 5155 .0361
.1818 .0491 1237
m m

11

1:3

Rain, Raing
false false

.0334 v .0210
.0173 A .0024
m m

1:4

1.5

15




Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
— transition model P(X,|X, 1)
— sensor model P (E;|X;)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step
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