
Hidden Markov models

1



Outline

♢ Time and uncertainty

♢ Markov process

♢ Hidden Markov models

♢ Inference: filtering, prediction, smoothing

♢ Most likely explanation: Viterbi
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Time and uncertainty

The world changes; we need to track and predict it

Weather forecast; speech recognition; diabetes management

Basic idea: copy state and evidence variables for each time step

Xt = set of unobservable state variables at time t
e.g., BloodSugart, StomachContentst, etc.

Et = set of observable evidence variables at time t
e.g., MeasuredBloodSugart, PulseRatet, FoodEatent

This assumes discrete time; step size depends on problem

Notation: Xa:b = Xa,Xa+1, . . . ,Xb−1,Xb
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Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?

Markov assumption: Xt depends on bounded subset of X0:t−1

First-order Markov process: P(Xt|X1:t−1) = P(Xt|Xt−1)
Second-order Markov process: P(Xt|X1:t−1) = P(Xt|Xt−2,Xt−1)

Stationary process: transition model P(Xt|Xt−1) fixed for all t

X t −1 X tX t −2 X t +1 X t +2

X t −1 X tX t −2 X t +1 X t +2First−order

Second−order
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Hidden Markov models - Example

tRain

tUmbrella

Raint −1

Umbrella t −1

Raint +1

Umbrella t +1

Rt −1 tP(R  )

0.3f
0.7t

tR tP(U  )

0.9t
0.2f
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Hidden Markov models - Definition

Xt is a single, discrete variable (N states). Domain ofXt is {1, . . . , N}

Et is also a discrete variable (M symbols). Domain ofEt is {1, . . . ,M}

Transition matrix Aij = P (Xt= j|Xt−1= i), e.g.,

 0.7 0.3
0.3 0.7



Emission probability distribution Bi(k) = P (Et= k|Xt= i)

Prior state occupation πi = P (X1= i) e.g., ( 0.7 0.3 )

Hidden Markov modell λ = (A,B, π)

First-order Markov process: P(Xt|X1:t−1) = P(Xt|Xt−1)
Sensor Markov assumption: P(Et|X1:t,E1:t−1) = P(Et|Xt)
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Hidden Markov model

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add Tempt, Pressuret
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Inference tasks

Filtering: P(Xt|e1:t)
belief state—input to the decision process of a rational agent

Prediction: P(Xt+k|e1:t) for k > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P(Xk|e1:t) for 0 ≤ k < t
better estimate of past states, essential for learning

Most likely explanation: argmaxx1:t P (x1:t|e1:t)
speech recognition, decoding with a noisy channel
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Filtering

Aim: devise a recursive state estimation algorithm:

P(Xt+1|e1:t+1) = f (et+1,P(Xt|e1:t))

P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)

= αP(et+1|Xt+1, e1:t)P(Xt+1|e1:t)
= αP(et+1|Xt+1)P(Xt+1|e1:t)

I.e., prediction + estimation. Prediction by summing out Xt:

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)ΣxtP(Xt+1|xt, e1:t)P (xt|e1:t)
= αP(et+1|Xt+1)ΣxtP(Xt+1|xt)P (xt|e1:t)

f1:t+1 = Forward(f1:t, et+1) where f1:t=P(Xt|e1:t)
Time and space constant (independent of t)
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Filtering example

Rain1

Umbrella1

Rain2

Umbrella2

Rain0

0.818
0.182

0.627
0.373

0.883
0.117

True
False

0.500
0.500

0.500
0.500
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Prediction

P(Xt+k+1|e1:t) = Σxt+k
P(Xt+k+1|xt+k)P (xt+k|e1:t)

As k → ∞, P (xt+k|e1:t) tends to the stationary distribution
of the Markov chain
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Smoothing

Divide evidence e1:t into e1:k, ek+1:t:

P(Xk|e1:t) = P(Xk|e1:k, ek+1:t)

= αP(Xk|e1:k)P(ek+1:t|Xk, e1:k)

= αP(Xk|e1:k)P(ek+1:t|Xk)

= αf1:kbk+1:t

Backward message computed by a backwards recursion:

P(ek+1:t|Xk) = Σxk+1
P(ek+1:t|Xk,xk+1)P(xk+1|Xk)

= Σxk+1
P (ek+1:t|xk+1)P(xk+1|Xk)

= Σxk+1
P (ek+1|xk+1)P (ek+2:t|xk+1)P(xk+1|Xk)

X 0 X 1

1E tE

tXX k

Ek
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Smoothing example

Forward–backward algorithm: cache forward messages along the way
Time linear in t (polytree inference), space O(t|f|)

Rain1

Umbrella1

Rain2

Umbrella2

Rain0

True
False

0.818
0.182

0.627
0.373

0.883
0.117

0.500
0.500

0.500
0.500

1.000
1.000

0.690
0.410

0.883
0.117

forward

backward

smoothed
0.883
0.117
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Most likely explanation

Most likely sequence ̸= sequence of most likely states!!!!

Most likely path to each xt+1

= most likely path to some xt plus one more step

max
x1...xt

P(x1, . . . ,xt,Xt+1|e1:t+1)

= P(et+1|Xt+1)max
xt

P(Xt+1|xt) max
x1...xt−1

P (x1, . . . ,xt−1,xt|e1:t)


Identical to filtering, except f1:t replaced by

m1:t = max
x1...xt−1

P(x1, . . . ,xt−1,Xt|e1:t),

I.e., m1:t(i) gives the probability of the most likely path to state i.
Update has sum replaced by max, giving the Viterbi algorithm:

m1:t+1 = P(et+1|Xt+1)max
xt

(P(Xt+1|xt)m1:t)
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Viterbi example

Rain1 Rain2 Rain3 Rain4 Rain5

true

false

true

false

true

false

true

false

true

false

.8182 .5155 .0361 .0334 .0210

.1818 .0491 .1237 .0173 .0024

m 1:1 m 1:5m 1:4m 1:3m 1:2

state
space
paths

most
likely
paths

umbrella true truetruefalsetrue
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Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
– transition model P(Xt|Xt−1)
– sensor model P(Et|Xt)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step
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